一种大孔水凝胶及其制备方法和应用转让专利

申请号 : CN202111068574.9

文献号 : CN113952508B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 鲁道欢于珊曾志文国翠平张锦耿志杰裴大婷

申请人 : 广东省科学院健康医学研究所

摘要 :

本发明提供一种大孔水凝胶及其制备方法和应用。该大孔水凝胶同时具有可控孔隙结构和化学趋化信号,通过物理结构与化学趋化信号双重作用能达到快速血管化的作用。该大孔水凝胶的制备方法中采用致孔剂去除法引入孔隙相互连通的大孔结构,构建了孔径尺寸可调的凝胶材料。

权利要求 :

1.一种大孔水凝胶,其特征在于:包括含双键的多糖、改性肝素和生物活性因子,所述含双键的多糖与所述改性肝素经交联反应形成孔结构连通的肝素化水凝胶;所述生物活性因子与所述肝素化水凝胶特异性结合;

所述含双键的多糖选自含双键的透明质酸、含双键的壳聚糖、含双键的海藻酸钠、含双键的葡聚糖中的至少一种;

所述特异性结合为所述改性肝素中带负电荷的硫酸盐基团与所述生物活性因子中带正电荷的氨基酸残基之间的特异性结合;

所述生物活性因子与所述肝素化水凝胶进行特异性结合制备时,所述生物活性因子在所述肝素化水凝胶的浓度为100ng/mL  2000ng/mL。

~

2.根据权利要求1所述的大孔水凝胶,其特征在于:所述大孔水凝胶的孔径为100µm ~

500µm。

3.根据权利要求1所述的大孔水凝胶,其特征在于:所述改性肝素为双键改性肝素、巯基改性肝素中的至少一种。

4.根据权利要求3所述的大孔水凝胶,其特征在于:所述双键改性肝素选自甲基丙烯酸酐改性肝素、甲基丙烯酸甘油酯改性肝素、N‑(3‑氨基丙基)甲基丙烯酰胺盐酸盐改性肝素中的至少一种。

5.根据权利要求3所述的大孔水凝胶,其特征在于:所述巯基改性肝素为半胱胺改性肝素、胱胺二盐酸盐改性肝素中的至少一种。

6.根据权利要求1所述的大孔水凝胶,其特征在于:所述含双键的多糖与所述改性肝素的质量比为(1 40):(1 5)。

~ ~

7.一种如权利要求1 6任一项所述的大孔水凝胶的制备方法,其特征在于:包括如下步~骤:

S1:将所述含双键的多糖、所述改性肝素与光引发剂混合,得到水凝胶前驱体溶液;

S2:将所述水凝胶前驱体溶液注入致孔剂模板中,光照交联后去除致孔剂模板,得到肝素化水凝胶;

S3:将所述肝素化水凝胶与生物活性因子混合,得到所述大孔水凝胶;

所述生物活性因子浓度为100ng/mL  2000ng/mL。

~

8.根据权利要求7所述的大孔水凝胶的制备方法,其特征在于:S1中,所述光引发剂选自2‑羟基‑4’‑(2‑羟乙氧基)‑2‑甲基苯丙酮、1‑羟基环己基‑苯基甲酮、苯基‑2,4,6‑三甲基苯甲酰基次膦酸锂、2,2‑二甲氧基‑苯基乙酮、曙红Y中的至少一种。

9.根据权利要求7所述的大孔水凝胶的制备方法,其特征在于:S2中,所述致孔剂模板选自明胶微球模板、果糖微球模板、聚甲基丙烯酸甲酯微球模板中的任意一种。

10.一种如权利要求1 6任一项所述的大孔水凝胶在制备促血管化支架材料、组织修复~材料中的应用。

说明书 :

一种大孔水凝胶及其制备方法和应用

技术领域

[0001] 本发明属于生物材料技术领域,尤其涉及一种大孔水凝胶及其制备方法和应用。

背景技术

[0002] 血管生成是组织形成、再生和修复的重要过程。尽管如此,血管化组织的体外制造仍然是一个挑战。由于植入的支架缺乏完整的血管网络,氧气和营养物质无法送达支架内部,从而无法有效促进修复和新组织形成。因此,开发促血管生成的支架已成为亟待解决的关键问题。
[0003] 水凝胶是一类具有三维结构的亲水性聚合物网络,具有类似组织的物理性质,能够为细胞和组织提供适宜的生长环境,在再生医学和组织工程领域有广泛应用。但水凝胶固有的孔径较小,一般为亚微米或纳米级,无法为细胞和组织生长提供足够空间,严重限制了细胞生长和组织的形成。研究表明再生血管所需的最小孔隙率通常被认为是30~40微米,因此,为促进血管化,在水凝胶中引入大孔结构十分必要。而目前所制备的大孔凝胶孔隙连通性较差,不利于细胞和血管长入。另一方面,除了水凝胶孔结构影响细胞生长和组织形成外,生长因子在血管生成过程中也十分重要。但现有水凝胶中的生长因子存在半衰期短、性能不稳定、易突释等问题,无法长时间维持生长因子活性。

发明内容

[0004] 本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明第一个方面提出一种大孔水凝胶,其同时具有可控孔隙结构和化学趋化信号,该水凝胶通过物理结构与化学趋化信号双重作用能达到快速血管化的作用。
[0005] 本发明的第二个方面提出了一种上述大孔水凝胶的制备方法。
[0006] 本发明的第三个方面提出了一种上述大孔水凝胶的应用。
[0007] 根据本发明的第一个方面,提出了一种大孔水凝胶,包括含双键的多糖、改性肝素和生物活性因子,所述含双键的多糖与所述改性肝素经交联反应形成孔结构连通的肝素化水凝胶;所述生物活性因子与所述肝素化水凝胶特异性结合。
[0008] 本发明中,含双键的多糖与改性肝素在致孔剂(后续脱除)作用下形成孔结构连通的水凝胶,得到孔径尺寸可调的肝素化水凝胶,肝素中带负电荷的硫酸盐基团与生物因子中带正电荷的氨基酸残基之间进行特异性结合,使得生物因子与肝素化水凝胶之间结合更加牢固,从而固定生物活性因子,赋予水凝胶生物活性并起到缓释生物因子的作用。本发明的大孔水凝胶,同时具备可控的孔隙结构和化学趋化信号,从物理结构和化学信号两个方面来诱导大孔水凝胶的快速血管化。
[0009] 在本发明的一些实施方式中,所述大孔水凝胶的孔径为100μm~500μm,该孔径的大孔水凝胶能促进血管化作用。
[0010] 在本发明的一些优选的实施方式中,所述含双键的多糖选自含双键的透明质酸、含双键的壳聚糖、含双键的海藻酸钠、含双键的葡聚糖中的至少一种。
[0011] 在本发明的一些优选的实施方式中,所述含双键的多糖选自甲基丙烯酰化透明质酸、丙烯酰氯改性透明质酸、甲基丙烯酸甘油酯改性透明质酸、马来酸酐改性透明质酸中的至少一种。
[0012] 在本发明的一些优选的实施方式中,所述改性肝素选自双键改性肝素、巯基改性肝素中的至少一种。
[0013] 在本发明的一些更优选的实施方式中,所述双键改性肝素选自甲基丙烯酸酐改性肝素、甲基丙烯酸甘油酯改性肝素、N‑(3‑氨基丙基)甲基丙烯酰胺盐酸盐改性肝素中的至少一种。
[0014] 在本发明的一些更优选的实施方式中,所述巯基改性肝素为半胱胺改性肝素、胱胺二盐酸盐改性肝素中的至少一种。
[0015] 在本发明的一些更优选的实施方式中,所述含双键的多糖与所述改性肝素的质量比为(1~40):(1~5);进一步优选为(10~30):(1~5)。通过控制大孔水凝胶中改性肝素的含量可以对应控制与肝素化水凝胶特异性结合生物活性因子的含量。
[0016] 在本发明的一些更优选的实施方式中,所述生物活性因子选自血管内皮生长因子(VEGF)、成纤维生长因子(FGF)、血小板衍生生长因子(PDGF)、血管生成素中的至少一种。
[0017] 在本发明的一些更优选的实施方式中,所述成纤维生长因子为碱性成纤维生长因子(bFGF)。
[0018] 根据本发明的第二个方面,提出了一种上述大孔水凝胶的制备方法,包括如下步骤:
[0019] S1:将所述含双键的多糖、所述改性肝素与光引发剂混合,得到水凝胶前驱体溶液;
[0020] S2:将所述水凝胶前驱体溶液注入致孔剂模板中,光照交联后去除致孔剂模板,得到肝素化水凝胶;
[0021] S3:将所述肝素化水凝胶与生物活性因子混合,得到所述大孔水凝胶。
[0022] 在本发明的一些实施方式中,S1中,所述引发剂选自2‑羟基‑4’‑(2‑羟乙氧基)‑2‑甲基苯丙酮(CAS号为:106797‑53‑9)、1‑羟基环己基‑苯基甲酮(CAS号为:947‑19‑3)、苯基‑2,4,6‑三甲基苯甲酰基次膦酸锂(CAS号为:85073‑19‑4)、2,2‑二甲氧基‑苯基乙酮(CAS号为:38002‑92‑5)、曙红Y中的至少一种。
[0023] 在本发明的一些优选的实施方式中,S2中,所述致孔剂模板选自明胶微球模板、果糖微球模板、聚甲基丙烯酸甲酯微球模板中的任意一种。
[0024] 在本发明的一些优选的实施方式中,S2中,所述致孔剂可在水和/或PBS缓冲液中溶解去除。
[0025] 在本发明的一些优选的实施方式中,S2中,所述光照交联为采用绿光或紫外光交联;优选的,所述绿光波长为515nm~535nm,所述紫外光波长为350nm~380nm。
[0026] 在本发明的一些更优选的实施方式中,S3中,所述生物活性因子浓度为100ng/mL~2000ng/mL;进一步优选为300ng/mL~1500ng/mL。
[0027] 根据本发明的第三个方面,提出了一种上述大孔水凝胶在制备促血管化支架材料、组织修复材料中的应用。
[0028] 在本发明的一些实施方式中,所述组织修复材料包括创面修复材料。
[0029] 本发明的有益效果为:针对水凝胶材料无法实现快速血管化这一难题,从材料理化性质的设计和调控出发,构建了具有可控孔隙结构和化学趋化信号的大孔水凝胶。一方面采用致孔剂模板去除法引入相互连通的大孔结构,构建了孔径尺寸可调的凝胶材料;另一方面,凝胶材料中引入改性肝素,达到了固定和缓释生长因子的目的,赋予水凝胶以生物活性。通过物理结构与化学趋化信号双重作用诱导水凝胶的快速血管化。

附图说明

[0030] 下面结合附图和实施例对本发明做进一步的说明,其中:
[0031] 图1为实施例1中S2制得的P‑HA‑Hep水凝胶和对比例2中制得的HA‑Hep水凝胶截面和表面SEM图。
[0032] 图2为人脐静脉内皮细胞在实施例1制得的P‑HA‑Hep‑V水凝胶、对比例1制得的HAMA水凝胶、对比例3制得的P‑HA‑Hep水凝胶上第4天的增殖情况。

具体实施方式

[0033] 以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
[0034] 实施例1
[0035] 本实施例制备了一种大孔水凝胶,具体过程为:
[0036] S1:将甲基丙烯酸酐改性透明质酸(HAMA)、甲基丙烯酸酐改性肝素溶于水分别形成质量分数为2%、0.1%的溶液,加入质量分数为0.05%得光引发剂苯基‑2,4,6‑三甲基苯甲酰基次膦酸锂,充分混匀,得到水凝胶前驱体溶液;
[0037] S2:将水凝胶前驱体溶液注入明胶微球模板中,除去模板表面多余溶液,365nm紫外光交联20s,将交联后的混合物放入PBS中,37℃,溶解去除明胶微球,得到大孔肝素化透明质酸水凝胶(P‑HA‑Hep);
[0038] S3:将上述大孔HA‑Hep水凝胶浸入0.4mL质量浓度为0.5μg/mL的VEGF溶液中,4℃下保持18h,得到负载VEGF的大孔水凝胶(P‑HA‑Hep‑V)。
[0039] 对比例1
[0040] 本对比例制备了一种水凝胶,与实施例1的区别在于水凝胶不含改性肝素,不使用致孔剂,也不负载生物活性因子,具体过程为:
[0041] 取甲基丙烯酰化透明质酸(HAMA)溶于水形成质量分数为2%的溶液,加入质量分数为0.05%的光引发剂苯基‑2,4,6‑三甲基苯甲酰基次膦酸锂,充分混匀,得到水凝胶前驱体溶液;再在365nm紫外光交联20s,得到不含大孔结构的透明质酸(HAMA)水凝胶。
[0042] 对比例2
[0043] 本对比例制备了一种水凝胶,与实施例1的区别在于水凝胶制备过程中不使用致孔剂,不负载生物活性因子,具体过程为:
[0044] 取甲基丙烯酰化透明质酸(HAMA)、甲基丙烯酸酐改性肝素溶于水分别形成质量分数为2%、0.1%的溶液,加入质量分数为0.05%的光引发剂苯基‑2,4,6‑三甲基苯甲酰基次膦酸锂,充分混匀,得到水凝胶前驱体溶液;365nm紫外光交联20s,得到不含大孔结构的肝素‑透明质酸(HA‑Hep)水凝胶。
[0045] 对比例3
[0046] 本对比例制备了一种水凝胶,与实施例1的区别在于水凝胶制备过程中不负载生物活性因子,具体过程为:
[0047] S1:取甲基丙烯酰化透明质酸(HAMA)、甲基丙烯酸酐改性肝素溶于水分别形成质量分数为2%、0.1%的溶液,加入质量分数为0.05%的光引发剂苯基‑2,4,6‑三甲基苯甲酰基次膦酸锂,充分混匀,得到水凝胶前驱体溶液;
[0048] S2:将水凝胶前驱体溶液注入明胶微球模板中,除去模板表面多余溶液,365nm紫外光交联20s,将交联后的混合物放入PBS中,37℃,溶解去除明胶微球,得到大孔水凝胶(P‑HA‑Hep)。
[0049] 试验例1:水凝胶形态观察
[0050] 对实施例1中S2制得的P‑HA‑Hep水凝胶和对比例2中制得的HA‑Hep水凝胶冻干,SEM观察凝胶表面和切面孔结构。结果分别如图1所示。
[0051] 从图1可看出,实施例1中S2制得的大孔水凝胶孔隙相互连通,且孔为开孔结构,孔径约为360μm。
[0052] 试验例2:不同水凝胶对人脐静脉内皮细胞(HUVEC)增殖的影响
[0053] 将实施例1制得的P‑HA‑Hep‑V水凝胶、对比例1制得的HAMA水凝胶、对比例3制得的P‑HA‑Hep水凝胶(相关特征说明如表1所示)灭菌后,置于48孔板中,接种HUVEC,每孔约2×4
10个细胞,在37℃、5%CO2的条件下培养。分别培养4天,弃掉培养基溶液,PBS冲洗3次,用活细胞荧光染料二乙酸荧光素标记细胞,倒置荧光显微镜观察细胞在水凝上的生长情况。结果如图2所示。
[0054] 表1
[0055]
[0056] 从图2可看出,细胞培养4天后,HAMA中细胞数量最少。大孔凝胶P‑HA‑Hep‑V中细胞数量最多,其次是大孔凝胶P‑HA‑Hep,说明大孔结构为细胞增殖提供了更多的空间;更进一步体现孔结构和生长因子VEGF共同作用能进一步促进细胞增殖。
[0057] 上面对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。