一种氮化硼纳米管/纳米片-碳化硼陶瓷复合材料及其制备方法转让专利

申请号 : CN202111005864.9

文献号 : CN113735586B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王恒曾义杨小晗李哲成刘凯徐慢

申请人 : 武汉工程大学

摘要 :

本发明公开了一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料及其制备方法。其制备为:在去离子水中依次加入表面活性剂和碳化硼粉体,混合均匀得碳化硼悬浮液,继续加入氮化硼纳米管/纳米片杂化粉体,搅拌、超声、冷冻干燥得到氮化硼纳米管/纳米片‑碳化硼复合粉体,最后置于氩气气氛下热压烧结,随炉冷却至室温,得到氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料;其中氮化硼纳米管/纳米片杂化粉体为氮化硼纳米片上原位生长氮化硼纳米管形成的杂化结构。该方法所得陶瓷复合材料中,氮化硼纳米管/纳米片在碳化硼陶瓷复合材料中均匀分散,能同时发挥氮化硼纳米管和纳米片的强韧化优势及其多维度协同效应,显著提升碳化硼陶瓷材料的强度和韧性。

权利要求 :

1.一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的制备方法,其特征在于,具体步骤如下:(1)在去离子水中依次加入表面活性剂和碳化硼粉体,混合均匀得碳化硼悬浮液,然后向碳化硼悬浮液中加入氮化硼纳米管/纳米片杂化粉体,搅拌、超声、冷冻干燥得到氮化硼纳米管/纳米片‑碳化硼复合粉体,其中:所述表面活性剂为十六烷基三甲基溴化铵或十六烷基三甲基氯化铵;按质量百分比计,所述氮化硼纳米管/纳米片杂化粉体占所述碳化硼粉体和氮化硼纳米管/纳米片杂化粉体总质量的1~4%;所述氮化硼纳米管/纳米片杂化粉体为氮化硼纳米片上原位生长氮化硼纳米管形成的杂化结构;

(2)将步骤(1)所得氮化硼纳米管/纳米片‑碳化硼复合粉体置于氩气气氛下热压烧结,然后随炉冷却至室温,得到氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料。

2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中,碳化硼粉体和表面活性剂的质量比为(190~400):1。

3.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中,碳化硼粉体的平均粒径为1~10μm。

4.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中,表面活性剂在去离子水中的质量浓度为0.25~0.5mg/mL。

5.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中,搅拌时间为1~2h;超声时间为1~2h;冷冻干燥时间为24~48h。

6.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中,热压烧结温度为1850~1950℃,烧结压力为30~50MPa,烧结时间为30~60min。

7.一种权利要求1‑6任一项所述的制备方法制备得到的氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料。

说明书 :

一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料及其制备

方法

技术领域

[0001] 本发明属于先进结构陶瓷材料领域,具体涉及一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料及其制备方法。

背景技术

[0002] 低维增强相强韧化的碳化硼(B4C)陶瓷基复合材料具有高比强度、高比模量、高硬度、低密度,以及高断裂韧性和高断裂功等优良特性,是一类重要的轻质陶瓷装甲材料,是国防建设与现代工业的重要支撑材料之一。随着应用领域和服役环境的不断拓展,对碳化硼陶瓷基复合材料的韧性、强度和可靠性提出了更高的要求。
[0003] 氮化硼纳米材料(纳米管、纳米片)具有高杨氏模量和高断裂强度的优点,如:利用透射电子显微镜‑原子力显微镜(TEM‑AFM)测得直径为11.9~44.3nm的单根氮化硼纳米管(BNNTs)的断裂强度为14.1~33.2GPa,断裂应变为1.5~3.4%,杨氏模量为725~1343GPa(Wei X L,et al.Adv Mater.,2010,22,4895),与理论预测较为吻合(Hernández E,et al.Phys Rev Lett.,1998,80,4502)。利用AFM研究氮化硼纳米片(BNNSs)的力学性能发现:氮化硼层间较大的滑移能可以阻止片层间的移动,厚度变化(1~9层)对BNNSs的力学性能影响不大,断裂强度为70.5±5.5GPa,杨氏模量为0.865±0.073TPa(Falin A,et al.Nat Commun.,2017,8,15815)。
[0004] 力学性能优异的氮化硼纳米管和纳米片是陶瓷基复合材料中有效的无机纳米添加相。日本国立材料研究所的学者率先研究了含BNNTs的Al2O3和Si3N4陶瓷复合材料,结果表明:仅添加0.5wt%的BNNTs,Al2O3陶瓷在1300℃下产生了脆性‑延性的转变趋势;Si3N4陶瓷在同样的变形条件下能降低75%的载荷应力(Huang Q,et al.Nanotechnology,2007,18,485706)。BNNTs在ZrO2陶瓷复合材料中能强化ZrO2的晶界、改变材料的断裂方式(由沿晶断裂变为穿晶断裂)、影响ZrO2的相变(产生相变增韧机制)、提高ZrO2陶瓷复合材料的韧性(Xu J J,et al.Mat Sci Eng A.,2012,546,301.Tatarko P,et al.J Eur Ceam Soc.,
2014,34,1829)。对于含氮化硼纳米片的Si3N4陶瓷材料,BNNSs在Si3N4陶瓷中产生裂纹桥接和钝化效应,提高Si3N4的断裂韧性和弯曲强度;BNNSs包裹在Si3N4晶粒上形成润滑膜,降低Si3N4的摩擦系数,提高其耐磨性(Lee B,et al.Sci.Rep.,2016,6,27609)。在B4C陶瓷中加入5wt%的立方相氮化硼进行放电等离子烧结,氮化硼会由立方相转变为六方相,原位形成的六方相氮化硼薄片在B4C基体上也能够吸收裂纹扩展所需能量,B4C陶瓷材料的弯曲强度和断裂韧性分别提高了32.7%和58.6%(Sun J C,et al.J Eur Ceam Soc.,2020,1103)。
[0005] 因此,如何设计简单添加方式以便最大程度的发挥氮化硼纳米管和纳米片作为无机纳米添加相在碳化硼陶瓷基复合材料中的作用,进一步提升碳化硼陶瓷复合材料的强度、韧性和可靠性,是当务之急。

发明内容

[0006] 本发明的目的在于提供一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料及其制备方法。氮化硼纳米管/纳米片在碳化硼陶瓷复合材料中均匀分散,能同时发挥氮化硼纳米管和纳米片的强韧化优势及其多维度协同效应,抑制陶瓷复合材料中碳化硼的晶粒生长,延长碳化硼陶瓷材料中裂纹偏转路径,显著提升碳化硼陶瓷材料的强度和韧性,为碳化硼陶瓷应用领域和服役环境的拓展提供重要技术支撑。
[0007] 为了解决上述技术问题,本发明采用以下技术方案:
[0008] 提供一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的制备方法,具体步骤如下:
[0009] (1)在去离子水中依次加入表面活性剂和碳化硼粉体,混合均匀得碳化硼悬浮液,然后向碳化硼悬浮液中加入氮化硼纳米管/纳米片杂化粉体,搅拌、超声、冷冻干燥得到氮化硼纳米管/纳米片‑碳化硼复合粉体,其中所述表面活性剂为十六烷基三甲基溴化铵或十六烷基三甲基氯化铵;按质量百分比计,所述氮化硼纳米管/纳米片杂化粉体占所述碳化硼粉体和氮化硼纳米管/纳米片杂化粉体总质量的1~4%;所述氮化硼纳米管/纳米片杂化粉体为氮化硼纳米片上原位生长氮化硼纳米管形成的杂化结构;
[0010] (2)将步骤(1)所得氮化硼纳米管/纳米片‑碳化硼复合粉体置于氩气气氛下热压烧结,然后随炉冷却至室温,得到氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料。
[0011] 上述方案中,所述步骤(1)中,碳化硼粉体和表面活性剂的质量比为(190~400):1。
[0012] 上述方案中,所述步骤(1)中,碳化硼粉体的平均粒径为1~10μm。
[0013] 上述方案中,所述步骤(1)中,表面活性剂在去离子水中的质量浓度为0.25~0.5mg/mL。
[0014] 上述方案中,所述步骤(1)中,搅拌时间为1~2h;超声时间为1~2h;冷冻干燥时间为24~48h。
[0015] 上述方案中,所述步骤(2)中,热压烧结温度为1850~1950℃,烧结压力为30~50MPa,烧结时间为30~60min。
[0016] 提供一种上述所述的制备方法制备得到的氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料。
[0017] 在碳化硼陶瓷材料中均匀引入具有良好界面结合特性的氮化硼纳米片‑纳米管杂化材料,既可以发挥一维氮化硼纳米管的增韧机制:拔出效应、桥接效应、载荷转移、产生预应力效应延缓碳化硼陶瓷基体开裂;又可以发挥大比表面积的二维氮化硼纳米片的优势:对碳化硼晶粒产生“包裹”并发挥“锚接”效应。此外,氮化硼纳米管和纳米片的相互作用还能发挥氮化硼纳米片‑纳米管杂化材料的多维度协同效应,产生新的增强增韧效应,如:抑制陶瓷复合材料中碳化硼的晶粒生长、改变陶瓷复合材料的裂纹偏转路径,进一步提升碳化硼陶瓷复合材料的强度、韧性和可靠性。
[0018] 本发明的有益效果为:
[0019] 1.本发明制备氮化硼纳米管/纳米片‑碳化硼复合粉体时,阳离子表面活性剂溶于水后溶液呈正电性,碳化硼陶瓷粉体因含有硼氧化物溶于水后呈负电性,异种电荷相互吸引,可以形成稳定、均匀的悬浮态碳化硼体系;在该液相体系中加入氮化硼纳米管/纳米片杂化粉体后经搅拌、超声、冷冻干燥,既能使氮化硼纳米管/纳米片杂化粉体与碳化硼陶瓷粉体均匀混合,又能保持该杂化粉体的结构完整性。
[0020] 2.本发明提供的氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料,能同时发挥氮化硼纳米管和纳米片的强韧化优势外,还能发挥氮化硼纳米片‑纳米管杂化材料的多维度协同效应,如:抑制陶瓷复合材料中碳化硼的晶粒生长、改变陶瓷复合材料的裂纹偏转路径,对于碳化硼陶瓷复合材料的强度和韧性有显著提升作用。

具体实施方式

[0021] 为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
[0022] 实施例1
[0023] 一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料及其制备方法,具体步骤如下:
[0024] (1)氮化硼纳米管/纳米片‑碳化硼复合粉体的制备:在200ml去离子水中依次加入0.05g十六烷基三甲基溴化铵(浓度为0.25mg/ml)和19.8g平均粒径为2.0μm的碳化硼粉体,混合均匀得碳化硼悬浮液,然后向悬浮液中加入0.2g氮化硼纳米管/纳米片杂化粉体,搅拌
1h、超声1h、冷冻干燥24h得到氮化硼纳米管/纳米片‑碳化硼复合粉体,其中氮化硼纳米管/纳米片杂化粉体为氮化硼纳米片上原位生长氮化硼纳米管形成的杂化结构,制备方法参考文献Heng Wang,et al.Large‑scale synthesis and growth mechanism of boron nitride nanocomposite assembled by nanosheets and nanotubes,Journal of the American Ceramic Society,2020,103(10),5594‑5598。
[0025] (2)氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的制备:将步骤(1)所得氮化硼纳米管/纳米片‑碳化硼复合粉体置于圆柱状石墨模具中,在热压烧结炉中施加50MPa压力、1950℃烧结60min,随炉冷却至室温,得到直径为48mm、厚度为4.5mm的氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料,其中氮化硼纳米管/纳米片含量为1wt%,碳化硼含量为99wt%。
[0026] 利用扫描电子显微镜测得氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的平均晶粒尺寸为2.15μm;利用三点弯曲法测得所得氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的弯曲强度为542MPa;利用单边切口梁法测得氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的1/2
断裂韧性为4.92MPa·m 。
[0027] 利用上述方法测得相同热压烧结条件(50MPa,1950℃,60min)下所得纯碳化硼陶1/2
瓷材料的平均晶粒尺寸为6.05μm,弯曲强度为398MPa,断裂韧性为3.3MPa·m 。对比可知,在碳化硼陶瓷材料中加入1wt%的氮化硼纳米管/纳米片杂化粉体,能抑制碳化硼陶瓷晶粒长大,且陶瓷复合材料的弯曲强度和断裂韧性分别提高了36.2%和49.1%(见表1)。
[0028] 对比例1
[0029] 具体步骤同实施例1,不同之处在于,步骤(1)中,添加0.2g氮化硼纳米管,得到氮化硼纳米管‑碳化硼复合粉体,在相同热压烧结条件(50MPa,1950℃,60min)下得到氮化硼纳米管‑碳化硼陶瓷复合材料(其中氮化硼纳米管含量为1wt%,碳化硼含量为99wt%)。
[0030] 采用与实施例1相似的方法对本发明实施例制备的产物进行力学性能测试,所得1
氮化硼纳米管‑碳化硼陶瓷复合材料的弯曲强度和断裂韧性分别为481MPa和4.31MPa·m/2
,分别比不含氮化硼纳米管的纯碳化硼陶瓷材料提高20.9%和30.6%(见表1)。
[0031] 对比例2
[0032] 具体步骤同实施例1,不同之处在于,步骤(1)中,添加0.2g氮化硼纳米片,得到氮化硼纳米片‑碳化硼复合粉体,在相同热压烧结条件(50MPa,1950℃,60min)下得到氮化硼纳米片‑碳化硼陶瓷复合材料(其中氮化硼纳米片含量为1wt%,碳化硼含量为99wt%)。
[0033] 采用与实施例1相似的方法对本发明实施例制备的产物进行力学性能测试,所得1
氮化硼纳米片‑碳化硼陶瓷复合材料的弯曲强度和断裂韧性分别为513MPa和4.01MPa·m/2
,分别比不含氮化硼纳米片的纯碳化硼陶瓷材料提高28.9%和21.5%(见表1)。
[0034] 表1碳化硼陶瓷复合材料的弯曲强度、断裂韧性及其提升率对比
[0035]
[0036] 实施例2
[0037] 一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料及其制备方法,具体步骤如下:
[0038] (1)氮化硼纳米管/纳米片‑碳化硼复合粉体的制备:在200ml去离子水中依次加入0.1g十六烷基三甲基氯化铵(浓度为0.5mg/ml)和19.2g平均粒径为2.0μm的碳化硼粉体,混合均匀得碳化硼悬浮液,然后向悬浮液中加入0.8g氮化硼纳米管/纳米片杂化粉体,搅拌
2h、超声2h、冷冻干燥48h得到氮化硼纳米管/纳米片‑碳化硼复合粉体。
[0039] (2)氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的制备:将步骤(1)所得氮化硼纳米管/纳米片‑碳化硼复合粉体置于圆柱状石墨模具中,在热压烧结炉中施加30MPa压力、1950℃烧结30min,随炉冷却至室温,得到直径为48mm、厚度为4.5mm的氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料,其中氮化硼纳米管/纳米片含量为4wt%,碳化硼含量为96wt%。
[0040] 采用与实施例1相似的方法对本发明实施例制备的产物进行测试,结果表明所得氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的弯曲强度和断裂韧性分别是501MPa和1/2
4.36MPa·m ,分别比相同热压烧结条件(30MPa,1950℃,30min)所得不含氮化硼纳米管/纳米片杂化粉体的纯碳化硼陶瓷材料提高37.3%和39.3%。
[0041] 实施例3
[0042] 一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料及其制备方法,具体步骤如下:
[0043] (1)氮化硼纳米管/纳米片‑碳化硼复合粉体的制备:在200ml去离子水中依次加入0.1g十六烷基三甲基溴化铵(浓度为0.5mg/ml)和19.8g平均粒径为2.0μm的碳化硼粉体,混合均匀得碳化硼悬浮液,然后向悬浮液中加入0.2g氮化硼纳米管/纳米片杂化粉体,搅拌
1h、超声2h、冷冻干燥24h得到氮化硼纳米管/纳米片‑碳化硼复合粉体。
[0044] (2)氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的制备:将步骤(1)所得氮化硼纳米管/纳米片‑碳化硼复合粉体置于圆柱状石墨模具中,在热压烧结炉中施加50MPa压力、1850℃烧结60min,随炉冷却至室温,得到直径为48mm、厚度为4.5mm的氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料,其中氮化硼纳米管/纳米片含量为1wt%,碳化硼含量为99wt%。
[0045] 采用与实施例1相似的方法对本发明实施例制备的产物进行测试,结果表明所得氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的弯曲强度和断裂韧性分别是468MPa和1/2
4.31MPa·m ,分别比相同热压烧结条件(50MPa,1850℃,60min)所得不含氮化硼纳米管/纳米片杂化粉体的纯碳化硼陶瓷材料提高30.1%和42.7%。
[0046] 实施例4
[0047] 一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料及其制备方法,具体步骤如下:
[0048] (1)氮化硼纳米管/纳米片‑碳化硼复合粉体的制备:在200ml去离子水中依次加入0.05g十六烷基三甲基氯化铵(浓度为0.25mg/ml)和19.2g平均粒径为2.0μm的碳化硼粉体,混合均匀得碳化硼悬浮液,然后向悬浮液中加入0.8g氮化硼纳米管/纳米片杂化粉体,搅拌
2h、超声1h、冷冻干燥48h得到氮化硼纳米管/纳米片‑碳化硼复合粉体。
[0049] (2)氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的制备:将步骤(1)所得氮化硼纳米管/纳米片‑碳化硼复合粉体置于圆柱状石墨模具中,在热压烧结炉中施加30MPa压力、1850℃烧结30min,随炉冷却至室温,得到直径为48mm、厚度为4.5mm的氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料,其中氮化硼纳米管/纳米片含量为4wt%,碳化硼含量为96wt%。
[0050] 采用与实施例1相似的方法对本发明实施例制备的产物进行测试,结果表明所得氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的弯曲强度和断裂韧性分别是439MPa和1/2
3.88MPa·m ,分别比相同热压烧结条件(30MPa,1850℃,30min)所得不含氮化硼纳米管/纳米片杂化粉体的纯碳化硼陶瓷材料提高31.0%和32.0%。
[0051] 实施例5
[0052] 一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料及其制备方法,具体步骤如下:
[0053] (1)氮化硼纳米管/纳米片‑碳化硼复合粉体的制备:在200ml去离子水中依次加入0.06g十六烷基三甲基溴化铵(浓度为0.3mg/ml)和19.3g平均粒径为2.0μm的碳化硼粉体,混合均匀得碳化硼悬浮液,然后向悬浮液中加入0.7g氮化硼纳米管/纳米片杂化粉体,搅拌
1.5h、超声1.5h、冷冻干燥36h得到氮化硼纳米管/纳米片‑碳化硼复合粉体。
[0054] (2)氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的制备:将步骤(1)所得氮化硼纳米管/纳米片‑碳化硼复合粉体置于圆柱状石墨模具中,在热压烧结炉中施加30MPa压力、1950℃烧结60min,随炉冷却至室温,得到直径为48mm、厚度为4.5mm的氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料,其中氮化硼纳米管/纳米片含量为3.5wt%,碳化硼含量为
96.5wt%。
[0055] 采用与实施例1相似的方法对本发明实施例制备的产物进行测试,结果表明所得氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的弯曲强度和断裂韧性分别是523MPa和1/2
4.89MPa·m ,分别比相同热压烧结条件(30MPa,1950℃,60min)所得不含氮化硼纳米管/纳米片杂化粉体的纯碳化硼陶瓷材料提高37.6%和51.4%。
[0056] 实施例6
[0057] 一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料及其制备方法,具体步骤如下:
[0058] (1)氮化硼纳米管/纳米片‑碳化硼复合粉体的制备:在200ml去离子水中依次加入0.07g十六烷基三甲基氯化铵(浓度为0.35mg/ml)和19.4g平均粒径为2.0μm的碳化硼粉体,混合均匀得碳化硼悬浮液,然后向悬浮液中加入0.6g氮化硼纳米管/纳米片杂化粉体,搅拌
1h、超声1.5h、冷冻干燥24h得到氮化硼纳米管/纳米片‑碳化硼复合粉体。
[0059] (2)氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的制备:将步骤(1)所得氮化硼纳米管/纳米片‑碳化硼复合粉体置于圆柱状石墨模具中,在热压烧结炉中施加40MPa压力、1900℃烧结30min,随炉冷却至室温,得到直径为48mm、厚度为4.5mm的氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料,其中氮化硼纳米管/纳米片含量为3wt%,碳化硼含量为97wt%。
[0060] 采用与实施例1相似的方法对本发明实施例制备的产物进行测试,结果表明所得氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的弯曲强度和断裂韧性分别是482MPa和1/2
4.43MPa·m ,分别比相同热压烧结条件(40MPa,1900℃,30min)所得不含氮化硼纳米管/纳米片杂化粉体的纯碳化硼陶瓷材料提高33.5%和43.9%。
[0061] 实施例7
[0062] 一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料及其制备方法,具体步骤如下:
[0063] (1)氮化硼纳米管/纳米片‑碳化硼复合粉体的制备:在200ml去离子水中依次加入0.08g十六烷基三甲基溴化铵(浓度为0.4mg/ml)、19.6g平均粒径为2.0μm的碳化硼粉体,混合均匀得碳化硼悬浮液,然后向悬浮液中加入0.4g氮化硼纳米管/纳米片杂化粉体,搅拌
1.5h、超声1h、冷冻干燥48h得到氮化硼纳米管/纳米片‑碳化硼复合粉体。
[0064] (2)氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的制备:将步骤(1)所得氮化硼纳米管/纳米片‑碳化硼复合粉体置于圆柱状石墨模具中,在热压烧结炉中施加50MPa压力、1900℃烧结60min,随炉冷却至室温,得到直径为48mm、厚度为4.5mm的氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料,其中氮化硼纳米管/纳米片含量为2wt%,碳化硼含量为98wt%。
[0065] 采用与实施例1相似的方法对本发明实施例制备的产物进行测试,结果表明所得氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的弯曲强度和断裂韧性分别是520MPa和1/2
4.72MPa·m ,分别比相同热压烧结条件(50MPa,1900℃,60min)所得不含氮化硼纳米管/纳米片杂化粉体的纯碳化硼陶瓷材料提高40.5%和46.6%。
[0066] 实施例8
[0067] 一种氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料及其制备方法,具体步骤如下:
[0068] (1)氮化硼纳米管/纳米片‑碳化硼复合粉体的制备:在200ml去离子水中依次加入0.09g十六烷基三甲基氯化铵(浓度为0.45mg/ml)、19.7g平均粒径为2.0μm的碳化硼粉体,混合均匀得碳化硼悬浮液,然后向悬浮液中加入0.3g氮化硼纳米管/纳米片杂化粉体,搅拌
1.5h、超声2h、冷冻干燥36h得到氮化硼纳米管/纳米片‑碳化硼复合粉体。
[0069] (2)氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的制备:将步骤(1)所得氮化硼纳米管/纳米片‑碳化硼复合粉体置于圆柱状石墨模具中,在热压烧结炉中施加40MPa压力、1950℃烧结45min,随炉冷却至室温,得到直径为48mm、厚度为4.5mm的氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料,其中氮化硼纳米管/纳米片含量为1.5wt%,碳化硼含量为
98.5wt%。
[0070] 采用与实施例1相似的方法对本发明实施例制备的产物进行测试,结果表明所得氮化硼纳米管/纳米片‑碳化硼陶瓷复合材料的弯曲强度和断裂韧性分别是512MPa和1/2
4.69MPa·m ,分别比相同热压烧结条件(40MPa,1950℃,45min)所得不含氮化硼纳米管/纳米片杂化粉体的纯碳化硼陶瓷材料提高34.0%和44.3%。
[0071] 显然,上述实施例仅仅是为清楚地说明所作的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。