一种基于超细纤维膜的X射线防护材料制备方法转让专利

申请号 : CN202110917151.3

文献号 : CN113650362B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 廖学品闫林萍庄君新宋兵石碧

申请人 : 四川大学明新孟诺卡(江苏)新材料有限公司明新孟诺卡(江苏)新材料研究院有限公司

摘要 :

本发明公开了一种基于超细纤维膜的X射线防护材料制备方法,包括:1)配制单宁溶液,将高Z元素无机盐加入到单宁溶液中,制得浸渍溶液,将厚度为1~1.5mm的超细纤维膜用有机溶剂、去离子水分别在超声波作用下清洗三次;2)将步骤1)中清洗后的超细纤维膜置入上述制备的等体积的浸渍溶液中静置,待超细纤维膜充分吸收溶液后,取出并在室温下自然干燥,得到材料A;3)制备聚氨酯膜,取硅橡胶与高Z元素氧化物按1:4~2:3质量比均匀混合,将混合物用刮涂机涂布在制得的聚氨酯膜上,得到材料B;4)将材料B贴附在材料A的表面,得到基于超细纤维膜的X射线防护材料。本方法制备的X射线防护材料具备屏蔽效果好、质量轻、柔软可穿戴的特点。

权利要求 :

1.一种基于超细纤维膜的X射线防护材料制备方法,其特征在于,包括:

1)配制单宁溶液,将高Z元素无机盐加入到单宁溶液中,在搅拌下反应形成金属~单宁网络结构,制得浸渍溶液,将厚度为1~1.5mm的超细纤维膜用有机溶剂、去离子水分别在超声波作用下清洗三次;

2)将步骤1)中清洗后的超细纤维膜置入上述制备的等体积的浸渍溶液中静置,待超细纤维膜充分吸收溶液后,取出并在室温下自然干燥,得到材料A;

3)在聚四氟乙烯板表面用喷涂机喷涂0.1~0.3mm厚度的聚氨酯溶液,然后置于50~80℃温度的烘箱中成膜,得到聚氨酯膜,取硅橡胶与高Z元素氧化物按1:4~2:3质量比均匀混合,将混合物用刮涂机涂布在制得的聚氨酯膜上,得到材料B;

4)将材料B贴附在材料A的表面,得到基于超细纤维膜的X射线防护材料。

2.根据权利要求1所述的一种基于超细纤维膜的X射线防护材料制备方法,其特征在于,所述步骤(1)中的单宁为黑荆树单宁、杨梅单宁、单宁酸的任意一种或多种,单宁溶液的浓度为10~100g/L。

3.根据权利要求1所述的一种基于超细纤维膜的X射线防护材料制备方法,其特征在于,所述步骤(1)中的高Z元素无机盐为原子序数在56~83之间的任一种或多种。

4.根据权利要求1所述的一种基于超细纤维膜的X射线防护材料制备方法,其特征在于,所述步骤(1)中搅拌反应时间为0.5~24h。

5.根据权利要求1所述的一种基于超细纤维膜的X射线防护材料制备方法,其特征在于,所述步骤(1)中的超细纤维膜为CO~PET/PET的海岛型超细纤维膜。

6.根据权利要求1所述的一种基于超细纤维膜的X射线防护材料制备方法,其特征在于,所述步骤(1)中的有机溶剂为无水乙醇或丙酮;所述步骤(3)中的聚氨酯为水性聚氨酯;

所述步骤(3)中的聚氨酯膜的厚度为0.1mm;所述步骤(3)中的硅橡胶为705型硅橡胶。

7.根据权利要求1所述的一种基于超细纤维膜的X射线防护材料制备方法,其特征在于,所述步骤(3)中的高Z元素氧化物为原子序数在56~83之间的任一种。

8.根据权利要求1所述的一种基于超细纤维膜的X射线防护材料制备方法,其特征在于,所述步骤(3)中的混合物涂层的厚度为0.25mm。

说明书 :

一种基于超细纤维膜的X射线防护材料制备方法

技术领域

[0001] 本发明涉及X射线防护领域,特别涉及一种基于超细纤维膜的X射线防护材料制备方法。

背景技术

[0002] X射线是波长为0.001‑10nm,频率在30PHz至30EHz的电磁波,在医疗诊断、安全检查、金属探伤等领域具有广泛的应用(郑钧正.历史见证了X射线发现125周年之辉煌[J].辐射防护通讯,2020,40(06):1‑16+29.)。随着科学技术的发展,X射线的应用越来越广,由此引起的潜在危害也逐渐受到人们重视。X射线对人体具有生物效应、致癌效应、遗传效应、皮肤效应等,会引起某些器官的病变(李迅茹.X线物理与防护[M].北京:人民卫生出版社,2008.)。随着X射线应用范围的不断拓展,对X射线的防护越来越重要。
[0003] 目前常见的X射线防护材料主要有混凝土、铅板以及高分子复合材料等。混凝土的质量太重,而且需要一定的厚度才具有明显的防护效果,并且难以移动,只能用于固定目标的防护(Hernandez‑Murillo C G,Contreras J,Escalera‑Velasco L A,et al.X‑ray and gamma ray shielding behavior of concrete blocks[J].Nuclear Engineering and Technology,2020,52(8):1792‑1797.)。铅板密度大导致其重量难以接受,且铅材存在较大的毒性,限制了其应用范围(Yu L,Pereira A,Tran D,et al.Bismuth Oxide Films for X‑ray shielding:Effects of particle size and structural morphology[J].Materials Chemistry and Physics,2020,260:124084.)。此外,将高Z元素金属氧化物与合成高分子材料混合,也可以制成X射线防护材料(Gholamzadeh L,Asari N,Aminian M K,et al.A study ofthe shielding performance of fibers coated with high‑Z oxides against ionizing radiations[J].Nuclear Inst.and Methods in Physics Research,A,2020,973:164174.)。这类材料柔软、质轻,但由于氧化物与合成高分子材料混合的不均匀,防护效果有限;而且由于金属氧化物和合成高分子材料的相容性差,复合材料容易发生龟裂,进而导致其力学性下降。近几年,虽然有研究者尝试将高Z元素与合成高分子材料混合后进行纺丝,制作成电磁屏蔽纤维,或将其制成涂层粘附在合成高分子材料表面,但这类材料易于老化,耐辐射能力有待提高(Kim  SC,Choi  J R.Analyzing physical characteristics and shielding efficiency for non‑lead medical radiation shielding sheets improved using PMMA[J].Radiation Effects and Defects in Solids,2019,174(3‑4):284‑293.)。
[0004] 超细纤维膜是超细纤维经过编织后得到的,其在结构上与天然皮革的多层级结构相似。专利CN 110218823 A公开了一种高Z元素–天然皮革复合X射线屏蔽材料及其制备方法,该材料可有效屏蔽X射线(廖学品,王亚平,李倩,等.一种高Z元素–天然皮革复合X射线屏蔽材料及其制备方法[P].CN110218823A,2019‑09‑10.)。但是与天然皮革相比,超细纤维表面的活性基团较少,难以与高Z元素离子发生结合,且难以均匀分散在超细纤维的表面。因此,本发明利用单宁既可以与多种金属离子发生络合形成金属‑单宁网络结构,又可以粘附在多种物质表面的特性,将高Z元素离子负载在超细纤维上,提高了高Z元素离子的分散性和稳定性,制备出了具有优异防护能力的X射线防护材料。
[0005] 综上所述,现有技术的X射线防护材料的缺陷为:质量重、屏蔽效率低、力学性能差。随着X射线的应用越来越广泛,为了降低或减少对于从事X射线相关的医护人员、检测人员等可能造成的伤害,研究开发屏蔽效率高、质量轻、性能优良的防护材料是X射线防护领域的重要课题。

发明内容

[0006] 本发明要解决的技术问题为:
[0007] 为了弥补现有X射线防护材料质量重、屏蔽效率低、力学性能差的缺陷,研制开发以超细纤维膜为基体材料,采用等体积浸渍法,并利用单宁的络合及粘附作用将高Z元素高分散性的负载在超细纤维表面,从而制得屏蔽效果好、质量轻、柔软可穿戴的X射线防护材料。
[0008] 为了达到上述目的,本发明采用了以下技术方案:
[0009] 一种基于超细纤维膜的X射线防护材料制备方法,包括:
[0010] 1)配制单宁溶液,将高Z元素无机盐加入到单宁溶液中,在搅拌下反应形成金属~单宁网络结构,制得浸渍溶液,将厚度为1~1.5mm的超细纤维膜用有机溶剂、去离子水分别在超声波作用下清洗三次;
[0011] 2)将步骤1)中清洗后的超细纤维膜置入上述制备的等体积的浸渍溶液中静置,待超细纤维膜充分吸收溶液后,取出并在室温下自然干燥,得到材料A;
[0012] 3)在聚四氟乙烯板表面用喷涂机喷涂0.1~0.3mm厚度的聚氨酯溶液,然后置于50~80℃温度的烘箱中成膜,得到聚氨酯膜,取硅橡胶与高Z元素氧化物按1:4~2:3质量比均匀混合,将混合物用刮涂机涂布在制得的聚氨酯膜上,得到材料B;
[0013] 4)将材料B贴附在材料A的表面,得到基于超细纤维膜的X射线防护材料。
[0014] 作为本方案的进一步改进,所述步骤(1)中的单宁为黑荆树单宁、杨梅单宁、单宁酸的任意一种或多种,单宁溶液的浓度为10~100g/L。
[0015] 作为本方案的进一步改进,所述步骤(1)中的高Z元素无机盐为原子序数在56~83之间的任一种或多种。
[0016] 作为本方案的进一步改进,所述步骤(1)中搅拌反应时间为0.5~24h。
[0017] 作为本方案的进一步改进,所述步骤(1)中的超细纤维膜为CO~PET/PET的海岛型超细纤维膜。
[0018] 作为本方案的进一步改进,所述步骤(1)中的有机溶剂为无水乙醇或丙酮;所述步骤(3)中的聚氨酯为水性聚氨酯;所述步骤(3)中的聚氨酯膜的厚度为0.1mm;所述步骤(3)中的硅橡胶为705型硅橡胶。
[0019] 作为本方案的进一步改进,所述步骤(3)中的高Z元素氧化物为原子序数在56~83之间的任一种,例如氧化铒或其它高Z元素氧化物。
[0020] 作为本方案的进一步改进,所述步骤(3)中的高Z元素氧化物占硅橡胶的质量比为40%。
[0021] 作为本方案的进一步改进,所述步骤(3)中的混合物涂层的厚度为0.25mm。
[0022] 本发明有如下有益效果:
[0023] 1)采用与天然皮革结构相似的超细纤维膜,纤维细、纤维间空隙大,可以增加光子与高Z元素离子的碰撞几率,使X射线光子传输的路径变长,从而增大防护效果;并且纤维间通过聚氨酯连接,聚氨酯具有泡孔结构,使整个材料拥有良好的透气透湿性能;
[0024] 2)采用工艺简单、快速方便的等体积浸渍法;此方法适用于多种可溶性盐,便于负载上各种高Z元素;通过各种高Z元素不同K层吸收边的协同作用,能够有效弥补彼此间的弱吸收区。例如,本发明可以避免铅材在40~88KeV光子能量区间的弱吸收现象;
[0025] 3)对光子能量为16~100KeV的X射线有着优异的防护效果,且防护材料质量轻,密度小,与其他防护材料相比,本发明制备的复合材料既保证了高效的防护效率,又有较低的质量和较小的体积,可应用于移动目标和设备的防护。

附图说明

[0026] 图1为实施例3所制得的硝酸钆‑超细纤维膜防护材料的扫描电镜图像;
[0027] 图2为实施例6所制得的铋、碘、铒‑超细纤维膜防护材料的扫描电镜图像及元素面扫描图像;
[0028] 图3为实施例6所制得的材料和超细纤维膜的X射线衍射图;
[0029] 图4为实施例3所得浸渍溶液与对比样溶液的紫外光谱图;
[0030] 图5为实施例1所制得的硝酸铒‑超细纤维膜防护材料的X射线防护性能图;
[0031] 图6为实施例2所制得的硝酸镧‑超细纤维膜防护材料的X射线防护性能图;
[0032] 图7为实施例3所制得的硝酸钆‑超细纤维膜防护材料的X射线防护性能图;
[0033] 图8为实施例4所制得的碘化铋‑超细纤维膜防护材料1的X射线防护性能图;
[0034] 图9为实施例5所制得的碘化铋‑超细纤维膜防护材料2的X射线防护性能图;
[0035] 图10为实施例6所制得的铋、碘、铒‑超细纤维膜防护材料1的X射线防护性能图;
[0036] 图11为实施例7所制得的铋、碘、铒‑超细纤维膜防护材料2的X射线防护性能图。

具体实施方式

[0037] 下面给出实施例对本发明进行具体的描述,有必要在此指出的是,本实施例只用于对本发明的进一步说明,不能理解为对本发明保护范围的限制,对于本领域的技术人员根据上述发明内容所做的一些非本质的改进与调整,也视为落在本发明的保护范围内。以下实施例中所涉及的份数均按质量进行计算。
[0038] 本发明所制备的复合材料的X射线辐射防护性能用屏蔽率Ea(Attenuation Efficiency)来表征;按式(1)计算:
[0039] Ea=(D0‑D)/D0×100% (1)
[0040] 其中:
[0041] D0‑入射X射线的初始剂量率;
[0042] D‑出射X射线的出射剂量率。
[0043] 实施例1
[0044] (1).称取0.5g杨梅单宁溶于50mL去离子水中,利用超声波辅助分散使单宁完全溶解,得到单宁溶液。称取3g Er(NO3)35H2O溶入4.5mL单宁溶液中,在磁力搅拌下进行反应,反应时间为1h,制得浸渍溶液。将超细纤维膜裁剪成直径为8cm的圆形,依次放入去离子水、无水乙醇、去离子水中超声10min以洗去杂质。
[0045] (2).将清洗干净的超细纤维膜置于上述浸渍溶液中,静置反应2h,使其浸渍均匀。待超细纤维膜充分吸收溶液后取出放在室温下自然干燥。干燥后,得到硝酸铒‑超细纤维膜防护材料。
[0046] 按实施例1的方法,分别加入6、9、12g Er(NO3)35H2O制得硝酸铒‑超细纤维膜防护材料。将材料进行X射线屏蔽效率测试,测试所得结果见图5。可见,当光子能量较低时,屏蔽效率为90%以上,但是随着光子能量的升高,材料的屏蔽效率开始下降;当光子能量在3
100KeV时,屏蔽效率只有11%。铒负载量的增加使屏蔽效率提高,在4mmol/cm的时候,40‑
100KeV范围内屏蔽效率是最低负载量的3倍。
[0047] 实施例2
[0048] (1).称取1.5g黑荆树单宁溶于50mL去离子水中,利用超声波辅助分散使单宁完全溶解,得到单宁溶液。称取3g La(NO3)36H2O溶入4.5mL单宁溶液中,在磁力搅拌下进行反应,反应时间为4h,制得浸渍溶液。将超细纤维膜裁剪成直径为8cm的圆形,依次放入去离子水、丙酮、去离子水中超声10min以洗去杂质。
[0049] (2).将清洗干净的超细纤维膜置于上述浸渍溶液中,静置反应2h,使其浸渍均匀。待超细纤维膜充分吸收溶液后取出放在室温下自然干燥。干燥后,得到硝酸镧‑超细纤维膜防护材料。
[0050] 按实施例2的方法,分别加入6、9、12g La(NO3)36H2O制得硝酸镧‑超细纤维膜防护3
材料。将材料进行X射线屏蔽效率测试,测试所得结果见图6。可见,负载量为1mmol/cm时,屏蔽效率较低,在光子能量为100keV时屏蔽效率仅为7%,随着负载量的增加,屏蔽效率增
3
大,在4mmol/cm时屏蔽效率增大到3倍。
[0051] 实施例3
[0052] (1).称取2.5g单宁酸溶于50mL去离子水中,利用超声波辅助分散使单宁完全溶解,得到单宁溶液。称取3g Gd(NO3)36H2O溶入4.5mL单宁溶液中,在磁力搅拌下进行反应,反应时间为8h,制得浸渍溶液。将超细纤维膜裁剪成直径为8cm的圆形,依次放入去离子水、无水乙醇、去离子水中超声10min以洗去杂质。
[0053] (2).将清洗干净的超细纤维膜置于上述浸渍溶液中,静置反应2h,使其浸渍均匀。待超细纤维膜充分吸收溶液后取出放在室温下自然干燥。干燥后,得到硝酸钆‑超细纤维膜防护材料。
[0054] 按实施例3的方法,分别加入6、9、12g Gd(NO3)36H2O制得硝酸钆‑超细纤维膜防护材料,同时制得未加单宁的浸渍溶液作为对比样。将材料进行X射线屏蔽效率测试,测试所得结果见图7。可见,随着钆负载量的增加,屏蔽效率越来越高,在厚度为1.6mm(一层)的情况下,屏蔽效率最高可达40%左右。由图1可知,钆在超细纤维膜内部分布均匀。钆离子与单宁溶液混合后,其吸收峰由302nm蓝移至280nm,如图4所示。
[0055] 实施例4
[0056] (1).称取3.5g杨梅单宁溶于50mL去离子水中,利用超声波辅助使单宁完全溶解,得到单宁溶液。称取2g BiI3溶于4.5mL单宁溶液中,并称取3g KI辅助BiI3增溶。在磁力搅拌下进行反应,反应时间为12h,制得浸渍溶液。将超细纤维膜裁剪成直径为8cm的圆形,依次放入去离子水、丙酮、去离子水中超声10min以洗去杂质。
[0057] (2).将清洗干净的超细纤维膜置于上述浸渍溶液中,静置反应2h,使其浸渍均匀。待超细纤维充分吸收溶液后取出放在室温下自然干燥。干燥后,得到碘化铋‑超细纤维膜防护材料1。
[0058] 按实施例4的方法,制备多个相同的复合材料,将材料进行X射线屏蔽效率测试,测试所得结果见图8。由图可见,碘化铋‑超细纤维膜防护材料1的屏蔽效果较好,因为同时含有铋元素和碘元素使屏蔽效率升高。但随着光子能量的增大,屏蔽效率下降的趋势非常明显。当材料的厚度增加到6.4mm(四层)时,屏蔽效率达到60%以上。
[0059] 实施例5
[0060] (1).称取4.5g黑荆树单宁溶于50mL去离子水中,利用超声波辅助使单宁完全溶解,得到单宁溶液。称取3g BiI3溶于4.5mL单宁溶液中,并称取4g KI辅助BiI3增溶。在磁力搅拌下进行反应,反应时间为16h,制得浸渍溶液。将超细纤维膜裁剪成直径为8cm的圆形,依次放入去离子水、无水乙醇、去离子水中超声10min以洗去杂质。
[0061] (2).将清洗干净的超细纤维膜置于上述浸渍溶液中,静置反应2h,使其浸渍均匀。待超细纤维充分吸收溶液后取出放在室温下自然干燥。干燥后,得到碘化铋‑超细纤维膜防护材料2。
[0062] 按实施例5的方法,制备多个相同的复合材料,将材料进行X射线屏蔽效率测试,测试所得结果见图9。可见,碘化铋‑超细纤维膜防护材料2在1的基础上增大了碘化铋的用量使屏蔽效率进一步提高。厚度为3.2mm(两层)时,对48KeV的X射线的屏蔽效率达到95%,厚度为6.4mm(四层)时,屏蔽效率超过75%。
[0063] 实施例6
[0064] (1).称取5g单宁酸溶于50mL去离子水中,利用超声波辅助使单宁完全溶解,得到单宁溶液。称取2g BiI3、2.5g ErCl36H2O溶于4.5mL单宁溶液中,并称取3g KI辅助BiI3增溶,在磁力搅拌下进行反应,反应时间为20h,制得浸渍溶液。将超细纤维膜裁剪成直径为8cm的圆形。依次放入去离子水、丙酮、去离子水中超声10min以洗去杂质。
[0065] (2).将清洗干净的超细纤维膜置于上述浸渍溶液中,静置反应2h,使其浸渍均匀。待超细纤维充分吸收溶液后取出放在室温下自然干燥,得到材料1。
[0066] (3).在聚四氟乙烯板表面用喷涂机喷涂上0.1mm的水性聚氨酯涂层,然后置于80℃的烘箱内干燥0.5h使之成膜。称取3g 705型透明硅橡胶与2g Er2O3粉末混合均匀,两者质量比为3:2。将混合物用刮涂机在聚氨酯膜上涂布一层0.25mm厚度的涂层,得到材料2。
[0067] (4).将材料1贴附在材料2的表面,得到基于超细纤维膜的铋、碘、铒‑超细纤维膜防护材料1。
[0068] 按实施例6的方法,制备多个相同的复合材料,将材料进行射线屏蔽效率测试,测试所得结果见图10。可见,在碘化铋的基础上添加了铒元素作为弥补K层吸收边的元素,结果证明铒元素的加入使屏蔽效率随X射线能量增加而下降的趋势变缓,并且使平均屏蔽效率提高了15%。由图2可以看出铋、碘、铒元素已经成功的负载到了超细纤维上,且分布均匀。
[0069] 实施例7
[0070] (1).称取5g杨梅单宁溶于50mL去离子水中,利用超声波辅助使单宁完全溶解,得到单宁溶液。称取3g BiI3、2.5g ErCl36H2O溶于4.5mL单宁溶液中,并称取4g KI辅助BiI3增溶,在磁力搅拌下进行反应,反应时间为24h,制得浸渍溶液。将超细纤维膜裁剪成直径为8cm的圆形。依次放入去离子水、无水乙醇、去离子水中超声10min以洗去杂质。
[0071] (2).将清洗干净的超细纤维膜置于上述浸渍溶液中,静置反应2h,使其浸渍均匀。待超细纤维充分吸收溶液后取出放在室温下自然干燥,得到材料1。
[0072] (3).在聚四氟乙烯板表面用喷涂机喷涂上0.1mm的水性聚氨酯涂层,然后置于80℃的烘箱内干燥0.5h使之成膜。称取3g 705型透明硅橡胶与2g Er2O3粉末混合均匀,两者质量比为3:2。将混合物用刮涂机在聚氨酯膜上涂布一层0.25mm厚度的涂层,得到材料2。
[0073] (4).将材料1贴附在材料2的表面,得到基于超细纤维膜的铋、碘、铒‑超细纤维膜防护材料2。
[0074] 按实施例7的方法制备多个相同的复合材料,并进行X射线屏蔽效率测试,测试所得结果见图11。当屏蔽材料的厚度为4mm(两层)时其屏蔽性能可以与0.25mm厚的铅箔相媲美,甚至优于0.25mm铅箔。
[0075] 以上所述仅为本发明的优选实施方式,并非因此限制本发明的专利范围,凡是利用本发明所作的等效变换,均在本发明的专利保护范围内。