一种多场耦合超快速烧结制备陶瓷材料的方法转让专利

申请号 : CN202111244701.6

文献号 : CN113831144B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 徐晨白彬

申请人 : 中国工程物理研究院材料研究所

摘要 :

本发明提供一种多场耦合超快速烧结制备陶瓷材料的方法,属于陶瓷材料的制备技术领域。所述方法为将陶瓷粉料或者陶瓷生坯装入壁厚为1~20mm的超薄石墨模具,通过对超薄石墨模具施加电源和微波辅助加热或感应辅助加热多重热源,让陶瓷粉料或者陶瓷生坯在多重热源以及超薄石墨模具的综合作用下整体以500~2000℃/min的升温速率超快速升温,达到超快速跳过晶粒快速生长温区、直接进入烧结致密化温区的效果,烧结完成后降温脱模,将烧结成型的块体从超薄石墨模具中取出。本发明升温速率最高可达2000℃/min,致密化的烧结温度比普通无压烧结温度低500℃及以上,可有效减少温度场的温差,减少大尺寸样品因温度不均一造成的开裂,有利于大尺寸样品的烧结致密化。

权利要求 :

1.一种多场耦合超快速烧结制备陶瓷材料的方法,其特征在于,所述方法为将粒径为

20nm~10μm的单一陶瓷粉料或者由粒径为20nm~10μm的单一陶瓷粉料经凝胶注膜成型后再采用冷等静压制备所得或经模压成型的陶瓷生坯,装入壁厚为1~20mm的超薄石墨模具,通入烧结气氛后,通过对超薄石墨模具施加电流和微波辅助加热,或施加电流和感应辅助加热,形成多重热源,让陶瓷粉料或陶瓷生坯在多重热源以及超薄石墨模具的综合作用下整体以500~2000℃/min的升温速率超快速升温至烧结温度为600~1000℃,烧结保温时间持续30s,使所述陶瓷粉料或者陶瓷生坯超快速跳过晶粒超快速生长温区直接进入烧结致密化温区进行烧结,烧结完成后以300℃/min降温脱模后从超薄石墨模具中取出;所述单一陶瓷粉料为ZrO2或UO2或Al2O3;所述烧结气氛为氢气、氢氩混合气、氮气、氢氮混合气中的一种。

2.如权利要求1所述一种多场耦合超快速烧结制备陶瓷材料的方法,其特征在于,所述对超薄石墨模具施加电流为脉冲电流,直接电流或交流电流中的一种。

3.如权利要求1所述一种多场耦合超快速烧结制备陶瓷材料的方法,其特征在于,所述冷等静压的压力为100~300Mpa,保压时间为1~20min。

4.如权利要求3所述一种多场耦合超快速烧结制备陶瓷材料的方法,其特征在于,所述模压成型的模压压力为2~10Mpa,保压时间为2~5min。

说明书 :

一种多场耦合超快速烧结制备陶瓷材料的方法

技术领域

[0001] 本发明属于陶瓷材料的制备技术领域,具体为一种多场耦合超快速烧结制备陶瓷材料的方法。

背景技术

[0002] 快速烧结是近年来国际上陶瓷烧结技术的主流趋势。目前符合超快速烧结要求的烧结技术包括放电等离子烧结(SPS)、闪烧(FS)和微波烧结等。等离子体是解离的高温导电气体,反应活性较高的状态。由于等离子体温度一般在4000~10999℃,其气态分子和原子处于高度活化状态,且等离子气体内离子化程度很高,这些性质使得等离子体成为一种非常重要的材料制备和加工技术。该烧结法利用脉冲电流使得颗粒均匀地自身产生焦耳热并使颗粒表面活化成为放电等离子体,加速扩散过程,使得陶瓷颗粒之间更容易进行桥接进而在较低温度下超快速烧结粉末致密。
[0003] SPS技术具有超快速、低温、高效率等优点,可用来制备金属、陶瓷、纳米材料、非晶材料、耦合材料、梯度材料等,因此近年来得到了学界和业界的大量关注和研究。其中研究最多的是功能材料,包括热电材料、磁性材料、功能梯度材料、耦合功能材料和纳米功能材料等。此外,对SPS制备非晶合金、形状记忆合金、金刚石等也作了尝试。目前在国外,尤其是日本开展了较多用SPS制备新材料的研究,部分产品已投入生产。然而,SPS的烧结基础机理目前尚不完全清楚,需要进行大量实践与理论研究来完善。目前的SPS由于脉冲电流的容量限制以及温度场分布不均匀,尚无法烧结大于300mm尺寸的产品做到完全致密。而且,SPS目前的设计尚无法制作形状复杂的产品。另外,SPS的价格较为昂贵,虽然有工业化的产品,但是烧结成本较高,目前尚较少应用于实际陶瓷产品的生产。
[0004] 闪烧由美国科罗拉多大学(University of Colorado)的Rishi Raj教授课题组于2010年首次在3YSZ中发现。研究表明,对具有特定电学性质的陶瓷材料进行加热并加载恒定电压,当炉温升至特征温度时,材料会出现电致发光现象并快速致密化(图1)。相比其它烧结技术,闪烧具有烧结温度低(通常比无压烧结温度低400℃以上)和时间短的特点,可有效提高烧结效率、抑制晶粒粗化,具有较为广阔的应用前景。早期的闪烧研究集中在氧化物陶瓷,如Al2O3、Y2O3、TiO2等。随后的研究发现,闪烧技术也可以应用于碳化物和硼化物陶瓷,如SiC、B4C、ZrB2等。然而闪烧由于直流电场分布很难达到完全的均一,因此很难制备出致密度均一的大尺寸样品。
[0005] 微波烧结是一种利用微波加热来对材料进行烧结的方法。微波烧结技术是利用材料吸收微波能转化为内部分子的动能和热能,使得材料整体均匀加热至一定温度而实现致密化烧结的一种方法,是快速制备高质量的新材料和制备具有新的性能的传统材料的重要技术手段。同常规烧结方法相比,微波烧结具有快速加热、烧结温度低、细化材料组织、改进材料性能、安全无污染以及高效节能等优点,因而被称为新一代烧结方法。然而,微波烧结对样品的选择性比较高,在制备材料上有局限性。
[0006] 现有烧结陶瓷材料的制备,需要在高达1400℃~1800℃温度下无压烧结5~8小时以上,以便达到95%以上的致密度。放电等离子场辅助烧结进行氧化物和非氧化物陶瓷的制备所需的烧结温度在1100℃以上,升温速率在100~300℃/min。过高的烧结温度和较长的烧结时间,通常会使陶瓷的晶粒生长到微米级尺寸,进而导致其的使用性能下降。同时,放电等离子场辅助烧结往往存在电场分布不均的问题,一般只能制备较小的样品(直径尺寸在30cm以内),大尺寸的样品制备存在着烧结致密度不够均匀导致开裂或者应力集中或者性能不均匀。

发明内容

[0007] 本发明的目的在于提供一种多场耦合超快速烧结制备陶瓷材料的方法,本发明通过多种加热场耦合加热,同时配合超薄石墨模具,可实现500~2000℃/min的整体超快速升温,达到超快速跳过晶粒超快速生长温区、直接进入烧结致密化温区的效果,可有效减少温度场的温差,提高温度场的均匀性,减少大尺寸样品因温度不均一造成的开裂现象,有利于大尺寸样品的烧结致密化。
[0008] 本发明目的通过以下技术方案来实现:
[0009] 一种多场耦合超快速烧结制备陶瓷材料的方法,所述方法为将陶瓷粉料或者陶瓷生坯装入壁厚为1~20mm的超薄石墨模具,通过对超薄石墨模具施加电源和微波辅助加热或感应辅助加热等多重热源,让陶瓷粉料或陶瓷生坯在多重热源以及超薄石墨模具的综合作用下整体以500~2000℃/min的升温速率超快速升温,超快速跳过晶粒超快速生长温区,直接进入烧结致密化温区进行烧结,烧结完成后降温脱模,将烧结成型的块体从石墨模具中取出。
[0010] 进一步,所述对石墨模具施加电源为脉冲电流,直接电流或交流电流中的一种。
[0011] 进一步,所述陶瓷粉料的粒径为20nm~10μm。
[0012] 进一步,所述烧结温度为25~1000℃,烧结时间持续0~600s。
[0013] 进一步,所述陶瓷生坯为将陶瓷粉料经模压成型或凝胶注膜成型后再采用冷等静压在压力100~300Mpa,保压时间1~20min进行压坯得到。
[0014] 进一步,所述模压成型的模压压力为2~10Mpa,保压时间为2~5min。
[0015] 进一步,所述烧结气氛为空气、氢气、氢氩混合气、氮气、氢氮混合气中的一种。
[0016] 本发明使用多场耦合烧结技术,通过外场(微波/感应加热)辅助脉冲/直流/交流加热,结合超薄石墨模具,可显著提高温度场的均匀性,提高样品的升温速率,超快速跳过晶粒快速生长温区,直接进入烧结致密化的温区,降低氧化物或者非氧化物陶瓷的烧结温度,缩短烧结时间,同时可有效细化陶瓷材料的晶粒并调控相结构和微观结构,提高材料的致密度和微结构均一性,达到使用要求。
[0017] 另外,本申请是提供了一种多场耦合超快速制备陶瓷材料的方法,在对陶瓷材料施加电源进行烧结的同时加入了感应辅助加热和微波辅助加热,而对于感应辅助加热和微波辅助加热的具体实现方式并不做限定。
[0018] 与现有技术相比,本发明具有以下有益效果:
[0019] 本发明提供的一种多场耦合场超快速烧结制备陶瓷材料的方法,该烧结法利用超快速升温可直接达到致密化温区,缩短烧结时间的原理,通过大脉冲/直流/交流加热超薄石墨模具对材料进行超快速升温,进而在较低的炉温下迅速内完成烧结,避免无效加热,烧结温度比常规无压烧结低500℃及以上,可有效降低烧结温度,缩短烧结时间,提高烧结制备的陶瓷块体的致密度。同时,多种加热场耦合和超薄石墨模具的综合作用下,可有效减少温度场的温差,提高温度场的均匀性,减少大尺寸样品因温度不均一造成的开裂现象,有利于大尺寸样品的烧结致密化。

附图说明

[0020] 图1为实施例1制备的ZrO2陶瓷芯块的微观形貌;
[0021] 图2为实施例2制备的UO2芯块的微观形貌;
[0022] 图3为实施例3制备的Al2O3陶瓷芯块的微观形貌;
[0023] 图4为对比例1制备的ZrO2陶瓷芯块的微观形貌;
[0024] 图5为对比例2制备的ZrO2陶瓷芯块的微观形貌。

具体实施方式

[0025] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用限定本发明。
[0026] 实施例1
[0027] 以ZrO2陶瓷粉末(粉体粒径约为100nm)为原料,用凝胶注膜成型法将100g原料粉制成圆环,放入壁厚为15mm的石墨模具中,并通入氩气,在对ZrO2陶瓷坯体进行感应加热升温的同时启动电源在超薄石墨模具两端施加脉冲电场,让ZrO2陶瓷坯体在施加脉冲电流(2000A)及感应辅助(10kW)加热的条件下升温进行烧结。
[0028] 其中,施加脉冲电流及感应辅助加热条件下的升温速率为1000℃/min,温度升高到600℃时保持30s可以获得结构致密的ZrO2陶瓷块体。烧结完成后,以300℃/min降温脱模,降温得到ZrO2陶瓷芯块。
[0029] 利用扫描电子显微镜二次电子成像对以ZrO2陶瓷芯块微观形貌进行表征,结果如图1所示:致密度超过97%。
[0030] 实施例2
[0031] 以UO2粉末(粉体粒径约为1μm)为原料,将20g原料粉放入壁厚为2mm的超薄石墨模具中,并通入氢气,在对UO2纳米粉末进行感应加热升温的同时启动电源在石墨模具两端施加交流电场(140V,1A,50Hz),让UO2纳米粉末在施加交流电电流及感应辅助(5kW)加热的条件下升温进行烧结。
[0032] 其中,施加交流电电流及感应辅助加热条件下的升温速率为800℃/min,温度升高到温度700℃时保持30s可以获得结构致密的以UO2陶瓷块体。烧结完成后,以300℃/min降温脱模,降温得到UO2芯块。
[0033] 利用扫描电子显微镜二次电子成像对UO2芯块微观形貌进行表征,结果如图2所示:致密度超过95%。
[0034] 实施例3
[0035] 以Al2O3粉末(粉体粒径约为200nm)为原料。将原料粉放入球磨罐,并加入二氧化锆研磨球,15mL乙醇,150r/min转速下球磨混料15h。
[0036] 混料后,将浆料在90℃温度下加热搅拌并干燥;对干燥后的混合粉进行模压成型,以4MPa轴向压力压制成质量约为100g的素坯,然后采用冷等静压在压力200Mpa,保压时间10min进行压坯。
[0037] 将冷等静压后的坯体放入壁厚为10mm的石墨模具中,并通入氮气,在对Al2O3粉末进行加热升温的同时启动电源在石墨模具两端施加直流电(200V,5A),并同时对石墨模具进行微波辅助加热,让Al2O3粉末在施加直流电流及微波辅助(2.45GHz)加热的条件下升温进行烧结。
[0038] 其中,施加直流电流及微波辅助加热条件下的升温速率为1500℃/min,温度升高到温度700℃时保持30s可以获得结构致密的Al2O3块体。烧结完成后,以300℃/min降温脱模,降温得到Al2O3陶瓷芯块。
[0039] 利用扫描电子显微镜二次电子成像对Al2O3陶瓷芯块微观形貌进行表征,结果如图3所示:致密度超过95%,晶粒尺寸在1μm左右。
[0040] 对比例1
[0041] 以ZrO2陶瓷粉末(粉体粒径约为100nm)为原料,用凝胶注膜法将100g原料粉制成圆环,然后放入壁厚为10mm的超薄石墨模具中,并通入氩气,对石墨模具两端施加脉冲电场(2000A),让ZrO2陶瓷生坯以100℃/min的速度升温到1000℃后保温30s。
[0042] 利用扫描电子显微镜二次电子成像对以ZrO2陶瓷芯块微观形貌进行表征,结果如图4所示:致密度90%。
[0043] 对比例2
[0044] 以ZrO2陶瓷粉末(粉体粒径约为100nm)为原料,用凝胶注膜成型法将100g原料粉制成圆环,放入壁厚为45mm的石墨模具中,并通入氩气,在对ZrO2陶瓷坯体进行感应加热升温的同时启动电源在超薄石墨模具两端施加脉冲电场,让ZrO2陶瓷坯体在施加脉冲电流(2000A)及感应辅助(10kW)加热的条件下升温进行烧结。
[0045] 其中,施加脉冲电流及感应辅助加热条件下达到的升温速率为100℃/min,温度升高到600℃时保持30s可以获得结构致密的ZrO2陶瓷块体。烧结完成后,以300℃/min降温脱模,降温得到ZrO2陶瓷芯块。
[0046] 利用扫描电子显微镜二次电子成像对以ZrO2陶瓷芯块微观形貌进行表征,结果如图5所示:致密度为85%。
[0047] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。