基于周期变化的日用水量调节方法转让专利

申请号 : CN202110659816.5

文献号 : CN113551296B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 高志明陈城余华明何钦波吴治将徐言生孙婉纯

申请人 : 顺德职业技术学院

摘要 :

本发明涉及一种基于周期变化的日用水量调节方法,其特点是包括以下步骤:第一步,室外温湿度传感器、水箱液位传感器、补水测水表、水箱的横截面积;第二步,时间长度;第三步,获取数据;第四步,通过第二及第三步获得数据;第五步,计算用水量平均值;第六步,算出水量基准值;第七步,日用水量与用水人数与使用率的关系模型;第八步,日用水量上限控制;第九步,分成T个时段;第十步,计算数值;第十一步,日用水量下限预测;第十二步,控制日用水量。其优点是通过对目标水量的变化预测,实现生活热水系统热水精准供应,节约能源。

权利要求 :

1.一种基于周期变化的日用水量调节方法,其特征在于包括以下步骤:第一步

安装室外温湿度传感器TH、水箱液位传感器L及补水测水表U,并测量水箱的横截面积S;

第二步

(1)通过水箱液位传感器L获取全年每天水箱每日初始液位H初k及每日终止液位H终k,通过补水测水表U获取全年每日初始读数Q初k及全年每日终止读数Q终k,其中k指一个完整年度的第k天,k=1,2,3,...,365;

(2)计算每日用水量,Vk=S×(H终k‑H初k)‑(Q终k‑Q初k)(3)采用傅里叶变换将一个完整年度的日用水量时间序列进行计算获取日用水量的周期;

其中 为角频率, 为功率谱函数, 为一个完整年度的日用水量时间序列;

通过上述傅里叶变换公式将一个完整年度的日用水量时间序列分离为多种不同用水周期的正、余弦波之和,得到不同用水周期的正、余弦波对应的振幅,振幅最大对应的正、余弦波的用水周期即为用水周期时间长度;

第三步

通过日常记录获取全年每日用水总人数Wk,全年每日男性用水人数W男k,全年每日女性用水人数W女k,其中W男k+W女k=Wk,计算每日男性用水使用率r男k=W男k/Wk,每日女性用水使用率r女k=W女k/Wk;

第四步

将第二步、第三步获取的全年每日的用水量Vk、全年每日用水总人数Wk,每日男性用水使用率r男k,每日女性用水使用率r女k按周期性分别分类至周期内对应的第j天,得到周期内对应的第j天每日的用水量Vuj,全年每日用水总人数Wuj,每日男性用水使用率r男uj,每日女性用水使用率r女uj;所述u是周期内第j天对应的天数;

第五步

计算周期内第j天日用水量平均值 ;

第六步

将第j天日用水量平均值作为第j天日水量基准值V0j;

第七步

建立第j天日用水量Vj与用水人数与使用率的关系模型,有两种方法:第一种方法

采用人工神经网络,选择周期内第j天所有数据,以Wuj,r男uj,r女uj为输入变量,Vuj为输出变量,建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=f(Wj,r男j,r女j);

输出周期性日用水量与用水人数和使用率之间的关系模型;

V1=f(W1,r男1,r女1)V2=f(W2,r男2,r女2)V3=f(W3,r男3,r女k3)...

Vj=f(Wj,r男j,r女j)第二种方法

建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=V0j×βj,其中βj=g(Wj,r男j,r女j)采用人工神经网络,选择周期内第j天所有数据,以Wuj,r男uj及r女uj为输入变量,Vuj为输出变量,建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=V0j×βj=V0j×g(Wj,r男j,r女j);

V1=V01×g(W1,r男1,r女1)V2=V02×g(W2,r男2,r女2)V3=V03×g(W3,r男3,r女k3)...

Vj=V0j×g(Wj,r男j,r女j)第八步

预测周期性第j天日用水量上限;获取上一周期第j天每日用水总人数W上j,每日男性用水使用率r男上j,每日女性用水使用率r女上j,通过周期性第j天日用水量模型,预测计算第j天日用水量V预j=f(W上j,r男上j,r女上j)或V预j=V0j×g(W上j,r男上j,r女上j),为防止日用水量不够,给定一个安全系数e进行调节设置,日用水量上限预测值V预j=e×f(W上j,r男上j,r女上j)或V预j=e×V0j×g(W上j,r男上j,r女上j),e设置为1‑1.5范围内;

第九步

根据实际的用水情况,将第j天分成T个时段,T≥1的整数,g表示中间时段,g≥1的整数;通过水箱液位传感器L获得T个时段的初始平均液位H初jT及T个时段终止平均液位H终jT,通过补水测水表U测得每个典型日初始平均读数Q初jT及每个典型日终止平均读数Q终jT;

第十步

计算T个时段的用水量,VjT=S×(H终jT‑H初jT)‑(Q终jT‑Q初jT);通过公式,计算出 的数值,0< <1,且λT≥λT+1, 设置为1‑1.1范围内;

第十一步

日用水量分时段下限预测,V预jT=λT×V预j;

第十二步

通过日用水量上限预测的V预j及每个时段日用水下限预测V预jT来控制日用水量。

说明书 :

基于周期变化的日用水量调节方法

技术领域

[0001] 本发明涉及一种基于周期变化的日用水量调节方法。

背景技术

[0002] 现有生活热水系统在运行过程,为满足供水量和水温达到用户需求,目标水位往往采用满刻度或最大用水量供应,出现储水箱热水大量剩余的现象,造成热量散失与浪费。

发明内容

[0003] 本发明的目的是克服现有技术的不足而提供一种基于周期变化的日用水量调节方法,通过对目标水量的变化预测,实现生活热水系统热水精准供应,节约能源。
[0004] 为了达到上述目的,本发明是这样实现的,包括以下步骤:
[0005] 第一步
[0006] 安装室外温湿度传感器TH、水箱液位传感器L及补水测水表U,并测量水箱的横截面积S;
[0007] 第二步
[0008] (1)通过水箱液位传感器L获取全年每天水箱每日初始液位H初k及每日终止液位H终k,通过补水测水表U获取全年每日初始读数Q初k及全年每日终止读数Q终k,其中k指一个完整年度的第k天,k=1,2,3,...,365;
[0009] (2)计算每日用水量,Vk=S×(H终k‑H初k)‑(Q终k‑Q初k)
[0010] (3)采用傅里叶变换将一个完整年度的日用水量时间序列进行计算获取日用水量的周期;
[0011]
[0012] 其中 为角频率, 为功率谱函数, 为一个完整年度的日用水量时间序列;
[0013] 上述的傅里叶变换公式,将一个完整年度的日用水量时间序列分离为多种不同周期的正、余弦波之和,得到不同周期的正、余弦波对应的振幅,振幅最大对应的正、余弦波的周期即为用水周期时间长度;
[0014] 第三步
[0015] 通过日常记录获取全年每日用水总人数Wk,全年每日男性用水人数W男k,全年每日女性用水人数W女k,其中W男k+W女k=Wk,计算每日男性用水使用率r男k=W男k/Wk,每日女性用水使用率r女k=W女k/Wk;
[0016] 第四步
[0017] 将第二步、第三步获取的全年每日的用水量Vk、全年每日用水总人数Wk,每日男性用水使用率r男k,每日女性用水使用率r女k按周期性分别分类至周期内对应的第j天,得到周期内对应的第j天每日的用水量Vuj、全年每日用水总人数Wuj,每日男性用水使用率r男uj,每日女性用水使用率r女uj;所述u是周期内第j天对应的天数;
[0018] 第五步
[0019] 计算周期内第j天日用水量平均值 ;
[0020] ;
[0021] 第六步
[0022] 将第j天日用水量平均值作为第j天日水量基准值V0j;
[0023] 第七步
[0024] 建立第j天日用水量Vj与用水人数与使用率的关系模型,有两种方法:
[0025] 第1种方法
[0026] 采用人工神经网络,选择周期内第j天所有数据,以Wuj,r男uj,r女uj为输入变量,Vuj为输出变量,建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=f(Wj,r男j,r女j);
[0027] 输出周期性日用水量与用水人数和使用率之间的关系模型;
[0028] V1=f(W1,r男1,r女1)
[0029] V2=f(W2,r男2,r女2)
[0030] V3=f(W3,r男3,r女k3)...
[0031] Vj=f(Wj,r男j,r女j)
[0032] 第2种方法
[0033] 建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=V0j×βj,其中βj=g(Wj,r男j,r女j)
[0034] 采用人工神经网络,选择周期内第j天所有数据,以Wuj,r男uj及r女uj为输入变量,Vuj为输出变量,建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=V0j×βj=V0j×g(Wj,r男j,r女j);
[0035] V1=V01×g(W1,r男1,r女1)
[0036] V2=V02×g(W2,r男2,r女2)
[0037] V3=V03×g(W3,r男3,r女k3)...
[0038] Vj=V0j×g(Wj,r男j,r女j)
[0039] 第八步
[0040] 预测周期性第j天日用水量上限;获取上一周期第j天每日用水总人数W上j,每日男性用水使用率r男上j,每日女性用水使用率r女上j,通过周期性第j天日用水量模型,预测计算第j天日用水量V预j=f(W上j,r男上j,r女上j)或V预j=V0j×g(W上j,r男上j,r女上j),为防止日用水量不够,给定一个安全系数e进行调节设置,日用水量上限预测值V预j=e×f(W上j,r男上j,r女上j)或V预j=e×V0j×g(W上j,r男上j,r女上j),e设置为1‑1.5范围内;
[0041] 第九步
[0042] 根据实际的用水情况,将第j天分成T个时段,T≥1的整数,g表示中间时段,g≥1的整数;通过水箱液位传感器L获得T个时段的初始平均液位H初jT及T个时段终止平均液位H终jT,通过补水测水表U测得每个典型日初始平均读数Q初jT及每个典型日终止平均读数Q终jT;
[0043] 第十步
[0044] 计算T个时段的用水量,VjT=S×(H终jT‑H初jT)‑(Q终jT‑Q初jT);通过公式,计算出 的数值,0< <1,且λT≥λT+1, 设置为1‑1.1范围
内;
[0045] 第十一步
[0046] 日用水量分时段下限预测,V预jT=λT×V预j;
[0047] 第十二步
[0048] 通过日用水量上限预测的V预j及每个时段日用水下限预测V预jT来控制日用水量。
[0049] 本发明与现有技术相比的优点为:通过对目标水量的周期性变化预测,实现生活热水系统热水精准供应,节约能源。
[0050] 说明书附图
[0051] 附图一是本发明傅里叶变换将一个完整年度的日用水量时间序列进行计算获取日用水量的周期的示意图。

具体实施方式

[0052] 下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以互相结合。
[0053] 实施例一
[0054] 如图1所示,其是一种基于周期变化的日用水量调节方法,其特征在于包括以下步骤:
[0055] 第一步
[0056] 安装室外温湿度传感器TH、水箱液位传感器L及补水测水表U,并测量水箱的横截面积S;
[0057] 第二步
[0058] (1)通过水箱液位传感器L获取全年每天水箱每日初始液位H初k及每日终止液位H终k,通过补水测水表U获取全年每日初始读数Q初k及全年每日终止读数Q终k,其中k指一个完整年度的第k天,k=1,2,3,...,365;
[0059] (2)计算每日用水量,Vk=S×(H终k‑H初k)‑(Q终k‑Q初k)
[0060] (3)采用傅里叶变换将一个完整年度的日用水量时间序列进行计算获取日用水量的周期;
[0061]
[0062] 其中 为角频率, 为功率谱函数, 为一个完整年度的日用水量时间序列;
[0063] 上述的傅里叶变换公式,将一个完整年度的日用水量时间序列分离为多种不同周期的正、余弦波之和,得到不同周期的正、余弦波对应的振幅,振幅最大对应的正、余弦波的周期即为用水周期时间长度;
[0064] 第三步
[0065] 通过日常记录获取全年每日用水总人数Wk,全年每日男性用水人数W男k,全年每日女性用水人数W女k,其中W男k+W女k=Wk,计算每日男性用水使用率r男k=W男k/Wk,每日女性用水使用率r女k=W女k/Wk;
[0066] 第四步
[0067] 将第二步、第三步获取的全年每日的用水量Vk、全年每日用水总人数Wk,每日男性用水使用率r男k,每日女性用水使用率r女k按周期性分别分类至周期内对应的第j天,得到周期内对应的第j天每日的用水量Vuj、全年每日用水总人数Wuj,每日男性用水使用率r男uj,每日女性用水使用率r女uj;所述u是周期内第j天对应的天数;
[0068] 例如,周期为7天,属于以星期为周期,将全年所有星期1的每日用水总人数Wu1,每日男性用水使用率r男u1,每日女性用水使用率r女u1和每日的用水量Vu1分类至星期1,全年所有星期2的每日用水总人数Wu2,每日男性用水使用率r男u2,每日女性用水使用率r女u2和每日的用水量Vu2分类至星期2,全年所有星期3的每日用水总人数Wu3,每日男性用水使用率r男u3,每日女性用水使用率r女u3和每日的用水量Vu3分类至星期3,全年所有星期4的每日用水总人数Wu4,每日男性用水使用率r男u4,每日女性用水使用率r女u4和每日的用水量Vu4分类至星期4,全年所有星期5的每日用水总人数Wu5,每日男性用水使用率r男u5,每日女性用水使用率r女u5和每日的用水量Vu5分类至星期5,全年所有星期6的每日用水总人数Wu6,每日男性用水使用率r男u6,每日女性用水使用率r女u6和每日的用水量Vu6分类至星期6,全年所有星期7的每日用水总人数Wu7,每日男性用水使用率r男u7,每日女性用水使用率r女u7和每日的用水量Vu7分类至星期7。
[0069] 第五步
[0070] 计算周期内第j天日用水量平均值 ;
[0071] ;
[0072] 第六步
[0073] 将第j天日用水量平均值作为第j天日水量基准值V0j;
[0074] 第七步
[0075] 建立第j天日用水量Vj与用水人数与使用率的关系模型;有两种方法:
[0076] 第1种方法
[0077] 采用人工神经网络,选择周期内第j天所有数据,以Wuj,r男uj,r女uj为输入变量,Vuj为输出变量,建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=f(Wj,r男j,r女j);
[0078] 输出周期性日用水量与用水人数和使用率之间的关系模型;
[0079] V1=f(W1,r男1,r女1)
[0080] V2=f(W2,r男2,r女2)
[0081] V3=f(W3,r男3,r女k3)...
[0082] Vj=f(Wj,r男j,r女j)
[0083] 第2种方法
[0084] 建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=V0j×βj,其中βj=g(Wj,r男j,r女j)
[0085] 采用人工神经网络,选择周期内第j天所有数据,以Wuj,r男uj及r女uj为输入变量,Vuj为输出变量,建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=V0j×βj=V0j×g(Wj,r男j,r女j);
[0086] V1=V01×g(W1,r男1,r女1)
[0087] V2=V02×g(W2,r男2,r女2)
[0088] V3=V03×g(W3,r男3,r女k3)...
[0089] Vj=V0j×g(Wj,r男j,r女j)
[0090] 第八步
[0091] 预测周期性第j天日用水量上限;获取上一周期第j天每日用水总人数W上j,每日男性用水使用率r男上j,每日女性用水使用率r女上j,通过周期性第j天日用水量模型,预测计算第j天日用水量V预j=f(W上j,r男上j,r女上j)或V预j=V0j×g(W上j,r男上j,r女上j),为防止日用水量不够,给定一个安全系数e进行调节设置,日用水量上限预测值V预j=e×f(W上j,r男上j,r女上j)或V预j=e×V0j×g(W上j,r男上j,r女上j),e一般设置为1范围内;
[0092] 第九步
[0093] 根据实际的用水情况,将第j天分成T个时段,T≥1的整数,g表示中间时段,g≥1的整数;通过水箱液位传感器L获得T个时段的初始平均液位H初jT及T个时段终止平均液位H终jT,通过补水测水表U测得每个典型日初始平均读数Q初jT及每个典型日终止平均读数Q终jT;
[0094] 第十步
[0095] 计算T个时段的用水量,VjT=S×(H终jT‑H初jT)‑(Q终jT‑Q初jT);通过公式,计算出 的数值,0< <1,且λT≥λT+1, 设置为1范围内;
[0096] 第十一步
[0097] 日用水量分时段下限预测,V预jT=λT×V预j;
[0098] 例如:某酒店用水高峰为19时至23时一个阶段,周期j为一个星期7天,周一至周四用水方式相同,周五至周六用水方式相同,周日的用水方式与其他天数不一致, 选择全年所有周四(即周期内第4天,j=4)进行最低用水量比例测试,该第4天全天用水量上限V预4,T时段不规则划分,划分为0‑9时为第1时段,9‑15时为第2时段,15‑19时为第3时段,19‑23时为第4时段,23‑24为第5时段。
[0099] T=1,2,3,4,5,g=1,2,3,4,5
[0100] 通过分时段测试,获取每个时段的用水量V4T,根据每个时段的用水量计算各时段的最低用水比例和用水量。
[0101]
[0102] 第十二步
[0103] 通过日用水量上限预测的V预j及每个时段日用水下限预测V预jT来控制日用水量。
[0104] 上述的基于周期变化的日用水量调节方法,可应用于学校、医院、酒店等任何使用集中式热水系统的水量控制。
[0105] 实施例二
[0106] 如图1所示,其是一种基于周期变化的日用水量调节方法,包括以下步骤:
[0107] 第一步
[0108] 安装室外温湿度传感器TH、水箱液位传感器L及补水测水表U,并测量水箱的横截面积S;
[0109] 第二步
[0110] (1)通过水箱液位传感器L获取全年每天水箱每日初始液位H初k及每日终止液位H终k,通过补水测水表U获取全年每日初始读数Q初k及全年每日终止读数Q终k,其中k指一个完整年度的第k天,k=1,2,3,...,365;
[0111] (2)计算每日用水量,Vk=S×(H终k‑H初k)‑(Q终k‑Q初k)
[0112] (3)采用傅里叶变换将一个完整年度的日用水量时间序列进行计算获取日用水量的周期;
[0113]
[0114] 其中 为角频率, 为功率谱函数, 为一个完整年度的日用水量时间序列;
[0115] 通过上述傅里叶变换公式将一个完整年度的日用水量时间序列分离为多种不同用水周期的正、余弦波之和,得到不同用水周期的正、余弦波对应的振幅,振幅最大对应的正、余弦波的用水周期即为用水周期时间长度;
[0116] 第三步
[0117] 通过日常记录获取全年每日用水总人数Wk,全年每日男性用水人数W男k,全年每日女性用水人数W女k,其中W男k+W女k=Wk,计算每日男性用水使用率r男k=W男k/Wk,每日女性用水使用率r女k=W女k/Wk;
[0118] 第四步
[0119] 将第二步、第三步获取的全年每日的用水量Vk、全年每日用水总人数Wk,每日男性用水使用率r男k,每日女性用水使用率r女k按周期性分别分类至周期内对应的第j天,得到周期内对应的第j天每日的用水量Vuj,全年每日用水总人数Wuj,每日男性用水使用率r男uj,每日女性用水使用率r女uj;所述u是周期内第j天对应的天数;
[0120] 例如,周期为7天,属于以星期为周期,将全年所有星期1的每日用水总人数Wu1,每日男性用水使用率r男u1,每日女性用水使用率r女u1和每日的用水量Vu1分类至星期1,全年所有星期2的每日用水总人数Wu2,每日男性用水使用率r男u2,每日女性用水使用率r女u2和每日的用水量Vu2分类至星期2,全年所有星期3的每日用水总人数Wu3,每日男性用水使用率r男u3,每日女性用水使用率r女u3和每日的用水量Vu3分类至星期3,全年所有星期4的每日用水总人数Wu4,每日男性用水使用率r男u4,每日女性用水使用率r女u4和每日的用水量Vu4分类至星期4,全年所有星期5的每日用水总人数Wu5,每日男性用水使用率r男u5,每日女性用水使用率r女u5和每日的用水量Vu5分类至星期5,全年所有星期6的每日用水总人数Wu6,每日男性用水使用率r男u6,每日女性用水使用率r女u6和每日的用水量Vu6分类至星期6,全年所有星期7的每日用水总人数Wu7,每日男性用水使用率r男u7,每日女性用水使用率r女u7和每日的用水量Vu7分类至星期7。
[0121] 第五步
[0122] 计算周期内第j天日用水量平均值 ;
[0123] ;
[0124] 第六步
[0125] 将第j天日用水量平均值作为第j天日水量基准值V0j;
[0126] 第七步
[0127] 建立第j天日用水量Vj与用水人数与使用率的关系模型,有两种方法:
[0128] 第一种方法
[0129] 采用人工神经网络,选择周期内第j天所有数据,以Wuj,r男uj,r女uj为输入变量,Vuj为输出变量,建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=f(Wj,r男j,r女j);
[0130] 输出周期性日用水量与用水人数和使用率之间的关系模型;
[0131] V1=f(W1,r男1,r女1)
[0132] V2=f(W2,r男2,r女2)
[0133] V3=f(W3,r男3,r女k3)
[0134] Vj=f(Wj,r男j,r女j)
[0135] 第二种方法
[0136] 建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=V0j×βj,其中βj=g(Wj,r男j,r女j)
[0137] 采用人工神经网络,选择周期内第j天所有数据,以Wuj,r男uj及r女uj为输入变量,Vuj为输出变量,建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=V0j×βj=V0j×g(Wj,r男j,r女j);
[0138] V1=V01×g(W1,r男1,r女1)
[0139] V2=V02×g(W2,r男2,r女2)
[0140] V3=V03×g(W3,r男3,r女k3)
[0141] Vj=V0j×g(Wj,r男j,r女j)
[0142] 第八步
[0143] 预测周期性第j天日用水量上限;获取上一周期第j天每日用水总人数W上j,每日男性用水使用率r男上j,每日女性用水使用率r女上j,通过周期性第j天日用水量模型,预测计算第j天日用水量V预j=f(W上j,r男上j,r女上j)或V预j=V0j×g(W上j,r男上j,r女上j),为防止日用水量不够,给定一个安全系数e进行调节设置,日用水量上限预测值V预j=e×f(W上j,r男上j,r女上j)或V预j=e×V0j×g(W上j,r男上j,r女上j),e设置为1.25范围内;
[0144] 第九步
[0145] 根据实际的用水情况,将第j天分成T个时段,T≥1的整数,g表示中间时段,g≥1的整数;通过水箱液位传感器L获得T个时段的初始平均液位H初jT及T个时段终止平均液位H终jT,通过补水测水表U测得每个典型日初始平均读数Q初jT及每个典型日终止平均读数Q终jT;
[0146] 第十步
[0147] 计算T个时段的用水量,VjT=S×(H终jT‑H初jT)‑(Q终jT‑Q初jT);通过公式,计算出 的数值,0< <1,且λT≥λT+1, 设置为1.05范围
内;
[0148] 第十一步
[0149] 日用水量分时段下限预测,V预jT=λT×V预j;
[0150] 例如:某公司用水高峰为上午9时至11时,15时至17时两个阶段,周期j为一个星期7天,周一至周四用水方式相同,周五至周六用水方式相同,周日的用水方式与其他天数不一致, 选择全年所有周三(即周期内第3天,j=3)进行最低用水量比例测试,第3天全天用水量上限V预3,T时段不规则划分,划分为0‑9时为第1时段,9‑11时为第2时段,11‑15时为第3时段,15‑17时为第4时段,17‑22为第5时段,23‑24时为第6时段。
[0151] T=1,2,3,4,5,6,g=1,2,3,4,5,6
[0152] 通过分时段测试,获取每个时段的用水量V3T,根据每个时段的用水量计算各时段的最低用水比例和用水量。
[0153]
[0154] 第十二步
[0155] 通过日用水量上限预测的V预j及每个时段日用水下限预测V预jT来控制日用水量。
[0156] 上述的基于周期变化的日用水量调节方法,可应用于学校、医院、酒店等任何使用集中式热水系统的水量控制。
[0157] 实施例三
[0158] 如图1所示,其是一种基于周期变化的日用水量调节方法,包括以下步骤:
[0159] 第一步
[0160] 安装室外温湿度传感器TH、水箱液位传感器L及补水测水表U,并测量水箱的横截面积S;
[0161] 第二步
[0162] (1)通过水箱液位传感器L获取全年每天水箱每日初始液位H初k及每日终止液位H终k,通过补水测水表U获取全年每日初始读数Q初k及全年每日终止读数Q终k,其中k指一个完整年度的第k天,k=1,2,3,...,365;
[0163] (2)计算每日用水量,Vk=S×(H终k‑H初k)‑(Q终k‑Q初k)
[0164] (3)采用傅里叶变换将一个完整年度的日用水量时间序列进行计算获取日用水量的周期;
[0165]
[0166] 其中 为角频率, 为功率谱函数, 为一个完整年度的日用水量时间序列;
[0167] 通过上述傅里叶变换公式将一个完整年度的日用水量时间序列分离为多种不同用水周期的正、余弦波之和,得到不同用水周期的正、余弦波对应的振幅,振幅最大对应的正、余弦波的用水周期即为用水周期时间长度;
[0168] 第三步
[0169] 通过日常记录获取全年每日用水总人数Wk,全年每日男性用水人数W男k,全年每日女性用水人数W女k,其中W男k+W女k=Wk,计算每日男性用水使用率r男k=W男k/Wk,每日女性用水使用率r女k=W女k/Wk;
[0170] 第四步
[0171] 将第二步、第三步获取的全年每日的用水量Vk、全年每日用水总人数Wk,每日男性用水使用率r男k,每日女性用水使用率r女k按周期性分别分类至周期内对应的第j天,得到周期内对应的第j天每日的用水量Vuj,全年每日用水总人数Wuj,每日男性用水使用率r男uj,每日女性用水使用率r女uj;所述u是周期内第j天对应的天数;
[0172] 例如,周期为7天,属于以星期为周期,将全年所有星期1的每日用水总人数Wu1,每日男性用水使用率r男u1,每日女性用水使用率r女u1和每日的用水量Vu1分类至星期1,全年所有星期2的每日用水总人数Wu2,每日男性用水使用率r男u2,每日女性用水使用率r女u2和每日的用水量Vu2分类至星期2,全年所有星期3的每日用水总人数Wu3,每日男性用水使用率r男u3,每日女性用水使用率r女u3和每日的用水量Vu3分类至星期3,全年所有星期4的每日用水总人数Wu4,每日男性用水使用率r男u4,每日女性用水使用率r女u4和每日的用水量Vu4分类至星期4,全年所有星期5的每日用水总人数Wu5,每日男性用水使用率r男u5,每日女性用水使用率r女u5和每日的用水量Vu5分类至星期5,全年所有星期6的每日用水总人数Wu6,每日男性用水使用率r男u6,每日女性用水使用率r女u6和每日的用水量Vu6分类至星期6,全年所有星期7的每日用水总人数Wu7,每日男性用水使用率r男u7,每日女性用水使用率r女u7和每日的用水量Vu7分类至星期7。
[0173] 第五步
[0174] 计算周期内第j天日用水量平均值 ;
[0175] ;
[0176] 第六步
[0177] 将第j天日用水量平均值作为第j天日水量基准值V0j;
[0178] 第七步
[0179] 建立第j天日用水量Vj与用水人数与使用率的关系模型,有两种方法:
[0180] 第一种方法
[0181] 采用人工神经网络,选择周期内第j天所有数据,以Wuj,r男uj,r女uj为输入变量,Vuj为输出变量,建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=f(Wj,r男j,r女j);
[0182] 输出周期性日用水量与用水人数和使用率之间的关系模型;
[0183] V1=f(W1,r男1,r女1)
[0184] V2=f(W2,r男2,r女2)
[0185] V3=f(W3,r男3,r女k3)
[0186] Vj=f(Wj,r男j,r女j)
[0187] 第二种方法
[0188] 建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=V0j×βj,其中βj=g(Wj,r男j,r女j)
[0189] 采用人工神经网络,选择周期内第j天所有数据,以Wuj,r男uj及r女uj为输入变量,Vuj为输出变量,建立第j天日用水量Vj与用水人数与使用率的关系模型Vj=V0j×βj=V0j×g(Wj,r男j,r女j);
[0190] V1=V01×g(W1,r男1,r女1)
[0191] V2=V02×g(W2,r男2,r女2)
[0192] V3=V03×g(W3,r男3,r女k3)
[0193] Vj=V0j×g(Wj,r男j,r女j)
[0194] 第八步
[0195] 预测周期性第j天日用水量上限;获取上一周期第j天每日用水总人数W上j,每日男性用水使用率r男上j,每日女性用水使用率r女上j,通过周期性第j天日用水量模型,预测计算第j天日用水量V预j=f(W上j,r男上j,r女上j)或V预j=V0j×g(W上j,r男上j,r女上j),为防止日用水量不够,给定一个安全系数e进行调节设置,日用水量上限预测值V预j=e×f(W上j,r男上j,r女上j)或V预j=e×V0j×g(W上j,r男上j,r女上j),e设置为1.5范围内;
[0196] 第九步
[0197] 根据实际的用水情况,将第j天分成T个时段,T≥1的整数,g表示中间时段,g≥1的整数;通过水箱液位传感器L获得T个时段的初始平均液位H初jT及T个时段终止平均液位H终jT,通过补水测水表U测得每个典型日初始平均读数Q初jT及每个典型日终止平均读数Q终jT;
[0198] 第十步
[0199] 计算T个时段的用水量,VjT=S×(H终jT‑H初jT)‑(Q终jT‑Q初jT);通过公式,计算出 的数值,0< <1,且λT≥λT+1, 设置为1.1范围
内;
[0200] 第十一步
[0201] 日用水量分时段下限预测,V预jT=λT×V预j;
[0202] 例如:某中学用水高峰为中午12时至14时,18时至23时两个阶段,周期j为一个星期7天,周一至周五用水方式相同,周六及周日的用水方式与其他天数不一致,选择第j天某夏季周三进行最低用水量比例测试,选择全年所有周二(即周期内第2天,j=2)进行最低用水量比例测试,第2天全天用水量上限V预2,T时段不规则划分,划分为0‑11时为第1时段,12‑
14时为第2时段,15‑17时为第3时段,18时‑20时为第4时段,21‑22为第5时段,23时为第6时段。
[0203] T=1,2,3,4,5,6,g=1,2,3,4,5,6
[0204] 通过分时段测试,获取每个时段的用水量V2T,根据每个时段的用水量计算各时段的最低用水比例和用水量。
[0205]
[0206] 第十二步
[0207] 通过日用水量上限预测的V预j及每个时段日用水下限预测V预jT来控制日用水量。
[0208] 上述的基于周期变化的日用水量调节方法,可应用于学校、医院、酒店等任何使用集中式热水系统的水量控制。
[0209] 以上结合附图对本发明的实施方式作出详细说明,但本发明不局限于所描述的实施方式。对于本领域的普通技术人员而言,在不脱离本发明的原理和宗旨的情况下对这些
实施方式进行多种变化、修改、替换及变形仍落入在本发明的保护范围内。