一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法转让专利

申请号 : CN202110843871.X

文献号 : CN113582679B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张乐杨聪聪张曦月黄国灿王忠英邵岑康健周春鸣李明周天元陈浩

申请人 : 江苏师范大学

摘要 :

一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法,化学式为(Lu1‑x‑yCexBiy)3(Al1‑zMnz)5O12,x、y分别为Ce3+和Bi3+掺杂Lu3+位的摩尔百分数,z为Mn2+掺杂八面体中Al3+位的摩尔百分数,0.002≤x≤0.006,0.01≤y≤0.03,0.002≤z≤0.02。制备方法:称取原料α‑氧化镥、氧化铝、氧化铋、碳酸锰和氧化铈,将各种原料粉体、电荷补偿剂和球磨介质混合球磨得到混合料浆,干燥后过筛得到混合粉体,再放入模具中经过干压成型和冷等静压成型后得到素坯;将素坯置于真空炉中烧结后并在空气中退火得到荧光陶瓷。本发明制备得到的陶瓷显色指数高、热稳定性高。

权利要求 :

1.一种白光照明用高显色指数高热稳定性荧光陶瓷,其特征在于,其化学式为(Lu1‑x‑

3+ 3+ 3+ 2+

yCexBiy)3(Al1‑zMnz)5O12,其中x、y分别为Ce 和Bi 掺杂Lu 位的摩尔百分数,z为Mn 掺杂八

3+

面体中Al 位的摩尔百分数,0.002≤x≤0.006,0.01≤y≤0.03,0.002≤z≤0.02,y:z为

2+

(1.5~5):1;所述荧光陶瓷通过添加电荷补偿剂使Mn保持为Mn 。

2.一种如权利要求1所述的白光照明用高显色指数高热稳定性荧光陶瓷的制备方法,其特征在于,包括以下步骤:(1)以α‑氧化镥、氧化铝、氧化铋、碳酸锰和氧化铈作为原料粉体,按化学式(Lu1‑x‑

3+ 3+

yCexBiy)3(Al1‑zMnz)5O12中对应元素的化学计量比称取各原料,其中x、y分别为Ce 和Bi 掺

3+ 2+ 3+

杂Lu 位的摩尔百分数,z为Mn 掺杂八面体中Al 位的摩尔百分数,0.002≤x≤0.006,0.01≤y≤0.03,0.002≤z≤0.02,y:z为(1.5~5):1;

(2)将上述各种原料粉体、电荷补偿剂和球磨介质混合球磨得到混合料浆,将混合料浆干燥后过筛得到混合粉体;

(3)将混合粉体放入模具中依次经过干压成型和冷等静压成型后得到相对密度为50~

55%的素坯;

(4)将素坯置于真空炉中烧结,在1700~1760℃下烧结时间8~20h,得到烧结产物,烧‑3结真空度最低为10 Pa;

(5)将烧结产物在1300 1350℃的空气中退火10 24h,得到相对密度为99.5~99.9%的~ ~荧光陶瓷,最后将荧光陶瓷进行双面抛光得到高显色指数高热稳定性荧光陶瓷。

3.根据权利要求2所述的一种白光照明用高显色指数高热稳定性荧光陶瓷的制备方法,其特征在于,步骤(2)中,电荷补偿剂是平均粒径为1~5nm的纳米球形二氧化硅,纳米球形二氧化硅与碳酸锰中之间的摩尔比为(0.07~5):1。

4.根据权利要求2或3所述的一种白光照明用高显色指数高热稳定性荧光陶瓷的制备方法,其特征在于,步骤(2)中,球磨转速为190~200r/min,球磨时间为16~20h,球磨介质为无水乙醇,各种原料粉体的总质量与无水乙醇的体积比为1 g:(3~4)mL。

5.根据权利要求2或3所述的一种白光照明用高显色指数高热稳定性荧光陶瓷的制备方法,其特征在于,步骤(2)中,干燥温度为70~90℃,干燥时间为20~30h。

6.根据权利要求2或3所述的一种白光照明用高显色指数高热稳定性荧光陶瓷的制备方法,其特征在于,步骤(2)中,过筛的筛网目数为50~100目,过筛次数为1~3次。

7.根据权利要求2或3所述的一种白光照明用高显色指数高热稳定性荧光陶瓷的制备方法,其特征在于,步骤(3)中,冷等静压保压压力为150 200MPa,保压时间为200 400s。

~ ~

8.根据权利要求2或3所述的一种白光照明用高显色指数高热稳定性荧光陶瓷的制备方法,其特征在于,步骤(4)中,真空烧结阶段的升温速率为1~5℃/min,烧结完毕后降温速率为1~10℃/min。

9.根据权利要求2或3所述的一种白光照明用高显色指数高热稳定性荧光陶瓷的制备方法,其特征在于,步骤(5)中,退火阶段升温和降温速率为1~3℃/min。

说明书 :

一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备

方法

技术领域

[0001] 本发明涉及荧光陶瓷材料技术领域,具体涉及一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法。

背景技术

[0002] 随着能源危机的日益严重,环保节能产业广泛受到国内外的重视。经济节能的荧光转换型白色发光二极管(LED/LD)作为新一代的照明光源,具有发光效率高、能耗低、环保、使用寿命长等优点,目前已广泛应用于各个照明领域。
[0003] 传统的荧光粉与有机树脂“贴片式”封装的LED热导率较低(0.1‑0.4Wm‑1K‑1),难以承受长时间强烈的热冲击,从而易产生温度猝灭,造成光效降低现象;同时,荧光粉在封装过程中易分散不均匀,会导致光源发光颜色不均匀和光散射,从而影响器件的使用和光参量的品质。荧光陶瓷具有良好的热学、机械以及物化稳定性,采用Ce:YAG荧光陶瓷替代“Ce:YAG荧光粉+有机树脂”,结合远程激发的封装模式可以有效解决上述问题。然而Ce:YAG的发射光谱主要覆盖为黄绿光,缺乏足够的红光成分,封装的白光LED/LD面临着显色性能较差(CRI~60)、光色品质低下等问题。
[0004] 目前国内外对LED/LD光源的光色品质的改善主要包括:(1)单一基质下的光谱调控,具体措施又包含基质调控以及共掺杂红光发射离子,增加红光成分;(2)多色荧光粉复合来实现红、绿、黄三色耦合发光。虽然已有关于铈离子掺杂钇铝石榴石、镥铝石榴石,钆铝石榴石的文献报导,但是在光谱调控的同时,荧光陶瓷的热稳定性也随之下降(X.Liu,H.Zhou,Z.Hu,X.Chen,Y.Shi,J.Zou,J.Li,Transparent Ce:GdYAG ceramic color converters for high‑brightness white LEDs andLDs,Optical Materials,88(2019)3+ 3+ 2+ 4+ 3+ 3+
97‑102.)。采用Gd 替代YAG中的Y ,通过Mg ‑Si 离子对取代Ce:YAG中的Al ‑Al 离子对,可增强红光发射,提高LED/LD光源的显色指数,但其热稳定性下降也很明显(Q.Du,S.Feng,
3+
H.Qin,H.Hua,H.Ding,L.Jia,Z.Zhang,J.Jiang,H.Jiang,Massive red‑shifting ofCe
2+ 4+
emission by Mg and Si doping of YAG:Ce transparent ceramic phosphors,Journal of Materials Chemistry C,6(2018)12200‑12205.);公开号为CN110218085A的发明专利通过设计复合结构荧光陶瓷实现了红绿黄三色耦合发光,获得了暖白光,但是该方法制造成本更高,所制备得到的荧光陶瓷的热稳定性也逐渐下降。综上所述,尽管以上方案能提高单一色度学的指标,但热稳定性下降。

发明内容

[0005] 本发明的目的之一是提供一种白光照明用高显色指数高热稳定性荧光陶瓷,该陶瓷可具有显色指数高、热稳定性高的优点。
[0006] 本发明的目的之二是提供上述白光照明用高显色指数高热稳定性荧光陶瓷的制备方法,易于实现工业化生产。
[0007] 为实现上述目的,本发明采用的技术方案是:一种白光照明用高显色指数高热稳3+ 3+ 3
定性荧光陶瓷,其化学式为(Lu1‑x‑yCexBiy)3(Al1‑zMnz)5O12,其中x、y分别为Ce 和Bi 掺杂Lu+ 2+ 3+
位的摩尔百分数,z为Mn 掺杂八面体中Al 位的摩尔百分数,0.002≤x≤0.006,0.01≤y≤
0.03,0.002≤z≤0.02,y:z=(1.5~5):1。
[0008] 上述白光照明用高显色指数高热稳定性荧光陶瓷的制备方法,包括以下步骤:
[0009] (1)以α‑氧化镥、氧化铝、氧化铋、碳酸锰和氧化铈作为原料粉体,按化学式(Lu1‑x‑3+ 3+
yCexBiy)3(Al1‑zMnz)5O12中对应元素的化学计量比称取各原料,其中x、y分别为Ce 和Bi 掺
3+ 2+ 3+
杂Lu 位的摩尔百分数,z为Mn 掺杂八面体中Al 位的摩尔百分数,0.002≤x≤0.006,0.01≤y≤0.03,0.002≤z≤0.02,y:z=(1.5~5):1。
[0010] (2)将上述各种原料粉体、电荷补偿剂和球磨介质混合球磨得到混合料浆,将混合料浆干燥后过筛得到混合粉体;
[0011] (3)将混合粉体放入模具中依次经过干压成型和冷等静压成型后得到相对密度为50~55%的素坯;
[0012] (4)将素坯置于真空炉中烧结,在1700~1760℃下烧结时间8~20h,得到烧结产‑3物,烧结真空度最低为10 Pa;
[0013] (5)将烧结产物在1300~1350℃的空气中退火10~24h,得到相对密度为99.5~99.9%的荧光陶瓷,最后将荧光陶瓷进行双面抛光得到高显色指数高热稳定性荧光陶瓷。
[0014] 优选的,步骤(2)中,电荷补偿剂是平均粒径为1~5nm的纳米球形二氧化硅,纳米球形二氧化硅与碳酸锰中之间的摩尔比为(0.07~5):1。
[0015] 优选的,步骤(2)中,球磨转速为190~200r/min,球磨时间为16~20h,球磨介质为无水乙醇,各种原料粉体的总质量与无水乙醇的体积比为1g:(3~4)mL。
[0016] 优选的,步骤(2)中,干燥温度为70~90℃,干燥时间为20~30h。
[0017] 优选的,步骤(2)中,过筛的筛网目数为50~100目,过筛次数为1~3次。
[0018] 优选的,步骤(3)中,冷等静压保压压力为150~200Mpa,保压时间为200~400s。
[0019] 优选的,步骤(4)中,真空烧结阶段的升温速率为1~5℃/min,,烧结完毕后降温速率为1~10℃/min。
[0020] 优选的,步骤(5)中,退火阶段升温和降温速率为1~3℃/min。
[0021] 与现有技术方案相比,本发明具有以下优点:
[0022] (1)本发明采用具有独特电子构型的过渡离子Bi3+和过渡金属离子Mn2+分别取代3+ 3+ 3+ 2+
十二面体中的Lu 和八面体中的Al ,使Ce 的发射光谱红移,且八面体中Mn 的发射光谱为
3+
宽峰,同时Bi 可增强荧光陶瓷的吸收强度,从而产生更高的发射强度;制备的(Lu1‑x‑yCexBiy)3(Al1‑zMnz)5O12陶瓷具有优异的光学指标,并应用于白光照明;
[0023] (2)本发明通过固相反应烧结法获得了纯石榴石结构的荧光陶瓷,通过控制电荷2+ 3+
补偿剂的化学配比,使Mn保持Mn 且只占据八面体的Al 格位;
[0024] (3)本发明提供的荧光陶瓷在Bi3+和Mn2+的协同作用下,制得的(Lu1‑x‑yCexBiy)3(Al1‑zMnz)5O12陶瓷具有较高的热稳定性,当环境温度为200℃时,所述荧光陶瓷的发光强度衰减在3~5%;
[0025] (4)本发明提供的荧光陶瓷材料透过率为60.3~68.4%,发射光谱主峰为560~587nm,半高宽为150~165nm,在高功率蓝光LED或蓝光LD激发下,实现冷白光到暖白光发射,色温3600~6000K,显色指数为85~90。

附图说明

[0026] 图1是本发明实施例一至实施例三所制备的荧光陶瓷实物图;
[0027] 图2是本发明实施例二制备的荧光陶瓷在460nm波长激发下的发射光谱图;
[0028] 图3是本发明中实施例一至实施例三所制备的荧光陶瓷的XRD图。

具体实施方式

[0029] 以下结合附图和具体实施例对本发明作进一步详细说明。
[0030] 实施例一
[0031] 制备化学式为(Lu0.988Ce0.002Bi0.01)3(Al0.998Mn0.002)5O12的荧光陶瓷。
[0032] (1)设定目标产物质量为60.029g,按照化学式(Lu0.988Ce0.002Bi0.01)3(Al0.998Mn0.002)5O12中各元素的化学计量比分别称取α‑氧化镥(41.487g)、氧化铝(17.896g)、氧化铋(0.492g)、碳酸锰(0.081g)和氧化铈(0.073g)作为原料粉体;
[0033] (2)将上述各种原料粉体与200mL无水乙醇混合,额外加入电荷补偿剂(0.003g),电荷补偿剂为平均粒径为1nm的纳米球形二氧化硅,在球磨罐中进行球磨得到混合料浆,球磨转速为190r/min,球磨时间为16h;纳米球形二氧化硅与碳酸锰中之间的摩尔比为0.07:1;将混和浆料置于70℃鼓风干燥箱中干燥25h,干燥后再过50目筛1次得到混合粉体;
[0034] (3)将混合粉体放入磨具中依次经过干压成型和冷等静压成型后得到相对密度为50%的素坯;冷等静压保压压力为150Mpa,保压时间为400s;
[0035] (4)将素坯置于真空炉中烧结得到烧结产物,烧结温度为1700℃,升温速率为1℃/‑3min,保温时间为8h,烧结完毕后降温速率为1℃/min;烧结真空度为10 Pa;
[0036] (5)将烧结产物放入马弗炉中退火,烧结温度为1300℃,保温时间10h,升温和降温速率为1℃/min,得到相对密度为99.5%的荧光陶瓷;最后对荧光陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高热稳定性高显色指数荧光陶瓷,其实物为黄色透明陶瓷,陶瓷底下的字清晰可见,如图1标号1。
[0037] 将本实施例中得到的(Lu0.988Ce0.002Bi0.01)3(Al0.998Mn0.002)5O12荧光陶瓷进行XRD测试,结果如图3所示,从图中可以看出:所制备的材料为纯石榴石相。
[0038] 本实施例中得到的(Lu0.988Ce0.002Bi0.01)3(Al0.998Mn0.002)5O12荧光陶瓷的透过率为68.4%,在460nm波长激发下,其发射光谱主峰为560nm,半高宽150nm;当环境温度为200℃时,所述荧光陶瓷的发光强度衰减在3%。将该陶瓷在460nm的蓝光LED芯片(I=350mA)激发下进行电致发光光谱测试,能够实现白光发射,显色指数为85,色温是6000K。
[0039] 实施例二
[0040] 制备化学式为(Lu0.981Ce0.004Bi0.015)3(Al0.99Mn0.01)5O12的荧光陶瓷。
[0041] (1)设定目标产物质量为60.133g,按照化学式(Lu0.981Ce0.004Bi0.015)3(Al0.99Mn0.01)5O12中各元素的化学计量比分别称取α‑氧化镥(41.125g)、氧化铝(17.723g)、氧化铋(0.736g)、碳酸锰(0.404g)和氧化铈(0.145g)作为原料粉体;
[0042] (2)将上述各种原料粉体与200mL无水乙醇混合,额外加入电荷补偿剂(0.852g),电荷补偿剂为平均粒径为3nm的纳米球形二氧化硅,在球磨罐中进行球磨得到混合料浆,球磨转速为190r/min,球磨时间为16h;纳米球形二氧化硅与碳酸锰中之间的摩尔比为4:1;将混和浆料置于80℃鼓风干燥箱中干燥30h,干燥后再过80目筛2次得到混合粉体;
[0043] (3)将混合粉体放入磨具中依次经过干压成型和冷等静压成型后得到相对密度为55%的素坯;冷等静压保压压力为180Mpa,保压时间为300s;
[0044] (4)将素坯置于真空炉中烧结得到烧结产物,烧结温度为1740℃,升温速率为3℃/‑3min,保温时间为15h,烧结完毕后降温速率为5℃/min;烧结真空度1.5╳10 Pa;
[0045] (5)将烧结产物放入马弗炉中退火,烧结温度为1350℃,保温时间15h,升温和降温速率为2℃/min,得到相对密度为99.7%的荧光陶瓷;最后对荧光陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高热稳定性高显色指数荧光陶瓷,其实物为黄色透明陶瓷,陶瓷底下的字清晰可见,如图1标号2。
[0046] 将本实施例中得到的(Lu0.981Ce0.004Bi0.015)3(Al0.99Mn0.01)5O12荧光陶瓷进行XRD测试,结果如图3所示,从图中可以看出:所制备的材料为纯石榴石相。
[0047] 本实施例中得到的(Lu0.981Ce0.004Bi0.015)3(Al0.99Mn0.01)5O12荧光陶瓷的透过率为66.5%,如图2所示,在460nm波长激发下,其发射光谱主峰为575nm,半高宽165nm;当环境温度为200℃时,所述荧光陶瓷的发光强度衰减在4%。将该陶瓷在460nm的蓝光LED芯片(I=
350mA)激发下进行电致发光光谱测试,能够实现白光发射,显色指数为87,色温是4500K。
[0048] 实施例三
[0049] 制备化学式为(Lu0.964Ce0.006Bi0.03)3(Al0.98Mn0.02)5O12的荧光陶瓷。
[0050] (1)设定目标产物质量为60.261g,按照化学式(Lu0.964Ce0.006Bi0.03)3(Al0.98Mn0.02)5O12中各元素的化学计量比分别称取α‑氧化镥(40.283g)、氧化铝(17.489g)、氧化铋(1.468g)、碳酸锰(0.805g)和氧化铈(0.216g)作为原料粉体;
[0051] (2)将上述各种原料粉体与200mL无水乙醇混合,额外加入电荷补偿剂(2.063g),电荷补偿剂为平均粒径为5nm的纳米球形二氧化硅,在球磨罐中进行球磨得到混合料浆,球磨转速为200r/min,球磨时间为20h;纳米球形二氧化硅与碳酸锰中之间的摩尔比为5:1;将混合浆料置于90℃鼓风干燥箱中干燥20h,干燥后再过100目筛3次得到混合粉体;
[0052] (3)将混合粉体依次经过干压成型和冷等静压成型后得到相对密度为52%的素坯;冷等静压保压压力为200Mpa,保压时间为200s;
[0053] (4)将素坯置于真空炉中烧结得到烧结产物,烧结温度为1760℃,升温速率为5℃/‑3min,保温时间为20h,烧结完毕后降温速率为10℃/min;烧结真空度2╳10 Pa;
[0054] (5)将烧结产物放入马弗炉中退火,烧结温度为1350℃,保温时间24h,升温和降温速率为3℃/min,得到相对密度为99.9%的荧光陶瓷;最后对荧光陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高热稳定性高显色指数荧光陶瓷,其实物为黄色透明陶瓷,陶瓷底下的字清晰可见,如图1标号3。
[0055] 将本实施例中得到的(Lu0.964Ce0.006Bi0.03)3(Al0.98Mn0.02)5O12荧光陶瓷进行XRD测试,结果如图3所示,从图中可以看出:所制备的材料为纯石榴石相。
[0056] 本实施例中得到的(Lu0.964Ce0.006Bi0.03)3(Al0.98Mn0.02)5O12荧光陶瓷的透过率为60.3%,在460nm波长激发下,其发射光谱主峰为587,半高宽120nm。当环境温度为200℃时,所述荧光陶瓷的发光强度衰减在5%。将该陶瓷在460nm的蓝光LED芯片(I=350mA)激发下进行电致发光光谱测试,能够实现白光发射,显色指数为90,色温是3600K。