基于数字孪生的结构植入故障响应数据获取及评判方法转让专利

申请号 : CN202110807823.5

文献号 : CN113642209B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 路林华唐军军范汪明姜年朝王德鑫李坷伦

申请人 : 中国人民解放军总参谋部第六十研究所

摘要 :

本发明公开一种基于数字孪生的结构植入故障响应数据获取及评判方法,步骤如下:建立结构数字孪生模型,将建立的数字孪生模型分为零件级、部件级、系统级三个层次;数字孪生模型在假定故障模式下通过仿真分析生成植入故障响应数据;基于灵敏度分析提取故障特征,确定响应特征对植入故障的灵敏度,并从各类特征中筛选出对植入故障最为敏感的特征量;修正数字孪生模型,将数字孪生模型的修正问题转化为以实体模型、数字孪生模型的故障特征量偏差最小为目标的优化问题;建立数字孪生模型的质量评判准则。本发明在筛选故障对应的响应特征量方面,具有更高的准确性,保证了数字孪生模型修正结果的物理意义,并大幅提升了修正后数字孪生模型的可靠性。

权利要求 :

1.一种基于数字孪生的结构植入故障响应数据获取及评判方法,其特征在于,包括以下步骤:步骤1、建立结构数字孪生模型:数字孪生模型包括实体的几何、物理、行为和规则这些信息中的一种或数种,并根据结构特点及相互作用关系,将建立的数字孪生模型分为零件级、部件级、系统级三个层次;

步骤2、生成植入故障响应数据:数字孪生模型在假定故障模式下通过仿真分析生成植入故障响应数据;植入故障的仿真分析根据目的的不同,分为定性分析和定量分析,定性分析用于挖掘故障对应的响应特征,定量分析用于研究故障响应特征随时间或损伤的演化趋势;

步骤3、基于灵敏度分析提取故障特征:将植入故障响应数据的特征量对故障参数进行Taylor展开,根据精度需求选择需要保留的展开阶次,确定响应特征对植入故障的灵敏度,并从各类特征中筛选出对植入故障最为敏感的特征量;

步骤4、修正数字孪生模型:以模型输入参数为变量,以结构物理实体模型的实测数据或典型故障植入试验数据为基准,将数字孪生模型的修正问题转化为以实体模型、数字孪生模型的故障特征量偏差最小为目标的优化问题;

步骤5、评判数字孪生模型的质量:从数字孪生模型的物理意义、唯一性以及正确性三方面,建立数字孪生模型的质量评判准则。

2.根据权利要求1所述的基于数字孪生的结构植入故障响应数据获取及评判方法,其特征在于,步骤1所述建立结构数字孪生模型,具体如下:数字孪生模型中实体的几何、物理、行为和规则信息分为输入参数和输出参数两种;其中,几何信息是指几何形状、尺寸、位置及装配关系,以二维、三维模型的形式存在,与实体模型一致,并根据需求增加视觉渲染处理;物理信息反映实体物理属性,基于材料参数、本构模型、约束、载荷,用ADAMS、ANSYS或ABAQUS从宏观及微观尺度上进行单物理场、多物理场的仿真分析,获取应力、位移、振动、疲劳信息;行为信息描述模型外部因素以及内部条件产生的响应和行为;规则信息是实体运行的规律、标准或准则,使模型具备评估、优化、预测、评测的功能;

所述数字孪生模型分为零件级、部件级、系统级三个层次,其中零件是结构上不可拆分的最小单元;部件是为完成任务或实现功能而建立的设定数量的零件组合,又称为子系统级;系统实现各部件之间的组织、协调和管理,又称为产品级。

3.根据权利要求1所述的基于数字孪生的结构植入故障响应数据获取及评判方法,其特征在于,步骤2所述生成植入故障响应数据,具体如下:结构植入故障的种类由结构典型故障模式或FMEA决定,在数字孪生模型中进行相关信息的变更和仿真分析;定性分析用于故障诊断,定量用于故障预测;

如果各层级故障模式数量大于阈值,则基于均匀试验、正交试验、析因试验或中心试验,采用设定数量的试验样本反映所有的故障样本。

4.根据权利要求1所述的基于数字孪生的结构植入故障响应数据获取及评判方法,其特征在于,步骤3所述基于灵敏度分析提取故障特征,具体如下:故障特征反映植入故障与响应数据之间的内在关联性,包括时域特征、频域特征以及时频域特征;

设植入故障通过数字孪生模型的输入参数p表示,植入故障后的数字孪生模型的响应数据的特征量Z对参数p的Taylor展开表示为:其中, 为特征量Z对参数p的n阶灵敏度,Zo为泰勒展开的第一项;

响应特征对植入故障的灵敏度表示为:

ΔZ=SΔp

其中,ΔZ、Δp分别为结构故障响应特征和故障参数的摄动项,S为响应特征对植入故障的灵敏度矩阵;

P

通过灵敏度由大到小的排序,获得参数p的响应特征向量Z ,在故障诊断、故障预测中优P先选择响应特征向量中靠前的响应特征,响应特征向量Z为:

P

其中, 为参数p的第m个响应特征,m为响应特征的总数量,Z中包含的零值是与参数p不相关的响应特征;

对于不同植入故障参数的响应特征存在交叉重合的情况,参数p的第i个响应特征参数q的第j个响应特征 关系如下:其中,a≠0为响应特征线性相关系数;

如果植入故障p与q的各相关响应特征均符合上式,则根据响应特征的种类无法区分这两种故障,进行如下处理:通过响应特征的幅值对故障进行区分识别;寻找新的响应特征,该新的响应特征与其中一个故障相关,与另一个故障不相关;

如果植入故障p的相关响应特征 与其他各种植入故障的各相关响应特征均不符合上式,则该响应特征 是植入故障p特有的,专门用来识别该故障,参数p的响应特征向量调整为:响应特征 在后续的故障特征筛选中具有最高的优先级。

5.根据权利要求1所述的基于数字孪生的结构植入故障响应数据获取及评判方法,其特征在于,步骤4所述修正数字孪生模型,具体如下:(4.1)选择参照数据:选取实体模型已有故障模式的实测数据,或者在实体模型上植入典型故障,进行对应的响应试验;

(4.2)在数字孪生模型上通过输入参数的变更完成相同故障的植入,并通过仿真分析获取对应的故障响应数据;

(4.3)根据故障响应数据的灵敏度分析,分别提取实体模型、数字孪生模型对应的故障特征量;

(4.4)将实体模型、数字孪生模型的故障特征量进行对比分析:如果符合精度要求,则数字孪生模型不进行修正;

否则,对数字孪生模型的输入参数进行修正,将数字孪生模型的修正问题转化为以实体模型、数字孪生模型的故障特征量偏差最小为目标的优化问题,完成参数的修正然后重新进行步骤(4.2)~(4.4)。

6.根据权利要求1所述的基于数字孪生的结构植入故障响应数据获取及评判方法,其特征在于,步骤5所述从数字孪生模型的物理意义、唯一性以及正确性三方面,建立数字孪生模型的质量评判准则,具体如下:①数字孪生模型能够重现物理实体模型中所有的故障实测数据;

②数字孪生模型能够预测不参与模型修正的实验实测数据;

③对数字孪生模型和物理实体模型做相同的修改,并再次植入相同的故障模式,修改后的数字孪生模型能够预测修改后的物理实体模型的植入故障响应。

说明书 :

基于数字孪生的结构植入故障响应数据获取及评判方法

技术领域

[0001] 本发明涉及机械装备诊断技术领域,具体为一种基于数字孪生的结构植入故障响应数据获取及评判方法。

背景技术

[0002] 随着对装备可靠性和安全性要求的不断提高,国内外在结构装备的故障诊断、预测等相关方面做了大量的研究和应用,各类先进的算法和技术不断取得突破性进展。相对而言,结构故障响应数据的稀缺一直是限制该领域技术发展和应用的一个重要因素,并且一直未取得实质性的进步:一方面,由于故障的突发性、长期性和随机性,实测故障样本的数量很少,并且故障的种类难以进行人为控制;另一方面,结构故障植入试验的成本大,周期长,部分工况和故障难以在试验中进行模拟。而结构故障响应数据是对结构进行故障诊断、故障预测等相关研究的基础,数据的充分性直接决定了各类算法和技术的实际应用效果。
[0003] 针对上述问题,目前普遍采用仿真手段获取结构故障响应数据,然而现有的仿真手段存在以下明显不足:①仿真模型信息单一,不能全面规范地描述结构实体模型,并且仅适用于作为修正标准的故障模式,修正结果缺乏明确的物理意义,可扩展性低;②基于单纯的灵敏度分析,往往会忽略灵敏度低但响应唯一的关键响应特征量,增加了后续故障区分识别的难度;③对于各类仿真分析模型,缺乏对其质量进行评估的方法和标准,难以评估其准确性和可靠性。

发明内容

[0004] 本发明的目的在于提供一种准确、可靠的基于数字孪生的结构植入故障响应数据获取及评判方法,
[0005] 实现本发明目的的技术解决方案为:一种基于数字孪生的结构植入故障响应数据获取及评判方法,包括以下步骤:
[0006] 步骤1、建立结构数字孪生模型:数字孪生模型包括实体的几何、物理、行为和规则这些信息中的一种或数种,并根据结构特点及相互作用关系,将建立的数字孪生模型分为零件级、部件级、系统级三个层次;
[0007] 步骤2、生成植入故障响应数据:数字孪生模型在假定故障模式下通过仿真分析生成植入故障响应数据;植入故障的仿真分析根据目的的不同,分为定性分析和定量分析,定性分析用于挖掘故障对应的响应特征,定量分析用于研究故障响应特征随时间或损伤的演化趋势;
[0008] 步骤3、基于灵敏度分析提取故障特征:将植入故障响应数据的特征量对故障参数进行Taylor展开,根据精度需求选择需要保留的展开阶次,确定响应特征对植入故障的灵敏度,并从各类特征中筛选出对植入故障最为敏感的特征量;
[0009] 步骤4、修正数字孪生模型:以模型输入参数为变量,以结构物理实体模型的实测数据或典型故障植入试验数据为基准,将数字孪生模型的修正问题转化为以实体模型、数字孪生模型的故障特征量偏差最小为目标的优化问题;
[0010] 步骤5、评判数字孪生模型的质量:从数字孪生模型的物理意义、唯一性以及正确性三方面,建立数字孪生模型的质量评判准则。
[0011] 进一步地,步骤1所述建立结构数字孪生模型,具体如下:
[0012] 数字孪生模型中实体的几何、物理、行为和规则信息分为输入参数和输出参数两种;其中,几何信息是指几何形状、尺寸、位置及装配关系,以二维、三维模型的形式存在,与实体模型一致,并根据需求增加视觉渲染处理;物理信息反映实体物理属性,基于材料参数、本构模型、约束、载荷,用ADAMS、ANSYS或ABAQUS从宏观及微观尺度上进行单物理场、多物理场的仿真分析,获取应力、位移、振动、疲劳信息;行为信息描述模型外部因素以及内部条件产生的响应和行为;规则信息是实体运行的规律、标准或准则,使模型具备评估、优化、预测、评测的功能;
[0013] 所述数字孪生模型分为零件级、部件级、系统级三个层次,其中零件是结构上不可拆分的最小单元;部件是为完成任务或实现功能而建立的设定数量的零件组合,又称为子系统级;系统实现各部件之间的组织、协调和管理,又称为产品级。
[0014] 进一步地,步骤2所述生成植入故障响应数据,具体如下:
[0015] 结构植入故障的种类由结构典型故障模式或FMEA决定,在数字孪生模型中进行相关信息的变更和仿真分析;定性分析用于故障诊断,定量用于故障预测;
[0016] 如果各层级故障模式数量大于阈值,则基于均匀试验、正交试验、析因试验或中心试验,采用设定数量的试验样本反映所有的故障样本。
[0017] 进一步地,步骤3所述基于灵敏度分析提取故障特征,具体如下:
[0018] 故障特征反映植入故障与响应数据之间的内在关联性,包括时域特征、频域特征以及时频域特征;
[0019] 设植入故障通过数字孪生模型的输入参数p表示,植入故障后的数字孪生模型的响应数据的特征量Z对参数p的Taylor展开表示为:
[0020]
[0021] 其中, 为特征量Z对参数p的n阶灵敏度,Zo为泰勒展开的第一项;
[0022] 响应特征对植入故障的灵敏度表示为:
[0023] ΔZ=SΔp
[0024] 其中,ΔZ、Δp分别为结构故障响应特征和故障参数的摄动项,S为响应特征对植入故障的灵敏度矩阵;
[0025] 通过灵敏度由大到小的排序,获得参数p的响应特征向量ZP,在故障诊断、故障预P测中优先选择响应特征向量中靠前的响应特征,响应特征向量Z为:
[0026]
[0027] 其中, 为参数p的第m个响应特征,m为响应特征的总数量,ZP中包含的零值是与参数p不相关的响应特征;
[0028] 对于不同植入故障参数的响应特征存在交叉重合的情况,参数p的第i个响应特征参数q的第j个响应特征 关系如下:
[0029]
[0030] 其中,a≠0为响应特征线性相关系数;
[0031] 如果植入故障p与q的各相关响应特征均符合上式,则根据响应特征的种类无法区分这两种故障,进行如下处理:通过响应特征的幅值对故障进行区分识别;寻找新的响应特征,该新的响应特征与其中一个故障相关,与另一个故障不相关;
[0032] 如果植入故障p的相关响应特征 与其他各种植入故障的各相关响应特征均不符合上式,则该响应特征 是植入故障p特有的,专门用来识别该故障,参数p的响应特征向量调整为:
[0033]
[0034] 响应特征 在后续的故障特征筛选中具有最高的优先级。
[0035] 进一步地,步骤4所述修正数字孪生模型,具体如下:
[0036] (4.1)选择参照数据:选取实体模型已有故障模式的实测数据,或者在实体模型上植入典型故障,进行对应的响应试验;
[0037] (4.2)在数字孪生模型上通过输入参数的变更完成相同故障的植入,并通过仿真分析获取对应的故障响应数据;
[0038] (4.3)根据故障响应数据的灵敏度分析,分别提取实体模型、数字孪生模型对应的故障特征量;
[0039] (4.4)将实体模型、数字孪生模型的故障特征量进行对比分析:
[0040] 如果符合精度要求,则数字孪生模型不进行修正;
[0041] 否则,对数字孪生模型的输入参数进行修正,将数字孪生模型的修正问题转化为以实体模型、数字孪生模型的故障特征量偏差最小为目标的优化问题,完成参数的修正然后重新进行步骤(4.2)~(4.4)。
[0042] 进一步地,步骤5所述从数字孪生模型的物理意义、唯一性以及正确性三方面,建立数字孪生模型的质量评判准则,具体如下:
[0043] ①数字孪生模型能够重现物理实体模型中所有的故障实测数据;
[0044] ②数字孪生模型能够预测不参与模型修正的实验实测数据;
[0045] ③对数字孪生模型和物理实体模型做相同的修改,并再次植入相同的故障模式,修改后的数字孪生模型能够预测修改后的物理实体模型的植入故障响应。
[0046] 本发明与现有技术相比,其显著优点为:
[0047] (1)可以获取各类故障模式下的故障响应数据,与故障植入试验相比,具有成本低、周期短、风险小、故障范围不受限制的优点;
[0048] (2)在筛选故障对应的响应特征量方面,具有更高的准确性,并且能够避免“灵敏度低但响应唯一的关键响应特征量容易被忽略”的弊端,从而更好地为后续的故障区分识别提供支撑;
[0049] (3)提供数字孪生模型质量的评判方法,保证了数字孪生模型修正结果的物理意义,并大幅提升了修正后数字孪生模型的准确性和可靠性。

附图说明

[0050] 图1是数字孪生模型修正流程图。
[0051] 图2是数字孪生模型质量评判流程图。

具体实施方式

[0052] 本发明一种基于数字孪生的结构植入故障响应数据获取及评判方法,包括以下步骤:
[0053] 步骤1、建立结构数字孪生模型:数字孪生模型包括实体的几何、物理、行为和规则这些信息中的一种或数种,并根据结构特点及相互作用关系,将建立的数字孪生模型分为零件级、部件级、系统级三个层次;
[0054] 步骤2、生成植入故障响应数据:数字孪生模型在假定故障模式下通过仿真分析生成植入故障响应数据;植入故障的仿真分析根据目的的不同,分为定性分析和定量分析,定性分析用于挖掘故障对应的响应特征,定量分析用于研究故障响应特征随时间或损伤的演化趋势;
[0055] 步骤3、基于灵敏度分析提取故障特征:将植入故障响应数据的特征量对故障参数进行Taylor展开,根据精度需求选择需要保留的展开阶次,确定响应特征对植入故障的灵敏度,并从各类特征中筛选出对植入故障最为敏感的特征量;
[0056] 步骤4、修正数字孪生模型:以模型输入参数为变量,以结构物理实体模型的实测数据或典型故障植入试验数据为基准,将数字孪生模型的修正问题转化为以实体模型、数字孪生模型的故障特征量偏差最小为目标的优化问题;
[0057] 步骤5、评判数字孪生模型的质量:从数字孪生模型的物理意义、唯一性以及正确性三方面,建立数字孪生模型的质量评判准则。
[0058] 进一步地,步骤1所述建立结构数字孪生模型,具体如下:
[0059] 数字孪生模型中实体的几何、物理、行为和规则信息分为输入参数和输出参数两种;其中,几何信息是指几何形状、尺寸、位置及装配关系,以二维、三维模型的形式存在,与实体模型一致,并根据需求增加视觉渲染处理;物理信息反映实体物理属性,基于材料参数、本构模型、约束、载荷,用ADAMS、ANSYS或ABAQUS从宏观及微观尺度上进行单物理场、多物理场的仿真分析,获取应力、位移、振动、疲劳信息;行为信息描述模型外部因素以及内部条件产生的响应和行为;规则信息是实体运行的规律、标准或准则,使模型具备评估、优化、预测、评测的功能;
[0060] 所述数字孪生模型分为零件级、部件级、系统级三个层次,其中零件是结构上不可拆分的最小单元;部件是为完成任务或实现功能而建立的设定数量的零件组合,又称为子系统级;系统实现各部件之间的组织、协调和管理,又称为产品级。
[0061] 进一步地,步骤2所述生成植入故障响应数据,具体如下:
[0062] 结构植入故障的种类由结构典型故障模式或FMEA决定,在数字孪生模型中进行相关信息的变更和仿真分析;定性分析用于故障诊断,定量用于故障预测;
[0063] 如果各层级故障模式数量大于阈值,则基于均匀试验、正交试验、析因试验或中心试验,采用设定数量的试验样本反映所有的故障样本。
[0064] 进一步地,步骤3所述基于灵敏度分析提取故障特征,具体如下:
[0065] 故障特征反映植入故障与响应数据之间的内在关联性,包括时域特征、频域特征以及时频域特征;
[0066] 设植入故障通过数字孪生模型的输入参数p表示,植入故障后的数字孪生模型的响应数据的特征量Z对参数p的Taylor展开表示为:
[0067]
[0068] 其中, 为特征量Z对参数p的n阶灵敏度,Zo为泰勒展开的第一项;
[0069] 响应特征对植入故障的灵敏度表示为:
[0070] ΔZ=SΔp
[0071] 其中,ΔZ、Δp分别为结构故障响应特征和故障参数的摄动项,S为响应特征对植入故障的灵敏度矩阵;
[0072] 通过灵敏度由大到小的排序,获得参数p的响应特征向量ZP,在故障诊断、故障预P测中优先选择响应特征向量中靠前的响应特征,响应特征向量Z为:
[0073]P
[0074] 其中, 为参数p的第m个响应特征,m为响应特征的总数量,Z中包含的零值是与参数p不相关的响应特征;
[0075] 对于不同植入故障参数的响应特征存在交叉重合的情况,参数p的第i个响应特征参数q的第j个响应特征 关系如下:
[0076]
[0077] 其中,a≠0为响应特征线性相关系数;
[0078] 如果植入故障p与q的各相关响应特征均符合上式,则根据响应特征的种类无法区分这两种故障,进行如下处理:通过响应特征的幅值对故障进行区分识别;寻找新的响应特征,该新的响应特征与其中一个故障相关,与另一个故障不相关;
[0079] 如果植入故障p的相关响应特征 与其他各种植入故障的各相关响应特征均不符合上式,则该响应特征 是植入故障p特有的,专门用来识别该故障,参数p的响应特征向量调整为:
[0080]
[0081] 响应特征 在后续的故障特征筛选中具有最高的优先级。
[0082] 进一步地,步骤4所述修正数字孪生模型,具体如下:
[0083] (4.1)选择参照数据:选取实体模型已有故障模式的实测数据,或者在实体模型上植入典型故障,进行对应的响应试验;
[0084] (4.2)在数字孪生模型上通过输入参数的变更完成相同故障的植入,并通过仿真分析获取对应的故障响应数据;
[0085] (4.3)根据故障响应数据的灵敏度分析,分别提取实体模型、数字孪生模型对应的故障特征量;
[0086] (4.4)将实体模型、数字孪生模型的故障特征量进行对比分析:
[0087] 如果符合精度要求,则数字孪生模型不进行修正;
[0088] 否则,对数字孪生模型的输入参数进行修正,将数字孪生模型的修正问题转化为以实体模型、数字孪生模型的故障特征量偏差最小为目标的优化问题,完成参数的修正然后重新进行步骤(4.2)~(4.4)。
[0089] 进一步地,步骤5所述从数字孪生模型的物理意义、唯一性以及正确性三方面,建立数字孪生模型的质量评判准则,具体如下:
[0090] ①数字孪生模型能够重现物理实体模型中所有的故障实测数据;
[0091] ②数字孪生模型能够预测不参与模型修正的实验实测数据;
[0092] ③对数字孪生模型和物理实体模型做相同的修改,并再次植入相同的故障模式,修改后的数字孪生模型能够预测修改后的物理实体模型的植入故障响应。
[0093] 下面结合附图及具体实施例对本发明做进一步详细说明。
[0094] 实施例
[0095] 本实施例一种基于数字孪生的结构植入故障响应数据获取及评判方法,主要包括:建立结构数字孪生模型,生成植入故障响应数据,修正数字孪生模型,基于灵敏度分析提取故障特征以及评判数字孪生模型的质量。
[0096] (1)建立结构数字孪生模型
[0097] 建立的数字孪生模型是结构物理实体的数字化体现,通过仿真的手段来来反映、模拟、预测实体在真实环境中的属性、行为等。数字孪生模型通常包括实体的几何、物理、行为和规则等信息中的一种或数种,这些信息可以统称为模型参数,分为输入参数和输出参数两种。其中,几何信息主要是指几何形状、尺寸、位置及装配关系等,通常以二维、三维模型的形式存在,与实体模型具有很好的一致性,并可以根据需求增加视觉方面的渲染处理等。物理信息用来反映实体物理属性的,基于材料参数、本构模型、约束、载荷等,通常可以用ADAMS、ANSYS、ABAQUS等工具从宏观及微观尺度上进行单物理场、多物理场的仿真分析,获取如应力、位移、振动、疲劳等信息。行为信息描述了模型外部因素以及内部条件产生的响应和行为。规则信息是实体运行的规律、标准或准则等,使模型具备评估、优化、预测、评测等功能。
[0098] 根据结构特点及相互作用关系,建立的数字孪生模型可以分为零件级、部件级、系统级三个层次。其中,零件是结构上不可拆分的最小单元;部件是一定数量的零件为完成某任务或实现某功能而建立的组合,又称为子系统级;系统实现了各部件之间的组织、协调和管理,又称为产品级。
[0099] (2)生成植入故障响应数据
[0100] 植入故障的响应数据是数字孪生模型在假定故障模式下通过仿真分析生成的。根据响应类型的不同,需要选择不同的仿真分析工具。结构植入故障的种类往往是由结构典型故障模式或FMEA决定的,并且不受试验成本的约束,仅需要在数字孪生模型中进行相关信息的变更和仿真分析。根据目的的不同,针对植入故障的仿真分析可以分为定性分析和定量分析两种,前者往往是用来挖掘故障对应的响应特征,常用于故障诊断,后者往往是用来研究故障响应特征随时间或损伤的演化趋势,常用于故障预测。
[0101] 虽然不受试验成本的约束,但是对于复杂结构,如果各层级故障模式数量非常大,对应的仿真分析工作量也是十分巨大,甚至不可接受的。因此需要借助试验设计的手段,采用一定的数量的试验样本数量来尽可能全面地反映所有的故障样本,如均匀试验、正交试验、析因试验、中心试验等。
[0102] (3)基于灵敏度分析提取故障特征
[0103] 故障特征反映的是植入故障与其响应数据之间的内在关联性,故障特征的提取是进行故障诊断、预测的前提。故障特征一般包括时域特征、频域特征以及时频域特征等,基于灵敏度分析,由响应数据的各类特征中筛选出对植入故障最为“敏感”的特征量。
[0104] 设某植入故障可以通过数字孪生模型的输入参数p来表示,那么植入故障后的数字孪生模型的响应数据的某特征量Z对参数p的Taylor展开可以表示为:
[0105]
[0106] 其中, 为特征量Z对参数p的n阶灵敏度。
[0107] 那么,响应特征对植入故障的灵敏度可以表示为:
[0108] ΔZ=SΔp
[0109] 其中,ΔZ、Δp分别为结构故障响应特征和故障参数的摄动项,S为两者的灵敏度矩阵。
[0110] 通过灵敏度由大到小的排序,可以获得参数p的响应特征向量:
[0111]
[0112] 其中,m为响应特征的总数量,其中可能包含零值,即与参数p不相关的响应特征。那么,在后续的故障诊断、故障预测中应优先选择响应特征向量中靠前的响应特征。
[0113] 对于复杂结构,不同植入故障参数的响应特征可能存在一定的交叉重合:
[0114]
[0115] 其中,a≠0为响应特征线性相关系数。
[0116] 如果植入故障p与q的各相关响应特征均符合上式,则说明根据响应特征的种类是无法区分这两种故障的,这时需要:①通过响应特征的幅值对故障进行区分识别;②寻找新的响应特征,该特征与其中一个故障相关,与另一个故障不相关。
[0117] 如果植入故障p的某个相关响应特征 与其他各种植入故障的各相关响应特征均不符合上式,则说明该响应特征 是植入故障p特有的,可以专门用来识别该故障。此时,参数p的响应特征向量应调整为:
[0118]
[0119] 此时,响应特征 在后续的故障特征筛选中具有最高的优先级。
[0120] (4)修正数字孪生模型
[0121] 结合图1,数字孪生模型修正过程具体如下:
[0122] ①选择参照数据:选取实体模型已有故障模式的实测数据,或者在实体模型上植入典型故障,进行对应的响应试验。
[0123] ②在数字孪生模型上通过输入参数的变更完成相同故障的植入,并通过仿真分析获取对应的故障响应数据。
[0124] ③根据故障响应数据的灵敏度分析,分别提取实体模型、数字孪生模型对应的故障特征量。
[0125] ④将实体模型、数字孪生模型的故障特征量进行对比分析,如果符合精度要求,则说明数字孪生模型不需要进行修正,否则需要对数字孪生模型的输入参数进行修正,重新进行②、③、④步操作。参数的修正可以借助相关的优化算法,将数字孪生模型的修正问题转化为以两者偏差最小为目标的优化问题。
[0126] (5)评判数字孪生模型的质量
[0127] 为保证数字孪生模型的物理意义、唯一性以及正确性,建立数字孪生模型的评判准则:
[0128] ①修正后,数字孪生模型能够准确重现物理实体模型中所有的故障实测数据;
[0129] ②修正后,数字孪生模型能够准确预测不参与模型修正的实验实测数据;
[0130] ③修正后,对数字孪生模型和物理实体模型做相同的修改(非故障性质的修改,如变更结构材料、体积、尺寸等),并再次植入相同的故障模式,修改后的数字孪生模型能够准确预测修改后的物理实体模型的植入故障响应。数字孪生模型质量评判流程如图2所示。
[0131] 本发明可以获取各类故障模式下的故障响应数据,与故障植入试验相比,具有成本低、周期短、风险小、故障范围不受限制的优点;在筛选故障对应的响应特征量方面,具有更高的准确性,并且能够避免“灵敏度低但响应唯一的关键响应特征量容易被忽略”的弊端,从而更好地为后续的故障区分识别提供支撑;传统的数字孪生模型修正方法,往往偏向于数字层面的误差调整,修正结果的物理意义不明确,并且往往出现多解的问题,本发明提供的数字孪生模型质量的评判方法,保证了数字孪生模型修正结果的物理意义,并大幅提升了修正后数字孪生模型的准确性和可靠性。