一种MOR沸石分子筛及其制备方法转让专利

申请号 : CN202111261738.X

文献号 : CN113845128B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 闫文付吕姣姣王彬宇王云峥于吉红徐如人

申请人 : 吉林大学

摘要 :

本发明提供了一种MOR沸石分子筛及其制备方法,属于分子筛技术领域。本发明以天然辉沸石为原料,其成分硅铝化合物为主,其成分中SiO2+Al2O3占总质量分数的79%以上,此外,还含有少量其他金属氧化物;本发明对天然辉沸石进行铵离子交换,能够除去天然辉沸石中的Ca2+,提高天然辉沸石的反应活性和产物结晶度;本发明通过碱活化反应,可以将天然辉沸石中高配位的硅铝成分解聚成低配位的可以作为分子筛合成原料的高活性硅铝化合物,在晶化反应时能够提高MOR沸石分子筛的结晶度。实施例结果表明,本发明所得MOR沸石分子筛的相对结晶度为92~100%,形貌为规则的六边形晶体。

权利要求 :

1.一种MOR沸石分子筛的制备方法,包括以下步骤:(1)将天然辉沸石与可溶性铵盐水溶液混合,进行离子交换,固液分离后得到离子交换辉沸石;

(2)将所述离子交换辉沸石进行煅烧,得到H型天然辉沸石;

(3)将所述H型天然辉沸石与氢氧化钠混合后研磨,进行碱活化反应,得到活化辉沸石;

所述碱活化反应的温度为140~220℃,时间为1~4h;

所述碱活化反应在密闭条件下进行;

(4)将所述活化辉沸石与硅溶胶、水混合,得到反应凝胶,所述反应凝胶进行水热晶化反应,得到MOR沸石分子筛。

2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中可溶性铵盐为NH4Cl、NH4NO3、NH4HCO3和(NH4)2SO4中的一种或几种;

所述可溶性铵盐的摩尔浓度为0.1~0.4mol/L。

3.根据权利要求1或2所述的制备方法,其特征在于,所述离子交换的温度为60~100℃;

所述离子交换的次数为2次,单次离子交换的时间为2~6h。

4.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中煅烧的温度为500~

700℃,时间为2~8h。

5.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中H型天然辉沸石与氢氧化钠的质量比为1:0.375~0.68。

6.根据权利要求1所述的制备方法,其特征在于,所述步骤(4)中,所述反应凝胶的成分包括SiO2、Al2O3、Na2O和H2O;

所述Al2O3与SiO2的摩尔比为1:11.8~20;

所述Al2O3与Na2O的摩尔比为1:6.19~10.88;

所述Al2O3与H2O的摩尔比为1:360~1160;

所述活化辉沸石与硅溶胶的质量比为1:1.53~4.06。

7.根据权利要求1或6所述的制备方法,其特征在于,所述步骤(4)中,所述硅溶胶替换为白炭黑。

8.根据权利要求1所述的制备方法,其特征在于,所述水热晶化反应的温度为140~200℃,时间为30~72h。

9.权利要求1~8任意一项所述制备方法制备得到的MOR沸石分子筛。

说明书 :

一种MOR沸石分子筛及其制备方法

技术领域

[0001] 本发明涉及分子筛技术领域,特别涉及一种MOR沸石分子筛及其制备方法。

背景技术

[0002] MOR型分子筛,是碱金属硅铝酸盐,化学式为4Na2O·4A12O3·40SiO2·24H2O,由平行的12元环和交叉的8元环组成。由于其内表面含有丰富的Bronsted位点和低的硅铝比,MOR沸石分子筛在催化领域有着重要的应用,比如甲醇制烯烃(MTO)、二甲醚羰基化及吸附等领域。
[0003] 目前,合成MOR型分子筛的原料通常是硅铝化学原料,这种合成方法造价昂贵。利用天然矿物合成MOR分子筛是一种替代方案,但是目前还没有相关报道。
[0004] 天然辉沸石广泛分布在我国广西、湖南等地,价格低廉。天然辉沸石是一种含水架状构造铝硅酸盐矿物,由于其内部含有丰富的孔道,具有很大的表面积。但是,天然辉沸石2+
纯度低,含有较多Ca ,这限制了其在分子筛中的进一步应用。

发明内容

[0005] 有鉴于此,本发明目的在于提供一种MOR沸石分子筛及其制备方法,本发明以天然辉沸石为原料,能够得到具有高结晶度的MOR沸石分子筛。
[0006] 为了实现上述发明目的,本发明提供以下技术方案:
[0007] 本发明提供了一种MOR沸石分子筛的制备方法,包括以下步骤:
[0008] (1)将天然辉沸石与可溶性铵盐水溶液混合,进行离子交换,固液分离后得到离子交换辉沸石;
[0009] (2)将所述离子交换辉沸石进行煅烧,得到H型天然辉沸石;
[0010] (3)将所述H型天然辉沸石与氢氧化钠混合后研磨,进行碱活化反应,得到活化辉沸石;
[0011] (4)将所述活化辉沸石与硅溶胶、水混合,得到反应凝胶,所述反应凝胶进行水热晶化反应,得到MOR沸石分子筛。
[0012] 优选的,所述步骤(1)中可溶性铵盐为NH4Cl、NH4NO3、NH4HCO3和(NH4)2SO4中的一种或几种;
[0013] 所述可溶性铵盐的摩尔浓度为0.1~0.4mol/L。
[0014] 优选的,所述离子交换的温度为60~100℃;
[0015] 所述离子交换的次数为2次,单次离子交换的时间为2~6h。
[0016] 优选的,所述步骤(2)中煅烧的温度为500~700℃,时间为2~8h。
[0017] 优选的,所述步骤(3)中H型天然辉沸石与氢氧化钠的质量比为1:0.375~0.68。
[0018] 优选的,所述步骤(3)中碱活化反应的温度为140~220℃,时间为1~4h;所述碱活化反应在密闭条件下进行。
[0019] 优选的,所述步骤(4)中,所述反应凝胶的成分包括SiO2、Al2O3、Na2O和H2O;
[0020] 所述Al2O3与SiO2的摩尔比为1:11.8~20;
[0021] 所述Al2O3与Na2O的摩尔比为1:6.19~10.88;
[0022] 所述Al2O3与H2O的摩尔比为1:360~1160;
[0023] 所述活化辉沸石与硅溶胶的质量比为1:1.53~4.06。
[0024] 优选的,所述步骤(4)中,所述硅溶胶替换为白炭黑。
[0025] 优选的,所述水热晶化反应的温度为140~200℃,时间为30~72h。
[0026] 本发明提供了上述制备方法制备得到的MOR沸石分子筛。
[0027] 本发明提供了一种MOR沸石分子筛的制备方法,包括以下步骤:(1)将天然辉沸石与可溶性铵盐水溶液混合,进行离子交换,固液分离后得到离子交换辉沸石;(2)将所述离子交换辉沸石进行煅烧,得到H型天然辉沸石;(3)将所述H型天然辉沸石与氢氧化钠混合后研磨,进行碱活化反应,得到活化辉沸石;(4)将所述活化辉沸石与硅溶胶、水混合,得到反应凝胶,所述反应凝胶进行水热晶化反应,得到MOR沸石分子筛。本发明以天然辉沸石为原料,其成分以硅铝化合物为主,其成分中SiO2+Al2O3占总质量分数的79%以上,此外,还含有2
少量其他金属氧化物;本发明对天然辉沸石进行铵离子交换,能够除去天然辉沸石中的Ca+
,提高天然辉沸石的反应活性和产物结晶度;本发明通过碱活化反应,可以将天然辉沸石中高配位的硅铝成分解聚成低配位的可以作为分子筛合成原料的高活性硅铝化合物,在晶化反应时能够提高MOR沸石分子筛的结晶度。实施例结果表明,本发明所得MOR沸石分子筛的相对结晶度为92~100%,形貌为规则的六边形晶体。

附图说明

[0028] 图1为实施例及对比例所得产品的XRD图谱;
[0029] 图2为实施例1所得产品的SEM电镜图;
[0030] 图3为实施例2所得产品的SEM电镜图;
[0031] 图4为实施例3所得产品的SEM电镜图;
[0032] 图5为实施例4所得产品的SEM电镜图;
[0033] 图6为实施例5所得产品的SEM电镜图;
[0034] 图7为对比例1所得产品的SEM电镜图;
[0035] 图8为对比例2所得产品的SEM电镜图。

具体实施方式

[0036] 本发明提供了一种MOR沸石分子筛的制备方法,包括以下步骤:
[0037] (1)将天然辉沸石与可溶性铵盐水溶液混合,进行离子交换,固液分离后得到离子交换辉沸石;
[0038] (2)将所述离子交换辉沸石进行煅烧,得到H型天然辉沸石;
[0039] (3)将所述H型天然辉沸石与氢氧化钠混合后研磨,进行碱活化反应,得到活化辉沸石;
[0040] (4)将所述活化辉沸石与硅溶胶、水混合,得到反应凝胶,所述反应凝胶进行水热晶化反应,得到MOR沸石分子筛。
[0041] 本发明将天然辉沸石与可溶性铵盐水溶液混合,进行离子交换,固液分离后得到离子交换辉沸石。本发明对所述天然辉沸石的来源没有特殊的要求,使用本领域常规市售的天然辉沸石即可。作为本发明的一个具体实施例,所述天然辉沸石的十元环孔径大小为,8元环孔径大小为 。在本发明中,所述天然辉沸石成分中SiO2+Al2O3占总质量分数的79%以上。
[0042] 在本发明中,所述可溶性铵盐优选为NH4Cl、NH4NO3、NH4HCO3和(NH4)2SO4中的一种或几种;所述可溶性铵盐的摩尔浓度优选为0.1~0.4mol/L,更优选为0.2~0.3mol/L。本发明对所述可溶性铵盐水溶液的用量没有特殊的要求,能够完全浸没所述天然辉沸石即可。本发明对所述混合的方式没有特殊的要求,使用本领域技术人员熟知的混合方式即可,具体的如搅拌混合。
[0043] 在本发明中,所述离子交换优选在水浴条件下进行。在本发明中,所述离子交换的温度优选为60~100℃,更优选为70~90℃;在本发明中,所述离子交换的次数优选为2次,单次离子交换的时间优选为2~6h,更优选为3~5h。
[0044] 本发明对所述固液分离的方式没有特殊的要求,使用本领域技术人员熟知的固液分离方式即可,具体的如过滤。
[0045] 得到所述离子交换辉沸石后,本发明将所述离子交换辉沸石进行煅烧,得到H型天然辉沸石。在本发明中,所述煅烧优选在空气氛围下中进行。本发明优选使用马弗炉进行所述煅烧。在本发明中,所述煅烧的温度优选为500~700℃,更优选为550~650℃;保温时间优选为2~8h,更优选为4~6h。在本发明中,升温至所述煅烧温度的升温速率优选为2℃/min。
[0046] 得到所述H型天然辉沸石后,本发明将所述H型天然辉沸石与氢氧化钠混合后研磨,进行碱活化反应,得到活化辉沸石。在本发明中,所述H型天然辉沸石与氢氧化钠的质量比优选为1:0.375~0.68,更优选为1:0.4~0.6,进一步优选为1:0.45~0.5。
[0047] 本发明对所述研磨的方式没有特殊的要求,使用本领域技术人员熟知的研磨方式即可。在本发明中,所述研磨后混合物料的粒径优选能通过200目筛。
[0048] 在本发明中,所述碱活化反应的温度优选为140~220℃,更优选为170~200℃;时间优选为1~4h,更优选为2~3h。在本发明中,所述碱活化反应优选在密闭条件下进行。
[0049] 本发明通过所述碱活化反应,可以将天然辉沸石中高配位的硅铝成分解聚成低配位的可以作为分子筛合成原料的高活性硅铝化合物,在晶化反应时能够提高MOR沸石分子筛的结晶度。
[0050] 进一步的,本发明在140~220℃下进行所述碱活化反应,相较传统的高温(600℃以上)原料活化方法,节省了大量的能源。
[0051] 得到所述活化辉沸石后,本发明将所述活化辉沸石与硅溶胶、水混合,得到反应凝胶,所述反应凝胶进行水热晶化反应,得到MOR沸石分子筛。在本发明中,所述反应凝胶的成分包括SiO2、Al2O3、Na2O和H2O;
[0052] 所述Al2O3与SiO2的摩尔比优选为1:11.8~20,更优选为1:14~16;
[0053] 所述Al2O3与Na2O的摩尔比优选为1:6.19~10.88,更优选为1:7~8;
[0054] 所述Al2O3与H2O的摩尔比优选为1:360~1160,更优选为1:500~1000。
[0055] 在本发明中,所述活化辉沸石与硅溶胶的质量比优选为1:1.53~4.06,更优选为1:2.5~3。
[0056] 在本发明中,所述活化辉沸石与水的质量比优选为1:8.32~36.25,更优选为1:12~24。
[0057] 在本发明中,所述混合的方式优选为:先将活化辉沸石与水搅拌混合,再加入硅溶胶。在本发明中,所述搅拌混合优选在室温、密闭的条件下进行,所述搅拌的时间优选为30min。
[0058] 作为本发明的并列方案,所述硅溶胶替换为白炭黑。在本发明中,所述白炭黑的有效成分为SiO2。
[0059] 在本发明中,所述水热晶化反应的温度优选为140~200℃,更优选为160~180℃;时间优选为30~72h,更优选为48~60h。
[0060] 在本发明中,所述水热晶化反应后,本发明优选对所得水热晶化产物进行后处理;所述后处理优选包括以下步骤:
[0061] 对所述水热晶化产物依次进行固液分离、洗涤和干燥,得到MOR沸石分子筛纯品。
[0062] 本发明对所述固液分离的方式没有特殊的要求,使用本领域技术人员熟知的固液分离方式即可,具体的如过滤。在本发明中,所述洗涤所使用的洗涤剂优选为水;所述洗涤后产物的pH值优选为7~10,更优选为9。
[0063] 在本发明中,所述干燥的温度优选为65~100℃,更优选为75~90℃;时间优选为12~24h,更优选为16~20h。
[0064] 本发明提供了上述制备方法制备得到的MOR沸石分子筛。在本发明中,所述MOR沸3
石分子筛的孔径优选为0.59~0.7nm,孔体积优选为0.2~0.25cm/g。
[0065] 下面结合实施例对本发明提供的一种MOR沸石分子筛及其制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
[0066] 实施例1
[0067] (1)20g天然辉沸石使用0.2mol/L的NH4Cl溶液在80℃水浴中离子交换两次,每次离子交换的时间为2h,再于500℃马弗炉煅烧4h,最终除去天然辉沸石中的氧化钙得到H型天然辉沸石。
[0068] (2)将0.32g步骤(1)得到的H型天然辉沸石和0.196克氢氧化钠混合研磨均匀至200目,加入密闭活化反应容器中,进行碱活化反应,反应温度为200℃,反应时间为4小时,活化反应结束后,静置冷却。
[0069] (3)将步骤(2)中收集得到的粉末状固体转移到晶化反应容器中,加入6mL蒸馏水,在密闭、室温条件下搅拌均匀,搅拌时间为0.5小时。
[0070] (4)再加入1.092g工业级30%硅溶胶混合,得到反应凝胶,所得反应凝胶有效成分摩尔比为SiO2:Al2O3:Na2O:H2O=17.73:1:9.82:760,将所得反应凝胶进行水热晶化,晶化温度为180℃,晶化时间为48小时。
[0071] (5)将晶化的产物进行过滤、洗涤和干燥,其中洗涤后产物的pH=9,干燥温度为80℃,干燥时间为24小时,得到MOR沸石分子筛产品,记为A1。
[0072] 对所得A1进行XRD测试,所得结果见图1。由图1可知,A1的XRD图谱标准图谱一致,其晶化度高。
[0073] 对所得A1进行SEM电镜测试,所得结果见图2。由图2可以看出,所得MOR沸石分子筛的形貌为六边形晶体。
[0074] 实施例2
[0075] (1)20g天然辉沸石使用0.2mol/L的NH4Cl溶液在80℃水浴中交换两次,每次离子交换的时间为2h;再于550℃马弗炉煅烧4h,最终除去天然辉沸石中的氧化钙得到H型天然辉沸石。
[0076] (2)将0.32g步骤(1)得到的H型天然辉沸石和0.16g氢氧化钠混合研磨至200目,加入密闭活化反应容器中,进行碱活化反应,反应温度为200℃,反应时间为4小时,活化反应结束后,静置冷却。
[0077] (3)将步骤(2)中收集得到的粉末状固体转移到晶化反应容器中,加入6mL蒸馏水,在密闭、室温条件下搅拌均匀,搅拌时间为0.5小时。
[0078] (4)加入0.919g工业硅溶胶(SiO2含量30%),搅拌均匀,得到反应凝胶,其有效成分摩尔比为SiO2:Al2O3:Na2O:H2O=16:1:8:760,将所得反应凝胶进行水热晶化,晶化温度为200℃,晶化时间为48小时。
[0079] (5)将晶化的产物进行过滤、洗涤和干燥,其中洗涤后产物的pH=9,干燥温度为80℃,干燥时间为24小时,得到MOR沸石分子筛产品,记为A2。
[0080] 对所得A2进行XRD测试,所得结果见图1。由图1可知,A2的XRD图谱标准图谱一致,其晶化度高。
[0081] 对所得A2进行SEM电镜测试,所得结果见图3。由图3可以看出,所得MOR沸石分子筛的形貌为六边形晶体。
[0082] 实施例3
[0083] (1)20g天然辉沸石使用0.2mol/L的NH4Cl溶液在80℃水浴中交换两次,每次离子交换的时间为2h;再于500℃马弗炉煅烧4h,最终除去天然辉沸石中的氧化钙得到H型天然辉沸石。
[0084] (2)将0.32g步骤(1)得到的H型天然辉沸石和0.16g氢氧化钠钠混合研磨至200目,加入密闭活化反应容器中,反应温度为170℃反应时间为4小时,活化反应结束后,静置冷却。
[0085] (3)将步骤(2)中收集得到的粉末状固体转移到晶化反应容器中,加入4.28mL蒸馏水,在密闭、室温条件下搅拌均匀,搅拌时间为2小时。
[0086] (4)加入1.092g 30%工业级硅溶胶,搅拌均匀,得到反应凝胶,其有效成分摩尔比为SiO2:Al2O3:Na2O:H2O=17.73:1:8:560,将所得反应凝胶进行水热晶化,晶化温度为180℃晶化时间为48小时。
[0087] (5)将晶化的产物进行过滤、洗涤和干燥,其中洗涤后产物的pH=9,干燥温度为80℃,干燥时间为24小时,得到MOR沸石分子筛产品,记为A3。
[0088] 对所得A3进行XRD测试,所得结果见图1。由图1可知,A3的XRD图谱标准图谱一致,其晶化度高。
[0089] 对所得A3进行SEM电镜测试,所得结果见图4。由图4可以看出,所得MOR沸石分子筛的形貌为六边形晶体。
[0090] 实施例4
[0091] (1)20g天然辉沸石使用0.2mol/L的NH4Cl溶液在80℃水浴中交换两次,每次离子交换的时间为2h;再于500℃马弗炉煅烧4h,最终除去天然辉沸石中的氧化钙得到H型天然辉沸石。
[0092] (2)将0.32g步骤(1)得到的H型天然辉沸石和0.16g氢氧化钠混合研磨均匀至观察不到明显氢氧化钠颗粒,加入密闭活化反应容器中,反应温度为200℃反应时间为2小时,活化反应结束后,静置冷却。
[0093] (3)将步骤(2)中收集得到的粉末状固体转移到晶化反应容器中,加入6毫升蒸馏水,在密闭、室温条件下搅拌均匀,搅拌时间为0.5小时。
[0094] (4)步骤(3)中得到的混合物中加入0.919g工业级30%硅溶胶,搅拌2h,得到反应凝胶,其有效成分摩尔比为SiO2:Al2O3:Na2O:H2O=16:1:8:760,将所得混合物进行水热晶化,晶化温度为200℃,晶化时间为48小时。
[0095] (5)将晶化的产物进行过滤、洗涤和干燥,其中洗涤后产物的pH=9,干燥温度为80℃,干燥时间为24小时,得到MOR沸石分子筛产品,记为A4。
[0096] 对所得A4进行XRD测试,所得结果见图1。由图1可知,A4的XRD图谱标准图谱一致,其晶化度高。
[0097] 对所得A4进行SEM电镜测试,所得结果见图5。由图5可以看出,所得MOR沸石分子筛的形貌为六边形晶体。
[0098] 实施例5
[0099] (1)20g购买的天然辉沸石使用0.2mol/L的NH4Cl溶液在80℃水浴中交换两次,每次离子交换的时间为2h;再于500℃马弗炉煅烧4h,最终除去天然辉沸石中的氧化钙得到H型天然辉沸石。
[0100] (2)将0.32g步骤(1)得到的H型天然辉沸石和0.16g氢氧化钠混合研磨均匀至观察不到明显氢氧化钠颗粒,加入密闭活化反应容器中,反应温度为200℃,反应时间为4小时,活化反应结束后,静置冷却。
[0101] (3)将步骤(2)中收集得到的粉末状固体转移到晶化反应容器中,加入6毫升蒸馏水,在密闭、室温条件下搅拌均匀,搅拌时间为0.5小时。
[0102] (4)加入0.276g白炭黑(SiO2含量100%),搅拌均匀,得到反应凝胶,其有效成分摩尔比为SiO2:Al2O3:Na2O:H2O=17.73:1:8:760,所得反应凝胶进行水热晶化,晶化温度为180℃,晶化时间为72小时。
[0103] (5)将晶化的产物通过过滤、洗涤和干燥的方法收集,其中洗涤后产物的pH=9,干燥温度为80℃,干燥时间为24小时,得到MOR沸石分子筛产品,记为A5。
[0104] 对所得A5进行XRD测试,所得结果见图1。由图1可知,A5的XRD图谱标准图谱一致,其晶化度高。
[0105] 对所得A5进行SEM电镜测试,所得结果见图6。由图6可以看出,所得MOR沸石分子筛的形貌为六边形晶体。
[0106] 对比例1
[0107] 此对比例未进行碱活化反应。
[0108] (1)20g天然辉沸石使用0.2mol/L的NH4Cl溶液在80℃水浴中交换两次,再于500℃马弗炉煅烧,最终除去天然辉沸石中的氧化钙得到H型天然辉沸石。
[0109] (2)将0.32g步骤1得到的H型辉沸石和0.16g氢氧化钠混合加入8毫升蒸馏水,混合物中加入0.919g工业级30%硅溶胶,在密闭、室温条件下搅拌均匀,搅拌时间为2小时,得到反应凝胶,其有效成分摩尔比为SiO2:Al2O3:Na2O:H2O=16:1:8:960,将所得反应凝胶进行水热晶化,晶化温度为180℃,晶化时间为48小时。
[0110] (3)将晶化的产物通过过滤、洗涤和干燥的方法收集,其中洗涤后产物的pH=9,干燥温度为80℃干燥时间为24小时,得到产品B1。
[0111] 对所得B1进行XRD测试,所得结果见图1。由图1可知,B1的XRD图谱含有石英相。
[0112] 对所得B1进行SEM电镜测试,所得结果见图7。由图7可以看出,图7含有大量的无定型相,仅有少量MOR沸石晶体,说明以未进行离子交换的天然辉沸石为原料得到的MOR沸石结晶度很低。
[0113] 对比例2
[0114] 此对比例未进行离子交换。
[0115] (1)将0.32g购买的天然辉沸石和0.16g氢氧化钠混合加入8mL蒸馏水,混合物中加入0.919g工业级30%硅溶胶,在密闭、室温条件下搅拌均匀,搅拌时间为2小时,得到反应凝胶,其有效成分摩尔比为SiO2:Al2O3:Na2O:H2O=16:1:8:960,将所得反应凝胶进行水热晶化,晶化温度为180℃,晶化时间为48小时。
[0116] (2)将晶化的产物通过过滤、洗涤和干燥的方法收集,其中洗涤后产物的pH=9,干燥温度为80℃干燥时间为24小时,得到产品B2。
[0117] 对所得B2进行XRD测试,所得结果见图1。由图1可知,B1的晶化度较差。
[0118] 对所得B2进行SEM电镜测试,所得结果见图8。由图8可以看出,使用未经活化的天然辉沸石合成的产物中仅含有少量的MOR沸石晶体,还含有大量的石英相。这是因为未活化的天然辉沸石中本身含有的石英在反应过程中未溶解。
[0119] 实施例1~5和对比例1~2所得产品的相对结晶度如表1所示。
[0120] 表1实施例1~5和对比例1~2所得产品的相对结晶度
[0121]   A1 A2 A3 A4 A5 B1 B2结晶度(%) 100 97.5 92.6 92.0 93.6 MOR+SiO2 50.3
[0122] 由表1可以看出,本发明所得MOR沸石分子筛具有较高的相对结晶度。
[0123] 以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。