一种钒/钇共掺杂DLC涂层及其制备方法转让专利

申请号 : CN202111041736.X

文献号 : CN113913735B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 梁献文苏东艺黄现章杜日昇

申请人 : 广州今泰科技股份有限公司

摘要 :

本发明公开了一种钒/钇共掺杂DLC涂层及其制备方法,所述制备方法包括:先在基体上沉积Cr或Ti的底层,然后在底层的表面沉积CrC或TiC的过渡层,然后以钒和钇作为掺杂金属源,在过渡层的表面沉积钒钇共掺杂的DLC涂层。本发明的DLC涂层中同时掺杂了钒元素和钇元素,可大大降低DLC涂层的内应力,从而显著增强DLC涂层对基体的附着力,使膜基结合力高达70N以上。同时,钒的掺入可使涂层在摩擦过程中形成具有润滑性的化学转移膜,从而提高涂层的耐磨性能。钇的掺入可形成致密的非柱状晶纳米结构细颗粒,降低涂层的表面粗糙度,从而提高涂层的耐磨性能。钇的掺入还可提高DLC发生石墨化的温度,进而提高DLC的热稳定性。

权利要求 :

1.一种钒/钇共掺杂DLC涂层的制备方法,其特征在于,包括:先在基体上沉积Cr或Ti的底层,然后在底层的表面沉积CrC或TiC的过渡层,然后以钒和钇作为掺杂金属源,在过渡层的表面沉积钒钇共掺杂的DLC涂层;

所述钒/钇共掺杂DLC涂层的制备方法包括:

(1)安装:将预处理后的基体放入镀膜设备真空室的转架杆上,并使转架杆随转架台转动,以保证镀膜过程的均匀性,将钒靶和钇靶安装在炉体内壁上作为掺杂来源;

‑1

(2)离子刻蚀清洗:抽真空至真空度为2.0~3.0×10 Pa,以80~100sccm的流量将氩气通过离子源通入真空室,离子源功率控制在1.0~2.0kW,基体负偏压至450~550V,利用辉光放电产生的氩离子束刻蚀清洗基体表面,清洗时间为15~25min;

‑1

(3)沉积底层:控制氩气流量在80~100sccm,真空度为2.0~3.0×10 Pa,离子源功率控制在0.5~1.0kW,基体负偏压至40~50V,开启Cr靶或Ti靶,调整溅射靶功率为1.5kW~

2.5kW,溅射时间为10~15min,在基体表面溅射沉积Cr底层或Ti底层;

(4)沉积过渡层:以15~25sccm的流量将含碳气体通过离子源通入真空室,同时调节氩‑1气流量为110~130sccm,真空度为3.0~5.0×10 Pa,离子源功率为0.5~1.0kW,基体负偏压为30~40V,调整Cr靶或Ti靶的溅射功率为1.5kW~2.5kW,溅射时间为20~30min,在底层表面溅射沉积CrC过渡层或TiC过渡层;

(5)沉积钒钇共掺杂DLC涂层:调节氩气流量为120~130sccm,含碳气体流量为60~‑1

80sccm,真空度为5.0~6.0×10 Pa,离子源功率为1.8~2.0kW,基体负偏压为20~30V,钒靶溅射功率为0.2~0.4kW,钇靶溅射功率为1.0~1.2kW,利用辉光放电等离子体增强化学气相沉积生成非晶碳基底材质,钒靶和钇靶产生的钒粒子和钇粒子同时到达DLC涂层内实现钒钇元素的共掺杂,沉积时间为60~100min,合成钒钇共掺杂DLC涂层。

2.如权利要求1所述的钒/钇共掺杂DLC涂层的制备方法,其特征在于,所述基体的预处理方法包括:将基体进行表面除油和抛光后,依次在丙酮、乙醇和去离子水中超声清洗,吹干备用。

3.如权利要求2所述的钒/钇共掺杂DLC涂层的制备方法,其特征在于,所述超声清洗的条件为30~50kHz超声清洗5~10min。

4.如权利要求1所述的钒/钇共掺杂DLC涂层的制备方法,其特征在于,所述含碳气体为CH4。

5.如权利要求1所述的钒/钇共掺杂DLC涂层的制备方法,其特征在于,所述基体为硬质合金刀具。

6.一种钒/钇共掺杂DLC涂层,其特征在于,由如权利要求1~5任一项所述的钒/钇共掺杂DLC涂层的制备方法制得。

说明书 :

一种钒/钇共掺杂DLC涂层及其制备方法

技术领域

[0001] 本发明属于涂层材料技术领域,具体涉及一种钒/钇共掺杂DLC涂层及其制备方法。

背景技术

[0002] 硬质合金刀具是一种由硬质合金制成的刀具,而采用涂层技术可有效提高硬质合金刀具的使用寿命,使刀具获得优良的综合机械性能,从而大幅度提高刀具的机械加工效率。
[0003] 类金刚石薄膜(DLC)是一种非晶态薄膜,由于具有高硬度和高弹性模量,低摩擦因数,耐磨损以及良好的真空摩擦学特性,很适合于作为硬质合金刀具的涂层。一般情况下,涂层的内应力、弹性模量和硬度彼此成正比,导致涂层的硬度越大,内应力也越大。而DLC薄膜的硬度很高,其内应力也很大,导致DLC薄膜对基体的附着力下降,也限制了其在基体上所能沉积稳定的厚度,从而影响DLC耐磨性能的发挥。另外,DLC的热稳定性较差,原因在于DLC通常为非晶结构,是亚稳相,在温度升高过程中,DLC涂层将发生石墨化,由sp3键向sp2键转变,从而引起DLC涂层的结构及性能的变化。

发明内容

[0004] 为解决上述现有技术中存在的缺点和不足,本发明的目的在于提供一种钒/钇共掺杂DLC涂层及其制备方法。
[0005] 为实现其目的,本发明采取的技术方案如下:
[0006] 一种钒/钇共掺杂DLC涂层的制备方法,其包括:先在基体上沉积Cr或Ti的底层,然后在底层的表面沉积CrC或TiC的过渡层,然后以钒和钇作为掺杂金属源,在过渡层的表面沉积钒钇共掺杂的DLC涂层。
[0007] 优选地,所述钒/钇共掺杂DLC涂层的制备方法包括:
[0008] (1)安装:将预处理后的基体放入镀膜设备真空室的转架杆上,并使转架杆随转架台转动,以保证镀膜过程的均匀性,将钒靶和钇靶安装在炉体内壁上作为掺杂来源;
[0009] (2)离子刻蚀清洗:抽真空至真空度为2.0~3.0×10‑1Pa,以80~100sccm的流量将氩气通过离子源通入真空室,离子源功率控制在1.0~2.0kW,基体负偏压至450~550V,利用辉光放电产生的氩离子束刻蚀清洗基体表面,清洗时间为15~25min;
[0010] (3)沉积底层:控制氩气流量在80~100sccm,真空度为2.0~3.0×10‑1Pa,离子源功率控制在0.5~1.0kW,基体负偏压至40~50V,开启Cr靶或Ti靶,调整溅射靶功率为1.5kW~2.5kW,溅射时间为10~15min,在基体表面溅射沉积Cr底层或Ti底层;
[0011] (4)沉积过渡层:以15~25sccm的流量将含碳气体通过离子源通入真空室,同时调‑1节氩气流量为110~130sccm,真空度为3.0~5.0×10 Pa,离子源功率为0.5~1.0kW,基体负偏压为30~40V,调整Cr靶或Ti靶的溅射功率为1.5kW~2.5kW,溅射时间为20~30min,在底层表面溅射沉积CrC过渡层或TiC过渡层;
[0012] (5)沉积钒钇共掺杂DLC涂层:调节氩气流量为120~130sccm,含碳气体流量为60‑1~80sccm,真空度为5.0~6.0×10 Pa,离子源功率为1.8~2.0kW,基体负偏压为20~30V,钒靶溅射功率为0.2~0.4kW,钇靶溅射功率为1.0~1.2kW,利用辉光放电等离子体增强化学气相沉积生成非晶碳基底材质,钒靶和钇靶产生的钒粒子和钇粒子同时到达DLC涂层内实现钒钇元素的共掺杂,沉积时间为60~100min,合成钒钇共掺杂DLC涂层。
[0013] 优选地,所述基体的预处理方法包括:将基体进行表面除油和抛光后,依次在丙酮、乙醇和去离子水中超声清洗,吹干备用。优选地,所述超声波清洗的条件为30~50kHz超声清洗5~10min。
[0014] 优选地,所述含碳气体为CH4。
[0015] 优选地,所述基体为硬质合金刀具。
[0016] 本发明还提供了一种钒/钇共掺杂DLC涂层,其由本发明上述的钒/钇共掺杂DLC涂层的制备方法制得。
[0017] 与现有技术相比,本发明的有益效果为:本发明的DLC涂层中同时掺杂了钒元素和钇元素,大大降低了DLC涂层的内应力,显著增强了DLC涂层对基体的附着力,使膜基结合力高达70N以上。同时,钒作为一种难熔或半难熔元素,其掺入可使涂层在摩擦过程中形成具有润滑性的化学转移膜,从而提高涂层的耐磨性能。钇的掺入可形成致密的非柱状晶纳米结构细颗粒,降低涂层的表面粗糙度,从而提高涂层的耐磨性能。钇的掺入还可提高DLC发生石墨化的温度,进而提高DLC的热稳定性。

具体实施方式

[0018] 为更好的说明本发明的目的、技术方案和优点,本发明通过下列实施例进一步说明。除非特别说明,否则本发明实施例中采用的方法均为本领域的常规方法,所使用的设备和原料均可通过商业途径获得。实施例中使用的是99.9%的高纯度氩气,所有靶材的纯度均≥99.9%。
[0019] 实施例1
[0020] 一种钒/钇共掺杂DLC涂层的制备方法,步骤如下:
[0021] (1)基体预处理:以硬质合金刀具作为基体,将基体进行表面除油和抛光后,依次在丙酮、乙醇和去离子水中以30kHz超声清洗10min,最后用纯度≥99.5%的高纯氮气吹干,备用;
[0022] (2)安装:将预处理后的基体放入镀膜设备真空室的转架杆上,并使转架杆随转架台转动,以保证镀膜过程的均匀性,将钒靶和钇靶安装在炉体内壁上作为掺杂来源;
[0023] (2)离子刻蚀清洗:抽真空至真空度为2.0×10‑1Pa,以80sccm的流量将氩气通过离子源通入真空室,离子源功率控制在1.0kW,基体负偏压至450V,利用辉光放电产生的氩离子束刻蚀清洗基体表面,清洗时间为25min;
[0024] (3)沉积底层:控制氩气流量在80sccm,真空度为2.0×10‑1Pa,离子源功率控制在0.5kW,基体负偏压至40V,开启Cr靶,调整溅射靶功率为1.5kW,溅射时间为15min,在基体表面溅射沉积Cr底层;
[0025] (4)沉积过渡层:以15sccm的流量将CH4通过离子源通入真空室,同时调节氩气流‑1量为110sccm,真空度为3.0×10 Pa,离子源功率为0.7kW,基体负偏压为30V,调整Cr靶的溅射功率为2.5kW,溅射时间为20min,在底层表面溅射沉积CrC过渡层;
[0026] (5)沉积钒钇共掺杂DLC涂层:调节氩气流量为120sccm,CH4流量为60sccm,真空度‑1为5.0×10 Pa,离子源功率为1.8kW,基体负偏压为20V,钒靶溅射功率为0.2kW,钇靶溅射功率为1.0kW,利用辉光放电等离子体增强化学气相沉积生成非晶碳基底材质,钒靶和钇靶产生的钒粒子和钇粒子同时到达DLC涂层内实现钒钇元素的共掺杂,沉积时间为100min,合成钒钇共掺杂DLC涂层。
[0027] 经测试,本实施例制备的钒钇共掺杂DLC涂层的硬度为HV2700,膜基结合力为76N,涂层厚度为1.85μm,干摩擦系数为0.15。说明该钒钇共掺杂DLC涂层具有较好的膜基结合力,且耐磨和减磨性能优异。
[0028] 采用箱式电阻炉对该钒钇共掺杂DLC涂层在大气环境下进行500、600、700和800℃退火处理,达到设定温度后保温1h,之后随炉冷却至室温,并采用LabRAM HR800型激光共聚焦拉曼光谱仪对退火前后的钒钇共掺杂DLC涂层进行Raman分析。分析结果显示,该钒钇共掺杂DLC涂层发生明显石墨化的温度在700~800℃之间,退火温度低于700℃时无明显石墨化发生。
[0029] 实施例2
[0030] 一种钒/钇共掺杂DLC涂层的制备方法,步骤如下:
[0031] (1)基体预处理:以硬质合金刀具作为基体,将基体进行表面除油和抛光后,依次在丙酮、乙醇和去离子水中以30kHz超声清洗10min,最后用纯度≥99.5%的高纯氮气吹干,备用;
[0032] (2)安装:将预处理后的基体放入镀膜设备真空室的转架杆上,并使转架杆随转架台转动,以保证镀膜过程的均匀性,将钒靶和钇靶安装在炉体内壁上作为掺杂来源;
[0033] (2)离子刻蚀清洗:抽真空至真空度为2.5×10‑1Pa,以90sccm的流量将氩气通过离子源通入真空室,离子源功率控制在1.5kW,基体负偏压至500V,利用辉光放电产生的氩离子束刻蚀清洗基体表面,清洗时间为20min;
[0034] (3)沉积底层:控制氩气流量在90sccm,真空度为2.5×10‑1Pa,离子源功率控制在0.8kW,基体负偏压至45V,开启Cr靶,调整溅射靶功率为2.0kW,溅射时间为12min,在基体表面溅射沉积Cr底层;
[0035] (4)沉积过渡层:以20sccm的流量将CH4通过离子源通入真空室,同时调节氩气流‑1量为120sccm,真空度为4.0×10 Pa,离子源功率为1.0kW,基体负偏压为35V,调整Cr靶的溅射功率为2.0kW,溅射时间为25min,在底层表面溅射沉积CrC过渡层;
[0036] (5)沉积钒钇共掺杂DLC涂层:调节氩气流量为125sccm,CH4流量为70sccm,真空度‑1为5.5×10 Pa,离子源功率为2.0kW,基体负偏压为25V,钒靶溅射功率为0.3kW,钇靶溅射功率为1.2kW,利用辉光放电等离子体增强化学气相沉积生成非晶碳基底材质,钒靶和钇靶产生的钒粒子和钇粒子同时到达DLC涂层内实现钒钇元素的共掺杂,沉积时间为80min,合成钒钇共掺杂DLC涂层。
[0037] 经测试,钒钇共掺杂DLC涂层的硬度为HV2750,膜基结合力为81N,涂层厚度为1.90μm,干摩擦系数为0.10。说明该钒钇共掺杂DLC涂层具有较好的膜基结合力,且耐磨和减磨性能优异。
[0038] 采用箱式电阻炉对该钒钇共掺杂DLC涂层在大气环境下进行500、600、700和800℃退火处理,达到设定温度后保温1h,之后随炉冷却至室温,并采用LabRAM HR800型激光共聚焦拉曼光谱仪对退火前后的钒钇共掺杂DLC涂层进行Raman分析。分析结果显示,该钒钇共掺杂DLC涂层发生明显石墨化的温度在700~800℃之间,退火温度低于700℃时无明显石墨化发生。
[0039] 实施例3
[0040] 一种钒/钇共掺杂DLC涂层的制备方法,步骤如下:
[0041] (1)基体预处理:以硬质合金刀具作为基体,将基体进行表面除油和抛光后,依次在丙酮、乙醇和去离子水中以50kHz超声清洗5min,最后用纯度≥99.5%的高纯氮气吹干,备用;
[0042] (2)安装:将预处理后的基体放入镀膜设备真空室的转架杆上,并使转架杆随转架台转动,以保证镀膜过程的均匀性,将钒靶和钇靶安装在炉体内壁上作为掺杂来源;
[0043] (2)离子刻蚀清洗:抽真空至真空度为3.0×10‑1Pa,以100sccm的流量将氩气通过离子源通入真空室,离子源功率控制在2.0kW,基体负偏压至550V,利用辉光放电产生的氩离子束刻蚀清洗基体表面,清洗时间为15min;
[0044] (3)沉积底层:控制氩气流量在100sccm,真空度为3.0×10‑1Pa,离子源功率控制在1.0kW,基体负偏压至50V,开启Cr靶,调整溅射靶功率为2.5kW,溅射时间为10min,在基体表面溅射沉积Cr底层;
[0045] (4)沉积过渡层:以25sccm的流量将CH4通过离子源通入真空室,同时调节氩气流‑1量为130sccm,真空度为5.0×10 Pa,离子源功率为1.0kW,基体负偏压为40V,调整Cr靶的溅射功率为1.5kW,溅射时间为30min,在底层表面溅射沉积CrC过渡层;
[0046] (5)沉积钒钇共掺杂DLC涂层:调节氩气流量为130sccm,CH4流量为80sccm,真空度‑1为6.0×10 Pa,离子源功率为2.0kW,基体负偏压为30V,钒靶溅射功率为0.4kW,钇靶溅射功率为1.2kW,利用辉光放电等离子体增强化学气相沉积生成非晶碳基底材质,钒靶和钇靶产生的钒粒子和钇粒子同时到达DLC涂层内实现钒钇元素的共掺杂,沉积时间为60min,合成钒钇共掺杂DLC涂层。
[0047] 经测试,钒钇共掺杂DLC涂层的硬度为HV2710,膜基结合力为78N,涂层厚度为1.88μm,干摩擦系数为0.13。说明该钒钇共掺杂DLC涂层具有较好的膜基结合力,且耐磨和减磨性能优异。
[0048] 采用箱式电阻炉对该钒钇共掺杂DLC涂层在大气环境下进行500、600、700和800℃退火处理,达到设定温度后保温1h,之后随炉冷却至室温,并采用LabRAM HR800型激光共聚焦拉曼光谱仪对退火前后的钒钇共掺杂DLC涂层进行Raman分析。分析结果显示,该钒钇共掺杂DLC涂层发生明显石墨化的温度在700~800℃之间,退火温度低于700℃时无明显石墨化发生。
[0049] 对比例1
[0050] 一种DLC涂层的制备方法,其与实施例1的区别仅在于没有掺杂钒钇,步骤如下:
[0051] (1)基体预处理:以硬质合金刀具作为基体,将基体进行表面除油和抛光后,依次在丙酮、乙醇和去离子水中以30kHz超声清洗10min,最后用纯度≥99.5%的高纯氮气吹干,备用;
[0052] (2)安装:将预处理后的基体放入镀膜设备真空室的转架杆上,并使转架杆随转架台转动,以保证镀膜过程的均匀性,将钒靶和钇靶安装在炉体内壁上作为掺杂来源;
[0053] (2)离子刻蚀清洗:抽真空至真空度为2.0×10‑1Pa,以80sccm的流量将氩气通过离子源通入真空室,离子源功率控制在1.0kW,基体负偏压至450V,利用辉光放电产生的氩离子束刻蚀清洗基体表面,清洗时间为25min;
[0054] (3)沉积底层:控制氩气流量在80sccm,真空度为2.0×10‑1Pa,离子源功率控制在0.5kW,基体负偏压至40V,开启Cr靶,调整溅射靶功率为1.5kW,溅射时间为15min,在基体表面溅射沉积Cr底层;
[0055] (4)沉积过渡层:以15sccm的流量将CH4通过离子源通入真空室,同时调节氩气流‑1量为110sccm,真空度为3.0×10 Pa,离子源功率为0.7kW,基体负偏压为30V,调整Cr靶的溅射功率为2.5kW,溅射时间为20min,在底层表面溅射沉积CrC过渡层;
[0056] (5)沉积DLC涂层:调节氩气流量为120sccm,CH4流量为60sccm,真空度为5.0×10‑1
Pa,离子源功率为1.8kW,基体负偏压为20V,利用辉光放电等离子体增强化学气相沉积生成非晶碳基底材质,沉积时间为100min,合成DLC涂层。
[0057] 经测试,DLC涂层的硬度为HV2560,膜基结合力为60N,涂层厚度为1.73μm,干摩擦系数为0.26。可见,相比于实施例1的钒钇共掺杂DLC涂层,对比例1中未掺入钒钇的DLC涂层的硬度和膜基结合力均明显较小,干摩擦系数显著增大。说明钒钇元素的掺入可明显增大DLC涂层的膜基结合力,还可增强其耐磨性能和减磨性能。
[0058] 采用箱式电阻炉对DLC涂层在大气环境下进行500、600、700和800℃退火处理,达到设定温度后保温1h,之后随炉冷却至室温,并采用LabRAM HR800型激光共聚焦拉曼光谱仪对退火前后的DLC涂层进行Raman分析。分析结果显示,该DLC涂层发生明显石墨化的温度在500~600℃之间。可见,相比于实施例1的钒钇共掺杂DLC涂层,对比例1的DLC涂层的热稳定性显著下降。
[0059] 对比例2
[0060] 一种钒掺杂DLC涂层的制备方法,步骤如下:
[0061] (1)基体预处理:以硬质合金刀具作为基体,将基体进行表面除油和抛光后,依次在丙酮、乙醇和去离子水中以30kHz超声清洗10min,最后用纯度≥99.5%的高纯氮气吹干,备用;
[0062] (2)安装:将预处理后的基体放入镀膜设备真空室的转架杆上,并使转架杆随转架台转动,以保证镀膜过程的均匀性,将钒靶和钇靶安装在炉体内壁上作为掺杂来源;
[0063] (2)离子刻蚀清洗:抽真空至真空度为2.0×10‑1Pa,以80sccm的流量将氩气通过离子源通入真空室,离子源功率控制在1.0kW,基体负偏压至450V,利用辉光放电产生的氩离子束刻蚀清洗基体表面,清洗时间为25min;
[0064] (3)沉积底层:控制氩气流量在80sccm,真空度为2.0×10‑1Pa,离子源功率控制在0.5kW,基体负偏压至40V,开启Cr靶,调整溅射靶功率为1.5kW,溅射时间为15min,在基体表面溅射沉积Cr底层;
[0065] (4)沉积过渡层:以15sccm的流量将CH4通过离子源通入真空室,同时调节氩气流‑1量为110sccm,真空度为3.0×10 Pa,离子源功率为0.7kW,基体负偏压为30V,调整Cr靶的溅射功率为2.5kW,溅射时间为20min,在底层表面溅射沉积CrC过渡层;
[0066] (5)沉积钒掺杂DLC涂层:调节氩气流量为120sccm,CH4流量为60sccm,真空度为‑15.0×10 Pa,离子源功率为1.8kW,基体负偏压为20V,钒靶溅射功率为0.2kW,利用辉光放电等离子体增强化学气相沉积生成非晶碳基底材质,钒靶产生的钒粒子到达DLC涂层内实现钒元素的掺杂,沉积时间为100min,合成钒掺杂DLC涂层。
[0067] 经测试,钒掺杂DLC涂层的硬度为HV2620,膜基结合力为62N,涂层厚度为1.90μm,干摩擦系数为0.20。可见,相比于实施例1的钒钇共掺杂DLC涂层,对比例2中只掺入钒元素的DLC涂层的硬度和膜基结合力均明显较小,干摩擦系数显著增大。说明只有同时掺入钒钇元素时才能有效增大DLC涂层的膜基结合力,以及更好地增强其耐磨性能和减磨性能。
[0068] 采用箱式电阻炉对该钒掺杂DLC涂层在大气环境下进行500、600、700和800℃退火处理,达到设定温度后保温1h,之后随炉冷却至室温,并采用LabRAM HR800型激光共聚焦拉曼光谱仪对退火前后的钒掺杂DLC涂层进行Raman分析。分析结果显示,该钒掺杂DLC涂层发生明显石墨化的温度在500~600℃之间。可见,相比于实施例1的钒钇共掺杂DLC涂层,对比例2的钒掺杂DLC涂层的热稳定性显著下降,说明,钇的掺入可提高DLC发生石墨化的温度,进而提高DLC的热稳定性。
[0069] 对比例3
[0070] 一种钇掺杂DLC涂层的制备方法,步骤如下:
[0071] (1)基体预处理:以硬质合金刀具作为基体,将基体进行表面除油和抛光后,依次在丙酮、乙醇和去离子水中以30kHz超声清洗10min,最后用纯度≥99.5%的高纯氮气吹干,备用;
[0072] (2)安装:将预处理后的基体放入镀膜设备真空室的转架杆上,并使转架杆随转架台转动,以保证镀膜过程的均匀性,将钒靶和钇靶安装在炉体内壁上作为掺杂来源;
[0073] (2)离子刻蚀清洗:抽真空至真空度为2.0×10‑1Pa,以80sccm的流量将氩气通过离子源通入真空室,离子源功率控制在1.0kW,基体负偏压至450V,利用辉光放电产生的氩离子束刻蚀清洗基体表面,清洗时间为25min;
[0074] (3)沉积底层:控制氩气流量在80sccm,真空度为2.0×10‑1Pa,离子源功率控制在0.5kW,基体负偏压至40V,开启Cr靶,调整溅射靶功率为1.5kW,溅射时间为15min,在基体表面溅射沉积Cr底层;
[0075] (4)沉积过渡层:以15sccm的流量将CH4通过离子源通入真空室,同时调节氩气流‑1量为110sccm,真空度为3.0×10 Pa,离子源功率为0.7kW,基体负偏压为30V,调整Cr靶的溅射功率为2.5kW,溅射时间为20min,在底层表面溅射沉积CrC过渡层;
[0076] (5)沉积钇掺杂DLC涂层:调节氩气流量为120sccm,CH4流量为60sccm,真空度为‑15.0×10 Pa,离子源功率为1.8kW,基体负偏压为20V,钇靶溅射功率为1.0kW,利用辉光放电等离子体增强化学气相沉积生成非晶碳基底材质钇靶产生的钇粒子到达DLC涂层内实现钇元素的掺杂,沉积时间为100min,合成钇掺杂DLC涂层。
[0077] 经测试,钒共掺杂DLC涂层的硬度为HV2640,膜基结合力为64N,涂层厚度为1.91μm,干摩擦系数为0.21。可见,相比于实施例1的钒钇共掺杂DLC涂层,对比例3中只掺入钇元素的DLC涂层的硬度和膜基结合力均明显较小,干摩擦系数显著增大。说明只有同时掺入钒钇元素时才能有效增大DLC涂层的膜基结合力,以及更好地增强其耐磨性能和减磨性能。
[0078] 采用箱式电阻炉对该钇掺杂DLC涂层在大气环境下进行500、600、700和800℃退火处理,达到设定温度后保温1h,之后随炉冷却至室温,并采用LabRAM HR800型激光共聚焦拉曼光谱仪对退火前后的钇掺杂DLC涂层进行Raman分析。分析结果显示,该钇掺杂DLC涂层发生明显石墨化的温度在700~800℃之间,退火温度低于700℃时无明显石墨化发生。可见,相比于实施例1的钒钇共掺杂DLC涂层,对比例3的钇掺杂DLC涂层的热稳定性无明显差异,说明,钇的掺入可提高DLC发生石墨化的温度,进而提高DLC的热稳定性。
[0079] 最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。