一种镱:三氧化二钇上转化发光透明陶瓷及其制备方法转让专利

申请号 : CN202110801292.9

文献号 : CN113548894B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 刘承睿覃显鹏甘霖周国红胡松王正娟薛振海王士维

申请人 : 中国科学院上海硅酸盐研究所中国科学院上海硅酸盐研究所苏州研究院

摘要 :

本发明公开一种镱:三氧化二钇上转化发光透明陶瓷及其制备方法。所述Yb:Y2O3上转化发光透明陶瓷的化学组成为Y(2‑x‑y)ZrxYbyO3,其中,0.001≤x≤0.2,0.02≤y<0.5。所述Yb:Y2O3上转化发光透明陶瓷在1100nm处的透过率为80‑82%,在600nm处的透过率为72‑78%。所述Yb:Y2O3上转化发光透明陶瓷在470‑500nm波段激发出波长488nm的蓝光。

权利要求 :

1.一种Yb:Y2O3上转化发光透明陶瓷,其特征在于,所述Yb:Y2O3上转化发光透明陶瓷的化学组成为Y(2‑x‑y)ZrxYbyO3,其中,0.001≤x≤0.2,0.02≤y<0.5;所述Yb:Y2O3上转化发光透明陶瓷在1100nm处的透过率为80‑82%,在600nm处的透过率为72‑78%;

所述Yb:Y2O3上转化发光透明陶瓷的制备方法包括:将钇源、锆源、镱源按照Yb:Y2O3上转化发光透明陶瓷的化学计量比称量后经球磨、干燥、过筛和热处理,得到粉体形式的Yb:Y2O3上转化发光透明陶瓷;所述制备方法还包括:将上述粉体形式的Yb:Y2O3上转化发光透明陶瓷成型为素坯;将素坯烧结和退火得到Yb:Y2O3上转化发光透明陶瓷;所述Yb:Y2O3上转化发光透明陶瓷成型为素坯无需进行冷等静压工艺;所述烧结包括预烧结和处于预烧结之后的真空热压烧结;预烧结的温度为1000‑1400℃,预烧结时间为0.5‑2.5小时;真空热压烧结的‑1 ‑1烧结温度为1400‑1650℃,烧结压力为20‑60MPa,真空度为5×10 ‑9×10  Pa,热压烧结时间为0.5‑3小时。

2.根据权利要求1所述的Yb:Y2O3上转化发光透明陶瓷,其特征在于,所述Yb:Y2O3上转化发光透明陶瓷在470‑500nm波段激发出波长488nm的蓝光。

3.根据权利要求1所述的Yb:Y2O3上转化发光透明陶瓷,其特征在于,所述钇源为硝酸钇、氧化钇、氯化钇中的至少一种;所述锆源为硝酸锆、氧化锆、醋酸锆中的至少一种;所述镱源为硝酸镱、硫酸镱、氧化镱中的至少一种。

4.根据权利要求1所述的Yb:Y2O3上转化发光透明陶瓷,其特征在于,所述热处理的温度为800‑1200℃,热处理的保温时间为1‑5小时。

5.根据权利要求1所述的Yb:Y2O3上转化发光透明陶瓷,其特征在于,所述退火为在

1200‑1500℃保温4‑8小时。

说明书 :

一种镱:三氧化二钇上转化发光透明陶瓷及其制备方法

技术领域

[0001] 本发明涉及一种镱:三氧化二钇上转化发光透明陶瓷及其制备方法,属于透明陶瓷制备技术领域。

背景技术

[0002] 近年稀土离子镱掺杂氧化钇的上转化透明陶瓷受到极大关注。2019年G.Stanciu等人(Stanciu G,Gheorghe L,Voicu F M,et al.Highly transparent Yb:Y2O3 ceramics obtained by solid‑state reaction and combined sintering procedures.Ceramics International,2019,45(3):3217‑3222.)报道了Yb:Y2O3透明陶瓷的制备,但没有提及上转化发光性能,样品的透过率较低,Yb掺杂量为2at.%的样品在1100nm下的透过率仅为78.8%。2010年Xiaorui Hou等人(Xiaorui,Hou,and,et al.Investigation of the spectroscopic properties of highly transparent Yb:(Y0.97Zr0.03)2O3 ceramic[J].Optical Materials,2010,32(11):1435‑1440.)制备的Yb:Y2O3在980nm光激发下可激发出
488nm处的蓝光,但透过率较低,Yb掺杂量为1at.%的样品在1100nm下的透过率为78.1%。
因此开发一种高透过率的Yb:Y2O3上转化发光透明陶瓷很有必要。
[0003] 目前Yb:Y2O3透明陶瓷的制备方法主要包括真空烧结、热等静压烧结等。2019年Lei Zhang(Zhang L,Yang J,Zhang Z,et al.Blue  cooperative  up‑conversion luminescence of Yb:Y2O3 transparent ceramics[J].Ceramics International,2019,45(7):9278‑9282.)等人报道真空烧结的Yb:Y2O3的透明陶瓷,真空烧结所需温度较高(1750℃以上)且所需时间较长(15小时)。2017年Jun Wang等人(Wang J,Ma J,Zhang J,et al.Yb:Y2O3 transparent ceramics processed with hot isostatic pressing[J].Optical Materials,2016:S0925346716302105.71:117‑120.)报道了真空烧结和热等静压烧结制备的Yb:Y2O3透明陶瓷,可是热等静压工艺制备成本相对较高。

发明内容

[0004] 氧化钇透明陶瓷因具有立方相结构、带隙宽、透光波段宽、化学稳定性好、光化学稳定性好的特点,在发光领域中常被用作基体进行稀土离子掺杂,但是现有氧化钇透明陶瓷存在熔点较高(2430℃)、难以烧结致密、制备成本过高的问题。为解决以上问题,本发明提供一种镱:三氧化二镱上转化发光透明陶瓷及其制备方法。本发明所述镱:三氧化二镱上转化发光透明陶瓷拥有较高透过性能,在1100nm处的透过率为80‑82%,在600nm处的透过率为72‑77%,同时还可以在980nm波长的光激发下在488nm处激发出蓝光。
[0005] 第一方面,本发明提供一种Yb:Y2O3上转化发光透明陶瓷。所述Yb:Y2O3上转化发光透明陶瓷的化学组成为Y(2‑x‑y)ZrxYbyO3,其中,0.001≤x≤0.2,0.02≤y<0.5。x指Zr的摩尔分数,y指Yb的摩尔分数。Zr不足或过量会导致烧结过程中晶界迁移速率发生变化,进而可能使发光透明陶瓷的可见光和近红外光透过率下降。Yb不足则容易因Yb浓度较低导致上转3+ 3+
化发光性能下降。Yb过量会由于Yb 的离子半径(86.8pm)和Y 的离子半径(89.3pm)的差异
3+
引起部分晶格缺陷进而导致透过率下降,且过高的Yb 离子浓度可能会导致样品产生淬灭现象而使上转化发光性能下降。
[0006] 较佳地,所述Yb:Y2O3上转化发光透明陶瓷在1100nm处的透过率为80‑82%,在600nm处的透过率为72‑78%。
[0007] 较佳地,所述Yb:Y2O3上转化发光透明陶瓷在470‑500nm波段激发出波长488nm的蓝光。
[0008] 第二方面,本发明提供使用上述任一项所述的Yb:Y2O3上转化发光透明陶瓷的制备方法。所述制备方法包括:将钇源、锆源、镱源按照Yb:Y2O3上转化发光透明陶瓷的化学计量比称量后经球磨、干燥、过筛和热处理,得到粉体形式的Yb:Y2O3上转化发光透明陶瓷。
[0009] 较佳地,所述钇源为硝酸钇、氧化钇、氯化钇中的至少一种;所述锆源为硝酸锆、氧化锆、醋酸锆中的至少一种;所述镱源为硝酸镱、硫酸镱、氧化镱中的至少一种。
[0010] 较佳地,所述热处理的温度为800‑1200℃,热处理的保温时间为1‑5小时。
[0011] 较佳地,所述制备方法还包括:将上述粉体形式的Yb:Y2O3上转化发光透明陶瓷成型为素坯;将素坯烧结和退火得到Yb:Y2O3上转化发光透明陶瓷。
[0012] 较佳地,所述Yb:Y2O3上转化发光透明陶瓷成型为素坯无需进行冷等静压工艺。
[0013] 较佳地,所述烧结包括预烧结和处于预烧结之后的真空热压烧结;预烧结的温度为1000‑1400℃,预烧结时间为0.5‑2.5小时;真空热压烧结的烧结温度为1400‑1650℃,烧‑1 ‑1结压力为20‑60MPa,真空度为5×10 ‑9×10 Pa,热压烧结时间为0.5‑3小时。
[0014] 较佳地,所述退火为在1200‑1500℃保温4‑8小时。
[0015] 本发明所述Yb:Y2O3上转化发光透明陶瓷的制备方法在烧结温度相对较低、保温时间相对较短的条件下仍能获得良好的发光性能和光透过性能。

附图说明

[0016] 图1是实施例1‑4制得的Yb:Y2O3上转化发光透明陶瓷材料和对比例1制得的Y2O3透明陶瓷材料的X射线衍射图谱;
[0017] 图2是实施例1‑4制得的Yb:Y2O3上转化发光透明陶瓷材料和对比例1制得的Y2O3透明陶瓷材料经过双面抛光厚度为2mm的的实物图;可以看出上述实物图均可以清楚地显示背景图片中的文字;
[0018] 图3是实施例1‑4制得的Yb:Y2O3上转化发光透明陶瓷材料和对比例1制得的Y2O3透明陶瓷材料经过双面抛光厚度为2mm的透过率曲线;
[0019] 图4是实施例1‑4制得的Yb:Y2O3上转化发光透明陶瓷材料和对比例1制得的Y2O3透明陶瓷材料在470‑500nm处的上转化发光图谱。

具体实施方式

[0020] 通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。在没有特殊说明的情况下,各百分含量指原子百分含量。
[0021] 本公开提供一种Yb:Y2O3上转化发光透明陶瓷,其化学组成为:Y(2‑x‑y)ZrxYbyO3,0.001≤x≤0.2,0.02≤y<0.5。相较于传统Yb:Y2O3透明陶瓷,所述Yb:Y2O3上转化发光透明陶瓷拥有较高透过性能:1100nm处透过率为80‑82%,在600nm处的透过率为72‑78%。另外,所述Yb:Y2O3上转化发光透明陶瓷引入镱,使该Yb:Y2O3上转化发光透明陶瓷具有高强度的上转化发光性能。例如,所述Yb:Y2O3上转化发光透明陶瓷在980nm波长处的光激发下在470‑
500nm波段范围内可激发出波长488nm的蓝光。所述Yb:Y2O3上转化发光透明陶瓷适用于红外探测、三维立体显示、固体激光器、高密度数据储存、激光医疗等领域。作为优选,0.001≤x≤0.1,0.02≤y≤0.2。
[0022] 以下示例性说明所述Yb:Y2O3上转化发光透明陶瓷的制备方法。
[0023] 配料。按照Y(2‑x‑y)ZrxYbyO3(0.001≤x≤0.2,0.02≤y<0.5)的化学计量比称取钇源、锆源和镱源作为原料粉体。钇源包括但不限于硝酸钇、氧化钇、氯化钇中的至少一种。锆源包括但不限于硝酸锆、氧化锆、醋酸锆中的至少一种。镱源包括但不限于硝酸镱、硫酸镱、氧化镱中的至少一种。作为示例,所述钇源、锆源、镱源分别为硝酸钇、氧化锆、硝酸镱。
[0024] 将上述原料粉体球磨,优选为湿法球磨。球磨转速可为210‑250转每分钟。球磨时间可为16‑24小时。作为示例,采用锆球作为磨球,将原料粉体、磨球和无水乙醇按照质量比1:5:2进行球磨。
[0025] 将球磨形成的浆料干燥。干燥温度可为55‑70℃,干燥时间可为24‑36小时。干燥可在干燥箱中进行。将干燥后的粉体过筛。优选为过120‑200目筛。一些技术方案中,每次过筛过两遍。
[0026] 将过筛后的粉体热处理,目的是去除粉体中可能存在的有机物。所述热处理为在800℃‑1200℃保温1‑5小时。
[0027] 热处理得到的Yb:Y2O3上转化发光透明陶瓷粉体的粒径均一。所述粒径可为0.01‑0.5μm。
[0028] 将Yb:Y2O3上转化发光透明陶瓷粉体成型。可在2‑10MPa的压力下保压10‑50秒进行成型。例如,在2‑10MPa的压力下对Yb:Y2O3上转化发光透明陶瓷材料粉体双面加压并持续保压10‑40秒使其成型为素坯。这是由于热压烧结时产生的机械压力会作为额外的驱动力促进Yb:Y2O3上转化发光透明陶瓷素坯的烧结。若对该素坯进行冷等静压处理,会使样品得到较高的强度,但是却不利于热压烧结过程中样品的收缩,这会影响Yb:Y2O3上转化发光透明陶瓷的光学性能。故本发明成型为素坯的过程无需经过冷等静压处理。
[0029] 预烧结。将Yb:Y2O3上转化发光透明陶瓷素坯在1000‑1400℃预烧结0.5‑2小时。预烧结可在高温炉中进行。预烧结的气氛为空气。
[0030] 真空热压烧结。将空气预烧结得到的样品在真空度为5×10‑1‑9×10‑1Pa、压力20‑60MPa、温度为1400‑1650℃条件下热压烧结0.5‑3小时。
[0031] 退火。将烧结后的样品于1200‑1500℃下保温烧结4‑8小时。所述退火气氛为空气。
[0032] 本发明提供的可吸收紫外光的透明陶瓷可见光透过率较高,烧结致密度高,存在上转化发光。此外,本发明所述制备方法采用空气预烧‑真空热压烧结‑退火的烧结工序,并以氧化钇为主体,氧化锆在该烧结过程中起到促进烧结作用,从而实现在较低的热压烧结温度(1400‑1650℃)及较短的保温时间(0.5‑3小时)条件下制备具有较高透过率,且存在上转化发光性能的透明陶瓷。
[0033] 下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
[0034] 实施例1
[0035] 粉体制备。按Y(2‑x‑y)ZrxYbyO3中各元素的化学计量比(原子比)(其中x=0.02,y=0.02,即锆的掺杂量为1at.%,镱的掺杂量为1at.%)称取硝酸钇、氧化锆和硝酸镱,并溶于适量的无水乙醇中,混合均匀。上述原料粉体的总质量与无水乙醇的质量比为1:2。将原料粉体与无水乙醇的混合物置于行星式球磨机中,在210转每分钟的条件下球磨16小时形成浆料。将球磨后的浆料在50℃的干燥箱中干燥24小时。将干燥后的粉体过两遍120目筛,再将过筛后的粉体进行热处理,得到合适粒径且粒径均一的Yb:Y2O3上转化发光透明陶瓷材料粉体。热处理条件为在800℃保温1小时。
[0036] 陶瓷材料粉体成型。采用压力2MPa、保压时间10秒的干压成型工艺,得到真空热压烧结的Yb:Y2O3上转化发光透明陶瓷材料素坯。
[0037] 素坯烧结。将成型后的真空热压烧结的Yb:Y2O3上转化发光透明陶瓷素坯先在1000‑1℃的高温炉中预烧0.5小时,再于温度为1400℃、真空度为9×10 Pa、压力为20MPa的条件下烧结0.5小时。
[0038] 退火热处理。将真空热压烧结后的样品在1200℃的高温炉中保温4小时,即得真空热压烧结的Yb:Y2O3(Y1.96Zr0.02Yb0.02O3)上转化发光透明陶瓷材料。
[0039] 透过率评价实验:通过分光光度计对所制样品在190‑1100nm范围进行透过率测试。
[0040] 上转化发光评价实验:通过低温吸收光谱仪对所制样品在470‑500nm范围进行上转化发光测试。
[0041] 真空热压烧结的Yb:Y2O3上转化发光透明陶瓷材料在1100nm处的透过率为81.7%,3+
在可见光600nm处的透过率为77.2%,在448nm处产生蓝光上转化发光。由于本实施例的Yb离子浓度较小,故上转化发光强度相对较低。
[0042] 实施例2
[0043] 粉体制备。按Y(2‑x‑y)ZrxYbyO3(其中x=0.02,y=0.06,即锆的掺杂量为1at.%,镱的掺杂量为3at.%)中各元素的各化学计量比(原子比)称取硝酸钇、氧化锆和硝酸镱,并溶于适量的无水乙醇中,混合均匀。上述原料粉体的总质量与无水乙醇的质量比为1:2。将原料粉体与无水乙醇的混合物置于行星式球磨机中,在220转每分钟的条件下球磨18小时形成浆料。将球磨后的浆料在55℃的干燥箱中干燥28小时。将干燥后的粉体过两遍140目筛,再将过筛后的粉体进行热处理,得到合适粒径且粒径均一的Yb:Y2O3上转化发光透明陶瓷材料粉体。所述热处理条件为在900℃保温2小时。
[0044] 陶瓷材料粉体成型。采用压力4MPa,保压时间20秒的干压成型工艺,得到真空热压烧结的Yb:Y2O3上转化发光透明陶瓷材料素坯。
[0045] 素坯烧结。将成型后的真空热压烧结的Yb:Y2O3上转化发光透明陶瓷素坯先在1100‑1℃的高温炉中预烧1小时,再经过温度为1450℃、真空度为8×10 Pa、压力为30MPa的条件下烧结1小时。
[0046] 退火热处理。将真空热压烧结后的样品在1300℃的高温炉中保温5小时,即得真空热压烧结的Yb:Y2O3(Y1.92Zr0.02Yb0.06O3)上转化发光透明陶瓷材料。
[0047] 真空热压烧结的Yb:Y2O3上转化发光透明陶瓷材料在1100nm处的透过率为81.6%,在可见光600nm处的透过率为76.5%。本实施例的样品在448nm处的蓝光上转化发光强度相对实施例有所增强。
[0048] 实施例3
[0049] 粉体制备。按Y(2‑x‑y)ZrxYbyO3(其中x=0.02,y=0.10,即锆的掺杂量为1at.%,镱的掺杂量为5at.%)中各元素的各化学计量比(原子比)称取硝酸钇、氧化锆和硝酸镱,并溶于适量的无水乙醇中,混合均匀。上述原料粉体的总质量与无水乙醇的质量比为1:2。将原料粉体与无水乙醇的混合物置于行星式球磨机中,在230转每分钟的条件下球磨20小时形成浆料。将球磨后的浆料在60℃的干燥箱中干燥30小时。将干燥后的粉体过两遍160目筛,再将过筛后的粉体进行热处理,得到合适粒径且粒径均一的Yb:Y2O3上转化发光透明陶瓷材料粉体。所述热处理条件为在1000℃保温3小时。
[0050] 陶瓷材料粉体成型。采用压力6MPa、保压时间30秒的干压成型工艺,得到真空热压烧结的Yb:Y2O3上转化发光透明陶瓷材料素坯。
[0051] 素坯烧结。将成型后的真空热压烧结的Yb:Y2O3上转化发光透明陶瓷素坯先在1200‑1℃的高温炉中预烧1.5小时,再经过温度为1500℃、真空度为7×10 Pa、压力为40MPa的条件下烧结1.5小时。
[0052] 退火热处理。将真空热压烧结后的样品在1350℃的高温炉中保温6小时,即得真空热压烧结的Yb:Y2O3(Y1.88Zr0.02Yb0.10O3)上转化发光透明陶瓷材料。
[0053] 真空热压烧结的Yb:Y2O3上转化发光透明陶瓷材料在1100nm处的透过率为81.1%,在可见光600nm处的透过率为73.7%。本实施例的样品在448nm处的蓝光上转化发光强度相对实施例1‑2有所增强。
[0054] 实施例4
[0055] 粉体制备。按Y(2‑x‑y)ZrxYbyO3(其中x=0.02,y=0.16,即锆的掺杂量为1at.%,镱的掺杂量为8at.%)中各元素的各化学计量比(原子比)称取硝酸钇、氧化锆和硝酸镱,并溶于适量的无水乙醇中,混合均匀。上述原料粉体的总质量与无水乙醇的质量比为1:2。将原料粉体与无水乙醇的混合物置于行星式球磨机中,在240转每分钟的条件下球磨22小时形成浆料。将球磨后的浆料在65℃的干燥箱中干燥32小时。将干燥后的粉体过两遍180目筛,再将过筛后的粉体进行热处理,得到合适粒径且粒径均一的Yb:Y2O3上转化发光透明陶瓷材料粉体。所述热处理条件为在1100℃保温4小时。
[0056] 陶瓷材料粉体成型。采用压力8MPa、保压时间40秒的干压成型工艺,得到真空热压烧结的Yb:Y2O3上转化发光透明陶瓷材料素坯。
[0057] 素坯烧结。将成型后的真空热压烧结的Yb:Y2O3上转化发光透明陶瓷素坯先在1300‑1℃的高温炉中预烧2小时,再经过温度为1600℃、真空度为6×10 Pa、压力为50MPa的条件下烧结2小时。
[0058] 退火热处理。将真空热压烧结后的样品在1400℃的高温炉中保温7小时,即得真空热压烧结的Yb:Y2O3(Y1.82Zr0.02Yb0.16O3)上转化发光透明陶瓷材料。
[0059] 真空热压烧结的Yb:Y2O3上转化发光透明陶瓷材料在1100nm处的透过率为80.5%,在可见光600nm处的透过率为72.8%。本实施例的样品在448nm处的蓝光上转化发光强度相对实施例1‑3有所增强。
[0060] 对比例1
[0061] 粉体制备。按Y(2‑x‑y)ZrxYbyO3(其中x=0.02,y=0,即锆的掺杂量为1at.%,镱的掺杂量为0at.%)中各元素的化学计量比(原子比)称取硝酸钇、氧化锆,并溶于适量的无水乙醇中,混合均匀。上述原料粉体的总质量与无水乙醇的质量比为1:2。将原料粉体与无水乙醇的混合物置于行星式球磨机中,在250转每分钟的条件下球磨24小时以形成浆料。将球磨后的浆料在70℃的干燥箱中干燥36小时。将干燥后的粉体过两遍200目筛,再将过筛后的粉体进行热处理,得到合适粒径且粒径均一的真空热压烧结的Y2O3透明陶瓷材料粉体。所述热处理条件为在1200℃保温5小时。
[0062] 陶瓷材料粉体成型。采用压力10MPa、保压时间50秒的干压成型方式,得到真空热压烧结的Y2O3透明陶瓷材料素坯。
[0063] 素坯烧结。将成型后的真空热压烧结的Y2O3透明陶瓷素坯先在1400℃的高温炉中‑1预烧2.5小时,再经过温度为1650℃、真空度为5×10 Pa、压力为60MPa的条件下烧结3小时。
[0064] 退火热处理。将真空热压烧结后的样品在1500℃的高温炉中保温8小时,即得(Y1.98Zr0.02O3)真空热压烧结的Y2O3(Y1.98Zr0.02O3)透明陶瓷材料。
[0065] 真空热压烧结的Y2O3透明陶瓷材料在1100nm处的透过率为81.8%,在可见光600nm处的透过率为77.7%,在448nm处无上转化发光现象。
[0066] 图1示出实施例1‑4制得的Yb:Y2O3上转化发光透明陶瓷材料及对比例1制得的Y2O3透明陶瓷材料的X射线衍射图谱。由图1可知,真空热压烧结的Yb:Y2O3上转化发光透明陶瓷材料及真空热压烧结的Y2O3透明陶瓷材料皆呈现单一的氧化钇结构,这是由于镱离子和锆离子进入了氧化钇的晶格中,取代了钇离子的位置,而并没有改变氧化钇本身的晶体结构。
[0067] 图2示出实施例1‑4制得的Yb:Y2O3上转化发光透明陶瓷材料及对比例1制得的Y2O3透明陶瓷材料经过双面抛光厚度为2mm的实物图。由图2可知,所有样品呈高度透明状态,可清晰地看见样品下的文字。
[0068] 图3示出实施例1‑4制得的Yb:Y2O3上转化发光透明陶瓷材料及对比例1制得的Y2O3透明陶瓷材料经过双面抛光厚度为2mm的透过率曲线。由图3可知,当Yb的掺杂量为0at.%时,真空热压烧结的Y2O3透明陶瓷材料透过率在1100nm处的透过率为81.8%;随着Yb浓度上升,样品透过率略有降低,在1100nm处的透过率基本维持在80%以上。实施例1‑4的制得样品在800‑1100nm波段存在吸收,且吸收强度随镱掺杂浓度的上升而增强;但是当Yb的掺杂量为0at.%时,真空热压烧结的Y2O3透明陶瓷材料在800‑1100nm波段无吸收。
[0069] 图4示出实施例1‑4制得的Yb:Y2O3上转化发光透明陶瓷材料及对比例1制得的Y2O3透明陶瓷材料在470‑500nm处的上转化发光图谱。由图4可知,Yb:Y2O3样品在488nm处存在蓝光发射峰,且随着镱浓度的上升,蓝光发光强度逐渐上升。可是当Yb的掺杂量为0at.%时,真空热压烧结的Y2O3透明陶瓷材料无蓝光上转化发光现象。这是因为Yb离子在受到980nm光2 2
激发时形成耦合能级F5/2‑F5/2,跃迁回基态能级时产生协同发光效应。