一种有磁性的机械密封件摩擦副的制备方法转让专利

申请号 : CN202110761646.1

文献号 : CN113735587B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 赵烨坚

申请人 : 浙江天鹰机械密封件股份有限公司

摘要 :

本发明公开了一种有磁性的机械密封件摩擦副的制备方法,通过将碳化硅微粉、纳米碳粉、氮化硼颗粒、Fe3O4微球等材料混合、模压后烧结成型制得成品,解决了现有技术中碳化硅韧性差、易脆断的缺陷,又使得产品具有一定的磁性能。

权利要求 :

1.一种有磁性的机械密封件摩擦副的制备方法,其特征在于:包括以下步骤:(1)按质量份计,取碳化硅微粉100份、纳米碳粉20 35份、粘结剂40份混合得到混合物~料,随后同100份的去离子水、40份的无水乙醇及20份的偶联剂均匀再混合,球磨8‑12小时制得混合浆料;

(2)取10~15份Fe3O4微球,同偶联剂20份、无水乙醇100份分散均匀后,加入上述混合浆料中继续球磨12h,制得浆料;

(3)将步骤(2)中的浆料烘干粉碎后,同25 40份硅颗粒、5份改性氮化硼颗粒混合均匀,~制得混合粉,随后模压成型制得毛坯;

(4)将上述毛坯在保护气体氛围下,升温至2000℃ 2100℃加压15 25MPa,完成烧结,制~ ~得半成品;

(5)所述半成品打磨后,制得成品;

所述改性氮化硼颗粒为表面缺陷h‑BN纳米片,其制备方法如下:取20份b‑BN超声波分散12h于100份的乙醇溶液中,随后静置12h,烘干溶液制得产物,将产物置于石英舟中,氮气氛围下100W等离子体处理20min制得。

2.根据权利要求1所述的一种有磁性的机械密封件摩擦副的制备方法,其特征在于:所述硅颗粒为硅单质或二氧化硅,所述粘结剂为酚醛树脂、1‑TBDMS‑吲哚‑6‑硼酸、2‑(三甲基硅基)乙烯硼酸频哪醇酯中的一种。

3.根据权利要求1所述的一种有磁性的机械密封件摩擦副的制备方法,其特征在于:所述偶联剂为(4‑(三乙氧基硅基)苯基)硼酸或(4‑(5,5‑二甲基‑1,3,2‑二氧代苯酐‑2‑基)苯基)三乙氧基硅烷。

说明书 :

一种有磁性的机械密封件摩擦副的制备方法

技术领域

[0001] 本发明涉及机械密封件技术领域,具体为机械密封件中的耐摩擦材料领 域。

背景技术

[0002] 与普通弹簧加载端面密封装置一样,磁力端面密封摩擦副的主要结构也 是由动环和静环组成。与普通弹簧加载端面密封装置不同,磁力端面密封装 置取消了弹簧元件,动环与静环的紧密贴合是靠自身的磁性吸引力达到的。 磁力静环与磁力动环之间依靠磁性吸引力保证静环与动环紧密贴合,防止工 作流体泄漏。与普通弹性加载端面密封相比,磁力端面密封的主要优点是结 构元件少,紧凑,安装方便。以磁力代替弹性元件的弹性力,克服了由制 造、安装误差以及工作过程中轴向位移带来的影响而使接触负荷变化大的问 题。密封界面接触负荷可以设计得较小,且分布均匀。因此,磁力端面密封 装置工作能力较高,工作更为可靠。
[0003] 中国专利CN111306303A公开了一种机械密封用磁力端面摩擦副的制造 方法,以镶嵌了四氧化三铁的聚四氟乙烯材料为摩擦副动环,以掺入四氧化 三铁的碳化硅粉体为摩擦副静环,该方法虽然操作简单,但存在四氧化三铁 分布不均匀、磁性弱等缺点。

发明内容

[0004] 本发明的目的在于提供一种有磁性的机械密封件摩擦副的制备方法,解 决了背景技术中所提出的问题。
[0005] 为实现上述目的,本发明提供如下技术方案:一种有磁性的机械密封件 摩擦副的制备方法,其特征在于:包括以下步骤:
[0006] (1)按碳化硅微粉100份(质量份,下同)、纳米碳粉20~35份、粘 结剂40份混合得到混合物料,随后同100份的去离子水、40份的无水乙醇 及20份的偶联剂均匀再混合,球磨8‑12小时制得混合浆料;
[0007] (2)取10~15份Fe3O4微球,同偶联剂20份、无水乙醇100份分散均 匀后,加入上述混合浆料中继续球磨12h,制得浆料;
[0008] (3)将步骤(2)中的浆料烘干粉碎后,同25~40份硅颗粒、5份改性 氮化硼颗粒混合均匀,制得混合粉,随后模压成型制得毛坯;
[0009] (4)将上述毛坯在保护气体氛围下,升温至2000℃~2100℃加压 15~25MPa,完成烧结,制得半成品;
[0010] (5)所述半成品打磨后,制得成品。
[0011] 作为优选,所述硅颗粒为硅单质或二氧化硅,所述粘结剂为酚醛树脂、 1‑TBDMS‑吲哚‑6‑硼酸、2‑(三甲基硅基)乙烯硼酸频哪醇酯中的一种。
[0012] 作为优选,所述改性氮化硼颗粒为表面缺陷h‑BN纳米片,其制备方法 如下:
[0013] 取20份b‑BN超声波分散12h于100份的乙醇溶液中,随后静置12h, 烘干溶液制得产物,将产物置于石英舟中,氮气氛围下100W等离子体处理 20min制得。
[0014] 作为优选,所述改性氮化硼颗粒为海葵状BN/GO纳米微球,其制备方 法如下:
[0015] 取30份上述表面缺陷h‑BN纳米片在100份水溶液中分散均匀,另取 30份GO在100份水溶液中分散均匀,将二者混合制得搅拌30min后转移至 水热反应釜中,加热至160摄氏度下反应24h制得。
[0016] 作为优选,所述偶联剂为(4‑(三乙氧基硅基)苯基)硼酸或(4‑(5,5‑ 二甲基‑1,3,2‑二氧代苯酐‑2‑基)苯基)三乙氧基硅烷。
[0017] 作为优选,所述Fe3O4微球是硅负载Fe3O4微球,其制备方法如下:
[0018] (1)取10份纳米SiO2微球,分散于200份的去离子水中,制得溶液 A;
[0019] (2)取25份FeCl3·6H2O,同200份乙二醇、50份醋酸铵、50份醋酸 钠溶液共混后,制得溶液B;
[0020] (3)将溶液A缓缓加入(1ml/s)溶液B中,边加边搅拌,添加完毕后 继续搅拌2h,搅拌结束后放入烘箱,加热至200℃将溶液蒸干留下固体颗 粒;
[0021] (4)上述固体颗粒用水或乙醇清洗后,放入管式炉中在500℃、保护气 体氛围下热处理35分钟,制得硅负载Fe3O4微球。
[0022] 作为优选,所述Fe3O4微球是表面刻蚀Fe3O4微球,其制备方法如下:
[0023] (1)采用溶剂热法,将20份FeCl3·6H2O、60份醋酸钠同200份乙二醇 共混后,加入5份聚丙烯酸(重均分子量2000~2500)继续搅拌12h,转移 至水热反应釜中90℃加热2h制得Fe3O4微球;
[0024] (2)Fe3O4微球经去离子水洗涤后,取50质量份分散于200份的去离 子水中,随后滴加60质量份的4‑硼邻苯二甲酸搅拌2‑3h,经磁选收集制得 表面刻蚀Fe3O4微球。
[0025] 与现有技术相比,本发明的有益效果如下:
[0026] 1、采用含硼的偶联剂和粘结剂,促进了Fe3O4微球的分散,同时引入硼 原子提升了产品的韧性;
[0027] 2、采用表面缺陷h‑BN纳米片,促进了纳米片在粉末中的分散,方便负 载Fe3O4微球等三维粒子,以及便于氧化石墨烯(GO)同其粘结,制得海葵 状纳米微球,实现了微裂纹韧化;
[0028] 3、制备了硅负载Fe3O4微球,提升了微球在粉体中的分散性能,且负载 的硅可以同碳粉继续反应,提升了增韧效果;制备了表面刻蚀Fe3O4微球, 实现了陶瓷材料的微裂纹韧化;
[0029] 4、Fe3O4微球的引入使得摩擦副具有磁性,以磁力辅助弹性元件的弹 力,克服了由制造、安装误差以及工作过程中轴向位移带来的影响而使接触 负荷变化大的问题,提升了产品的抱紧力。

具体实施方式

[0030] 为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了 解,下面结合具体实施方式,进一步阐述本发明。
[0031] 本发明为一种有磁性的机械密封件摩擦副的制备方法,包括以下步骤
[0032] (1)按碳化硅微粉100份(质量份,下同)、纳米碳粉20~35份、粘 结剂40份混合得到混合物料,随后同100份的去离子水、40份的无水乙醇 及20份的偶联剂均匀再混合,球磨8‑12小时制得混合浆料;
[0033] (2)取10~15份Fe3O4微球,同偶联剂20份、无水乙醇100份分散均 匀后,加入上述混合浆料中继续球磨12h,制得浆料;
[0034] (3)将步骤(2)中的浆料烘干粉碎后,同25~40份硅颗粒、5份改性 氮化硼颗粒混合均匀,制得混合粉,随后模压成型制得毛坯;
[0035] (4)将上述毛坯在保护气体氛围下,升温至2000℃~2100℃加压 15~25MPa,完成烧结,制得半成品;
[0036] (5)所述半成品打磨后,制得成品。
[0037] 以下是具体实施例,试验方法参考前述说明书:
[0038]
[0039] 由上面可以看出,Fe3O4微球的加入使得产品具有一定的磁性,且对密 度、抗弯强度等有一定的提升作用。发明人猜测,这是因为Fe3O4微球的加 入等于在原材料中异相成核,且球体在原材料中形成了微裂纹,从而在一定 程度上增韧了产品。
[0040] 上述实施例中,偶联剂默认为硅烷偶联剂KH560,本领域技术人员在实 施过程中,可以根据本领域相关技术知识,简单地替换偶联剂的牌号。此 外,本发明的饱和磁化强度是根据电磁感应,测量样品内部或样品周围的磁 通量来确定的。
[0041] 作为优选,所述硅颗粒为硅单质或二氧化硅,所述粘结剂为酚醛树脂 (以下简称粘结剂1#)、1‑TBDMS‑吲哚‑6‑硼酸(CAS号:913835‑60‑6,以 下简称粘结剂2#)、2‑(三甲基硅基)乙烯硼酸频哪醇酯(CAS号:126688‑ 99‑1,以下简称粘结剂3#)中的一种。
[0042]
[0043]
[0044] 从实施例4和5中我们可以看出,硅单质和二氧化硅对产品的性能提升 区别不大,但整体来说,硅单质还是更为有利的。
[0045] 从实施例6、7、8中我们可以看出,粘结剂2#和粘结剂3#对产品的性 能,特别是抗弯、断裂等性能具有较好的提升作用,我们猜测,粘结剂中含 有硼元素,一定程度上提升了产品的抗断裂性能。此外,二者分子量较酚醛 树脂(本发明选用的是残炭率为54‑56%的热固型酚醛树脂)较小,在烧结 的过程中,高温分解出的气体更少,从而降低了陶瓷材料的气孔率。为了减 少变量,后续我们采用粘结剂3#作为本发明的粘结剂,后面不再赘述。
[0046] 作为优选,所述改性氮化硼颗粒为表面缺陷h‑BN纳米片,其制备方法 如下:
[0047] 取20份b‑BN超声波分散12h于100份的乙醇溶液中,随后静置12h, 烘干溶液制得产物,将产物置于石英舟中,氮气氛围下100W等离子体处理 20min制得。
[0048] 作为优选,所述改性氮化硼颗粒为海葵状BN/GO纳米微球,其制备方 法如下:
[0049] 取30份上述表面缺陷h‑BN纳米片在100份水溶液中分散均匀,另取 30份GO在100份水溶液中分散均匀,将二者混合制得搅拌30min后转移至 水热反应釜中,加热至160摄氏度下反应24h制得。
[0050] 以上样品的形貌均可通过本领域的SEM、TEM、HTEM等常规检测方 式观察到。
[0051]
[0052]
[0053] 从上表中可以看出,不论是表面缺陷h‑BN纳米片还是海葵状BN/GO纳 米微球,对产品的抗弯强度、断裂韧性等参数都有较大的提升,我们认为, 同市售氮化硼相比,其为多层式的结构,而表面缺陷氮化硼则提供了一定的 空位,可以使反应未完成的硅单质进入空位内,从而减少了其在碳化硅微粉 的表面聚集,阻碍进一步反应。而海葵状BN/GO纳米微球不但能达到上述 目的,而且其海葵状的触手,提供了多个微裂纹,从而提升了产品的韧性。 此外,我们猜测,Fe3O4微球可以进入表面缺陷h‑BN纳米片还是海葵状 BN/GO纳米微球上的缺陷处或空隙处,进一步提升了Fe3O4微球的分散效 果,从而达到增强磁化性能的目的。
[0054] 作为优选,所述偶联剂为(4‑(三乙氧基硅基)苯基)硼酸(以下简称 偶联剂2#)或(4‑(5,5‑二甲基‑1,3,2‑二氧代苯酐‑2‑基)苯基)三乙氧基硅 烷(以下简称偶联剂3#)。
[0055] 偶联剂(4‑(三乙氧基硅基)苯基)硼酸的制备方法如下:
[0056] 以氧化硼与异丙醇为原料,在100‑120℃条件下加热4h,制得硼酸三异 丙酯。随后同四氯硅烷、对二溴苯在惰性气体氛围下,‑78℃低温环境下反应 20min制得(4‑(三氯硅基)苯基)硼酸。
[0057] 在三颈烧瓶中以石油醚为溶剂,加入1mol的(4‑(三氯硅基)苯基)硼 酸,搅拌至溶解,通入氮气做保护气体。另取烧杯,加入2.1mol的乙醇和0.6mol的乙醇钠加热至40℃,随后缓慢加入至三颈烧瓶中,对反应产物进行 收集,得到(4‑(三乙氧基硅基)苯基)硼酸,产率约为96%,纯度约 97%。经核磁与红外光谱表征,可以确定上述产品的结构。
[0058] (4‑(5,5‑二甲基‑1,3,2‑二氧代苯酐‑2‑基)苯基)三乙氧基硅烷的制备方 法如下:以二氯甲烷为溶剂,常温下溶解新戊二醇同上述的(4‑(三氯硅 基)苯基)硼酸,并搅拌12h反应制得。产率约为93%,纯度约96%。经核 磁与红外光谱表征,可以确定上述产品的结构。
[0059] 项目 实施例9 实施例11 实施例12 实施例13碳化硅微粉 100 100 100 100
纳米碳粉 35 35 35 35
粘结剂 40 40 40 40
常规市售偶联剂 20 / / /
偶联剂2# / 20 / 10
偶联剂3# / / 20 10
Fe3O4微球 15 15 15 15
硅单质 40 40 40 40
海葵状BN/GO纳米微球 5 5 5 5
3
体积密度(g/cm) 3.21 3.22 3.24 3.22
显气孔率(%) 0.15 0.15 0.13 0.15
硬度(HRA) 95 95 95 95
抗弯强度(MPa) 544 564 589 552
导热系数(W/m·K) 117 115 120 117
1/2
断裂韧性(MPaM ) 4.02 4.07 4.12 4.11
饱和磁化强度(emu/g) 60.10 60.13 60.12 60.11
[0060] 根据上表我们可以看出,2#和3#偶联剂同常规市售的偶联剂相比,对产 品的力学性能提升程度都比较大,且3#偶联剂表现的更为明显。
[0061] 作为优选,所述Fe3O4微球是硅负载Fe3O4微球,其制备方法如下:
[0062] (1)取10份纳米SiO2微球,分散于200份的去离子水中,制得溶液 A;
[0063] (2)取25份FeCl3·6H2O,同200份乙二醇、50份醋酸铵、50份醋酸 钠溶液共混后,制得溶液B;
[0064] (3)将溶液A缓缓加入(1ml/s)溶液B中,边加边搅拌,添加完毕后 继续搅拌2h,搅拌结束后放入烘箱,加热至200℃将溶液蒸干留下固体颗 粒;
[0065] (4)上述固体颗粒用水或乙醇清洗后,放入管式炉中在500℃、保护气 体氛围下热处理35分钟,制得硅负载Fe3O4微球。
[0066] 作为优选,所述Fe3O4微球是表面刻蚀Fe3O4微球,其制备方法如下:
[0067] (1)采用溶剂热法,将20份FeCl3·6H2O、60份醋酸钠同200份乙二醇 共混后,加入5份聚丙烯酸(重均分子量2000~2500)继续搅拌12h,转移 至水热反应釜中90℃加热2h制得Fe3O4微球;
[0068] (2)Fe3O4微球经去离子水洗涤后,取50质量份分散于200份的去离 子水中,随后滴加60质量份的4‑硼邻苯二甲酸搅拌2‑3h,经磁选收集制得 表面刻蚀Fe3O4微球。
[0069]项目 实施例12 实施例14 实施例15 实施例16
碳化硅微粉 100 100 100 100
纳米碳粉 35 35 35 35
粘结剂 40 40 40 40
偶联剂3# 20 20 20 20
Fe3O4微球 15 / / 5
硅负载Fe3O4微球 / 15 / 5
表面刻蚀Fe3O4微球 / / 15 5
硅单质 40 40 40 40
海葵状BN/GO纳米微球 5 5 5 5
3
体积密度(g/cm) 3.24 3.24 3.24 3.24
显气孔率(%) 0.13 0.10 0.10 0.12
硬度(HRA) 95 95 95 95
抗弯强度(MPa) 589 623 592 595
导热系数(W/m·K) 120 133 132 149
1/2
断裂韧性(MPaM ) 4.12 4.18 4.17 4.14
饱和磁化强度(emu/g) 60.12 75.22 73.09 73.27
[0070] 从上表中我们可以发现,硅负载的Fe3O4微球在代替普通的Fe3O4微球 后,不论在力学性能还是磁性能方面,都有了较大的提升。
[0071] 以上显示和描述了本发明的基本原理和主要特征和本发明的优 点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例 的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其 他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例 看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求 而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和 范围内的所有变化囊括在本发明内。不应将权利要求中的任何标记视 为限制所涉及的权利要求。
[0072] 此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实 施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起 见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也 可以经适当组合,形成本领域技术人员可以理解的其他实施方式。