一个CRK22基因及其编码蛋白在马铃薯抗逆育种中的应用转让专利

申请号 : CN202111469828.8

文献号 : CN113980986B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 白薇李登高林睿周娜穆青慧何馨

申请人 : 内蒙古农业大学

摘要 :

本发明公开了一个CRK22基因及其编码蛋白在马铃薯抗逆育种中的应用。该基因来源于马铃薯,是富含半胱氨酸的类受体激酶StCRK22基因,该基因及其编码蛋白在马铃薯生物胁迫和非生物胁迫中发挥作用。该基因编码DNA序列如SEQ ID No:1所示,其蛋白产物氨基酸序列如SEQ ID No:2所示。通过本发明发现StCRK22可以显著提高马铃薯对致病疫霉和青枯菌的抗性,并显著提高马铃薯在高盐胁迫下的生存率。

权利要求 :

1.一种分离的多核苷酸,其特征在于,包括:

(a)一种多核苷酸,其核苷酸序列为SEQ ID NO:1所示;

(b)一种多核苷酸,其编码的氨基酸序列如SEQ ID NO:2所示;

或(c)一种多核苷酸,核酸序列(a)或(b)的全长互补序列;

上述(a)‑(c)之一的多核苷酸,其与野生型植株相比,降低致病疫霉的生物量/或降低青枯菌生物量/或提高植株高盐胁迫下的生存率。

2.如权利要求1所述分离的多核苷酸,其特征在于,所述多核苷酸如SEQ ID NO:1所示的核苷酸序列。

3.如权利要求1所述分离的多核苷酸,其特征在于,所述多核苷酸编码的多肽如SEQ ID NO:2所示的氨基酸序列。

4.如权利要求1‑3任一所述的多核苷酸,其特征在于,其编码的蛋白/肽链能够提高植物对病原菌的抗性或对高盐胁迫的耐受能力;所述病原菌为致病疫霉和/或青枯菌。

5.一种分离的蛋白质或多肽,其由权利要求1‑4任一所述的多核苷酸编码合成。

6.一种重组DNA构建体,其包含权利要求1‑4任一所述的多核苷酸和与其可操作连接的至少一个异源调控元件。

7.如权利要求6所述的构建体,其特征在于,所述构建体含有植物特异性启动子。

8.如权利要求7所述的构建体,其特征在于,植物特异性启动子可以是增强型、组成型、组织特异型启动子或诱导型启动子。

9.如权利要求1‑4任一所述的多核苷酸、权利要求5的蛋白质或多肽、权利要求6‑8任一所述的构建体在植物育种中的应用。

10.如权利要求9所述的在植物育种中的应用,其特征在于,所述应用为提高植物抗逆性。

说明书 :

一个CRK22基因及其编码蛋白在马铃薯抗逆育种中的应用

技术领域

[0001] 本发明涉及转基因生物技术领域,具体的涉及马铃薯来源的CRK22基因及其编码蛋白在马铃薯抗逆育种中的应用。

背景技术

[0002] 植物能够通过不同的系统响应感知外界胁迫信号,做出一系列生理生化的适应性调整,系统性创伤响应(Systemic wound response,SWR)应对创伤和植食性胁迫,系统性获得适应(Systemic acquired acclimation,SAA)应对高盐、干旱及低温等非生物胁迫,系统获得抗性(Systemic acquired resistance,SAR)应对包括病原微生物在内的生物胁迫。不同的胁迫条件刺激植物细胞产生不同的化学信号。
[0003] 植物类受体激酶(Receptor‑like kinase,RLK)在植物的整个生长发育过程中都扮演着非常重要的作用,富含半胱氨酸的类受体激酶(Cystein‑rich receptor‑like kinase,CRK)是RLK中的一大类,包括一个富含半胱氨酸的负责感知胞外信号的胞外结构域、跨膜结构域和负责胞内信号转导的保守的丝氨酸/苏氨酸(Ser/Thr)蛋白激酶结构域。
[0004] 调控基因表达的启动子分为组成型启动子、组织特异性启动子和诱导型启动子,组成型启动子对基因的表达调控没有时空特异性,在所有组织和发育阶段都持续表达;组织特异性启动子只在特定器官或组织部位驱动基因表达,并常表现出发育调节的特性;诱导型启动子对基因的表达调控受到特异的生物、物理或化学信号的刺激,例如光诱导启动子、热诱导启动子和地塞米松诱导启动子。
[0005] 目前利用组成型启动子过量表达抗逆基因来提高植物抗逆能力的报道较多,而很多抗逆基因只在逆境条件下才会提高表达量,持续的高表达经常会抑制植物生长,增加植物体能量消耗,加重代谢负荷,适用代价非常大,导致抗逆性虽然增加但牺牲了产量。而使用诱导型启动子可使目的基因只在诱导条件下表达而不影响植物的其它性状表达,避免毒害效应,既能提高抗逆性又不影响产量和其它性状。

发明内容

[0006] 本发明目的是提供一种来源于马铃薯的StCRK22编码序列及其所编码的蛋白质,并证明其可以提高马铃薯的抗病性和耐盐性。
[0007] 本发明提供的技术方案之一是:
[0008] 提供一种分离的多核苷酸,包括:
[0009] (a)一种多核苷酸,其核苷酸序列与SEQ ID NO:1相比具有至少80%以上的、85%以上的、90%以上的、93%以上的、95%以上的、96%以上的、97%以上的、98%以上的或99%以上的一致性;
[0010] (b)一种多核苷酸,其编码的氨基酸序列与SEQ ID NO:2相比具有至少80%以上的、85%以上的、90%以上的、93%以上的、95%以上的、96%以上的、97%以上的、98%以上的或99%以上的一致性;
[0011] (c)一种多核苷酸,其编码一个多肽,所述多肽的氨基酸序列与SEQ ID NO:3相比具有至少90%的序列一致性;
[0012] 或(d)一种多核苷酸,核酸序列(a)、(b)或(c)的全长互补序列;
[0013] 上述(a)‑(d)之一的多核苷酸,其与野生型植株相比,降低致病疫霉的生物量/或降低青枯菌生物量/或提高植株高盐胁迫下的生存率。
[0014] 优选的,所述多核苷酸包括与SEQ ID NO:1序列一致性至少为98%的核苷酸序列。
[0015] 优选的,所述多核苷酸编码的多肽包括与SEQ ID NO:2序列一致性至少为99%的氨基酸序列。
[0016] 优选的,多核苷酸其编码的蛋白/肽链能够提高植物对病原菌的抗性或对高盐胁迫的耐受能力。更优选的,病原菌为致病疫霉和/或青枯菌。
[0017] 本发明提供一种分离的蛋白质或多肽,其由上述的多核苷酸编码合成。
[0018] 本发明还提供一种重组DNA构建体,其包含上述任一的多核苷酸或编码上述蛋白质或多肽的多核苷酸,并与其可操作连接的至少一个异源调控元件。
[0019] 其中,上述构建体含有植物特异性启动子;优选的,植物特异性启动子可以是增强型、组成型、组织特异型启动子或诱导型启动子;优选的,组成性表达启动子是花椰菜花叶病毒(CaMV)35S启动子、玉米Ubiquitin启动子或水稻actin1启动子,组织特异型启动子是种子特异性表达启动子、花特异性表达启动子或根特异性表达启动子,诱导型启动子是受ABA、乙烯、乙醇、雌激素或地塞米松诱导的启动子。
[0020] 本发明的另一方面,提供上述多核苷酸、蛋白质或多肽、重组构建体在植物育种中的应用,所述植物为双子叶植物;优选的,所述植物为茄科植物;优选的,所述植物为苜蓿、稻、小麦、大麦、黑麦、棉花、向日葵、花生、玉米、马铃薯、甘薯、菜豆、豌豆、菊苣、生菜、苣荬菜、卷心菜、白菜、抱子甘蓝、甜菜、欧洲防风草、芜青、花椰菜、西兰花、小萝卜、菠菜、洋葱、大蒜、茄子、胡椒、芹菜、胡萝卜、南瓜、西葫芦、美洲南瓜、黄瓜、苹果、梨、甜瓜、柑橘、桃、草莓、葡萄、覆盆子、菠萝、大豆、苜蓿属、烟草、番茄、高粱和甘蔗;更优选的,所述植物为马铃薯。
[0021] 上述在植物育种中的应用,包括提高植物抗逆性;优选的,所述抗逆性为抗病性;更优选的,抗病性为抗致病疫霉或青枯菌;优选的,所述抗逆性为提高植物盐胁迫抗性;更优选的,盐胁迫下盐胁迫响应基因表达量升高;更优选的,盐胁迫响应基因为NCED3和/或P5CS。NCED3和P5CS为盐胁迫响应基因,表达量提高表明激活了抗盐相关途径。
[0022] 上文提及的组成型启动子是在生物体全部发育和生活周期中控制基因表达的启动子。一些广泛用于诱导转基因表达的组成型启动子的例子包括来自根癌农杆菌的胭脂碱(nopaline)合酶(NOS)基因启动子、花椰菜花叶病毒(cauliflower mosaic virus)(CaMV)35S和19S启动子、那些来自任何肌动蛋白基因的启动子,所述肌动蛋白基因已知在大多数细胞类型中表达以及泛素启动子,所述泛素启动子是已知在许多细胞类型中累积的基因产物。
[0023] 诱导型启动子是应答诱导剂可直接或间接活化一个或更多DNA序列或基因转录的启动子。缺乏诱导剂时,不转录DNA序列或基因。诱导剂可为化学试剂,如代谢产物、生长调节剂、除草剂或酚化合物,或者直接强加于植物的生理应激如冷、热、盐、毒素,或者通过病原体或疾病因素的作用如病毒或真菌。将含有诱导型启动子的植物细胞暴露于诱导剂,可通过在外部对细胞或植物施用诱导剂,如喷洒、洒水、加热,或暴露给有效病原体。合适的诱导型启动子的例子是糖皮质激素诱导启动子。在转化的植物中,当转基因植物开始与纳摩尔浓度的糖皮质激素接触,或与糖皮质激素的类似物地塞米松接触时,转基因编码的蛋白质可被诱导表达。此外,诱导型启动子包括以组织特异性方式在选择的植物组织内调控目的基因中发挥功能的启动子。这种组织特异性或发育调节启动子的例子包括本领域所熟知的种子、花、果实或根特异性启动子。
[0024] 已发展许多组织和器官特异性启动子用于植物遗传工程。这些启动子的例子包括花特异性启动子、种子特异性启动子、根特异性启动子、果实特异性启动子以及块茎/储藏器官特异性启动子。如果转基因在整个植物表达有不利作用,则定向表达引入基因(转基因)是必要的。另一方面,在整个植物沉默基因也有负作用。然而,通过组织特异性启动子将沉默局限到一个区域可避免此问题。
[0025] 组成性表达启动子可为花椰菜花叶病毒(CaMV)35S启动子,玉米Ubiquitin启动子或水稻actin1启动子等;所述组织特异性表达启动子可为种子特异性表达启动子、花特异性表达启动子或根特异性表达启动子;所述诱导型启动子可为受ABA、乙烯、乙醇、雌激素或地塞米松等诱导的启动子。它们可单独使用或与其它的植物启动子结合使用。
[0026] 本发明的有益效果为:
[0027] 1、本发明克隆到一个调控马铃薯抗逆相关的类受体激酶StCRK22,其核酸序列为SEQ ID NO:1;并构建表达载体,成功表达其蛋白序列,蛋白序列为SEQ ID NO:2。
[0028] 2、本发明通过克隆马铃薯StCRK22 CDS序列,构建由诱导型启动子驱动的植物双元表达载体,转化马铃薯获得转基因马铃薯,经地塞米松诱导后其中的2个转化株系StCRK22的表达量分别比诱导前增加了4.4和4.6倍。
[0029] 3、进一步验证了StCRK22基因的过表达可提高转基因植株的抗病性,包括致病疫霉和青枯菌;提高了对高盐胁迫的耐受性。与野生型相比转基因马铃薯可使致病疫霉的生物量降低26%,使青枯菌的生物量降低32%;在高盐胁迫下的生存率提高165%。
[0030] 4、本发明的StCRK22是调控植物抗病和盐胁迫能力的重要类受体激酶,对StCRK22的功能解析为马铃薯及其他作物分子育种增加新的备选基因,具有很大潜在利用价值。

附图说明

[0031] 图1马铃薯StCRK22基因表达载体的构建流程图及质粒示意图。
[0032] 图2StCRK22‑pMD19‑T菌落PCR鉴定图,M为DL5,000DNA Marker(3428ATakara)。
[0033] 图3StCRK22‑pMD19‑T酶切鉴定图,M为DL5,000DNA Marker(3428ATakara)。
[0034] 图4StCRK22‑pENTR L16的菌落PCR鉴定图,M为DL5,000DNA Marker(3428A Takara)。
[0035] 图5StCRK22‑pENTR L16的酶切鉴定图。
[0036] 图6StCRK22‑GC TA 7002转基因植物PCR鉴定。
[0037] 图7转基因马铃薯StCRK22基因的表达水平。图7A中OE1‑5为5个独立的检测阳性的转基因马铃薯株系,a、b表示显著性差异,同字母之间代表无显著差异(p>0.05),不同字母代表有显著差异(p<0.05);图7B为两个转基因株系StCRK22‑OE1、StCRK22‑OE4及未转基因对照植株。
[0038] 图8马铃薯、致病疫霉和青枯菌使用特异性引物qPCR获得的标准曲线,A为马铃薯、B为致病疫霉、C为青枯菌。
[0039] 图9转基因马铃薯接种致病疫霉后PR基因表达量。分别检测病程相关蛋白基因StPR1b、StPR5、StPR2的表达量。
[0040] 图10转基因马铃薯接种致病疫霉后的酶活性。在0h、12h、24h分别检测致病疫霉感染后CAT、POD、SOD表达量。
[0041] 图11转基因马铃薯受致病疫霉侵染后的致病疫霉生物量。采用DEX诱导或对照处理后转基因马铃薯中致病疫霉的生物量。
[0042] 图12转基因马铃薯接种青枯菌后的酶活性。在0h、12h、24h分别检测青枯菌感染后CAT、POD、SOD表达量。
[0043] 图13转基因马铃薯受青枯菌感染后的青枯菌生物量。采用DEX诱导或对照处理后转基因马铃薯中青枯菌的生物量。
[0044] 图14经高盐胁迫后盐胁迫响应基因StP5CS和StNCD3基因表达量的影响。
[0045] 图15转基因马铃薯在盐胁迫条件下的生存率。

具体实施方式

[0046] 以下实施例用于说明本发明,但不用来限制本发明的范围。
[0047] 以下实施例中所使用的实验方法如无特殊说明,均为常规方法。
[0048] 以下实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
[0049] 下面结合附图通过实施例来对本发明进行详细说明,但并不是对本发明的限制,仅作为示例说明。
[0050] 实施例中所用的病原菌株
[0051] 试验中所用的马铃薯晚疫病的病原菌是致病疫霉HQK8‑3,为A1交配型,由内蒙古农业大学生命科学学院刘惠荣教授惠赠。马铃薯青枯病的病原菌是青枯雷尔氏菌,购自中国普通微生物菌种保藏管理中心。
[0052] 实施例中使用的试剂和载体
[0053] 试验中所用的克隆载体为改造的pENTR‑D TOPO载体(Invitrogen)‑L16,即在pENTR‑D TOPO载体的attL1后加入一段多克隆位点,命名为pENTR‑L16,转入DH 5α大肠杆菌菌株中保存。
[0054] 所用组成型启动子驱动的双元表达载体为pRI‑101AN,其上的启动子是来源于CaMV的35S启动子;诱导型启动子驱动的双元载体为与pENTR载体系列兼容的pGC TA 7002(DB3.1菌株中保存),又名GVG TA7002,可通过重组将目的片段整合到双元载体中,且带有地塞米松(DEX)诱导型启动子。
[0055] LR ClonaseTM II Enzyme Mix购自Invitrogen公司;Trizol试剂、RNA反转录试剂盒Prime Script TM 1st Strand cDNA Synthesis Kit、Ex Taq DNA Polymerase、T4 DNA ligase、限制性内切酶、RNase A 等均购自Takara公司;质粒提取试剂盒及凝胶回收试剂盒等购自天根生化科技有限公司;pEASY‑T1载体购自全氏金生物科技有限公司;卡那霉素(Kan)、利福平(Rif)等抗生素均购自美国Amerisco公司;其他药品及试剂均为国产分析纯。
[0056] 本发明的实施方案依赖于遗传工程和分子生物学领域中使用的常规技术和方法。以下资料包括对可根据本发明使用的一般方法学的描述:Sambrook等人《,分子克隆实验指南》(Molecular Cloning:A Laboratory Manual)(第2版,1989年);Kreigler,《基因转移和表达实验指南》(Gene Transfer And Expression;ALaboratoryManual),1990年;以及Ausubel等人编辑,《分子生物学实验手册》(Current Protocols In Molecular Biology),
1994年。除非本文另外定义,否则本文使用的所有技术和科学术语具有本发明所属领域的普通技术人员通常理解的相同含义。
[0057] 实施例1StCRK22 CDS序列克隆
[0058] 1.提取RNA
[0059] 以马铃薯测序完成的双单倍体品种DM1‑3 516R44(S.tuberosum group Phureja DM1‑3 516R44)的无菌组培苗为材料,提取RNA。
[0060] 2.合成cDNA
[0061] 以上述RNA为模板,以Takara试剂公司的Prime ScriptTM RT‑PCR Kit合成cDNA,方法如下:
[0062] 配制下列反应体系
[0063]
[0064] 65℃静置5min,立刻置于冰上冷却;
[0065] 在上述反应管中再加入以下体系
[0066]
[0067] 混匀42℃静置60min,70℃静置15min,放入‑20℃保存备用。
[0068] 3.克隆目的基因StCRK22
[0069] 以cDNA为模板,用引物CRK22‑F SEQ ID NO:3和CRK22‑R SEQ ID NO:4进行PCR扩增CRK22的CDS序列,扩增体系如下:
[0070]
[0071] PCR循环反应条件如下:
[0072]
[0073] PCR产物用1%的琼脂糖凝胶电泳检测,并用Zymoclean Gel DNA Recovery kit胶回收目的基因。
[0074] 4.构建克隆载体
[0075] 将上述胶回收产物与pMD‑19T克隆载体连接,构建pCRK22‑MD‑19T载体,连接体系如下:
[0076]
[0077]
[0078] 在16℃反应8小时,在‑20℃冻存备用。
[0079] 连接产物转化DH5α大肠杆菌感受态细胞,转化方法如下:
[0080] 将50ul DH5α感受态细胞在冰浴中溶解。在感受态细胞中加入2ul连接产物,轻轻混匀并冰浴30min。在42℃热激40s,立即置于冰上5min。加入1ml LB液体培养基并在180rpm 37℃孵育1h。吸取100ul涂布于含有Amp抗生素的LB(蓝白斑筛选)固体培养基上。37℃培养过夜。
[0081] 5.pStCRK22‑PMD19T载体的菌落PCR鉴定和酶切鉴定
[0082] (1)菌落PCR鉴定
[0083] 在平板上分别挑取多个单克隆阳性菌在10ul无菌水中溶解,吸取2ul作模板,用引物CRK22‑F(SEQ ID NO:3)和CRK22‑R(SEQ ID NO:4)进行PCR扩增,用1%的琼脂糖凝胶电泳检测。结果如图2所示。
[0084] (2)酶切鉴定
[0085] 将阳性菌落在LB液体培养基中扩大培养,提取质粒。质粒提取方法如下:
[0086] 挑取单菌落于LB液体培养基中,180rpm,37℃过夜培养。将菌液转移至离心管,12000rpm,4℃离心5min,弃上清液,加150μL SolutionⅠ混匀。加入150μLSolutionⅡ上下颠倒6‑8次混匀。再加入150μL SolutionⅢ上下颠倒混匀6‑8次,冰浴3‑5min,12000rpm,4℃离心10min。将上清液转移到新的离心管中。加两倍体积的无水乙醇,混匀后,室温静置2min,
12000rpm,4℃离心5min,弃上清液。再加500μL 70%乙醇轻轻弹动清洗沉淀,12000rpm,室温离心2min,彻底弃除上清液,超净工作台放置数分钟,至沉淀干燥。用50μL 1mM Tris‑HCl(PH8.0),在65℃水浴中放置5min,涡旋混匀至沉淀完全溶解。‑20℃保存。
[0087] 质粒酶切鉴定,酶切体系如下:
[0088]
[0089] 将酶切产物在1%琼脂糖凝胶电泳检测,将鉴定正确的质粒送测序并与数据库比对。用SacI和BamHI酶切鉴定结果如图3所示。
[0090] 实施例2StCRK22植物双元表达载体构建
[0091] 1.35S启动子驱动的StCRK22双元表达载体构建
[0092] (1)将测序正确的StCRK22‑pMD19‑T载体和pRI101‑AN载体分别用BamH I和Sac I双酶切3h,酶切体系如下:
[0093]
[0094] (2)将全部酶切产物用1%的琼脂糖凝胶电泳检测,并用Zymoclean Gel DNA Recovery kit胶回收目的片段。
[0095] (3)用T4 DNA Ligase连接酶切产物,16℃连接8h,连接体系如下:
[0096]
[0097] (4)将连接产物即组成型启动子35S驱动的双元表达载体StCRK22‑pRI‑101AN转化大肠杆菌DH5α感受态,进行菌落PCR鉴定和酶切鉴定,方法同上,送公司测序,保存测序成功的菌株。
[0098] (5)提取测序正确质粒DNA保存到‑20℃备用。
[0099] 2.DEX诱导型启动子驱动的StCRK22双元表达载体构建
[0100] (1)构建Gateway的StCRK22入门载体
[0101] a.培养活化并提取pENTR‑L16质粒,提取方法同上。
[0102] b.将上述测序正确的pStCRK22‑pMD19‑T载体和pENTR‑L16载体分别用BamH I和Sac I双酶切3h,酶切体系如下:
[0103]
[0104] c.用Zymoclean Gel DNA Recovery kit胶回收目的片段。
[0105] d.用T4 DNA Ligase连接酶切产物,16℃连接8h,连接体系如下:
[0106]
[0107] e.将连接产物转化大肠杆菌DH5α感受态,进行菌落PCR鉴定和酶切鉴定,方法同上,送公司测序,保存测序成功pStCRK22‑pENTR‑L16质粒的菌株。
[0108] (2)构建双元表达载体pStCRK22‑GC TA7002
[0109] a.培养活化并提取StCRK22‑pENTR‑L16质粒方法同上。
[0110] b.培养活化pGC TA 7002(DB3.1菌株),方法同上。
[0111] c.单酶切使StCRK22‑pENTR‑L16线性化
[0112]
[0113] d.用Zymoclean Gel DNA Recovery kit胶回收目的片段。
[0114] e.LR反应将目的片段克隆到双元表达载体pGC TA 7002,反应体系如下:
[0115]
[0116] f.将上述反应液涡旋混匀,25℃反应1h后加入1ul蛋白酶K,涡旋混匀,37℃反应10min。
[0117] g.将LR反应产物,即双元表达载体pStCRK22‑GC TA7002转化大肠杆菌感受态细胞,进行菌落PCR鉴定(图4)和酶切鉴定(图5),方法同上,送公司测序。
[0118] 双元表达载体pStCRK22‑GC TA7002构建流程参见图1。
[0119] 实施例3StCRK22双元表达载体转化马铃薯
[0120] 1.StCRK22双元表达载体质粒转化农杆菌
[0121] 制备农杆菌EHA105感受态细胞,将前述实施例中制备的StCRK22双元表达载体质粒电转化如农杆菌EHA105感受态细胞中,电转条件:电容25uF、电阻200Ω、电压2.5KV的条件在电转仪上电击转化。电击转化后的混合液转移至1ml LB液体培养基中,以100rpm在28℃培养3h。并将培养液在LB固体培养基上涂平板,在28℃培养2天,菌落PCR鉴定。
[0122] 将上述鉴定转化成功的农杆菌在YEP平板(Kan)上划线培养1‑2天挑去单菌落到含有20mL YEP液体培养基(Kan)的50mL的离心管中,30℃震荡培养2天。8000rpm离心10min,弃上清液用20mL的液体培养基重悬制成农杆菌悬浮液备用。
[0123] 2.农杆菌介导的马铃薯转化方法
[0124] 选用马铃薯底西芮无菌苗,将马铃薯茎叶段插入MS固体培养基,24℃,16hr光照;20℃,8hr黑暗交替培养。
[0125] 将培养4‑6周无菌苗节间的茎切成大约1‑2mm的小段外植体。将外植体浸泡在前述农杆菌悬液中20min,每组大约浸泡250个。
[0126] 浸泡结束后转移到无菌平皿中,用镊子夹取茎段放在新配置好的共培养培养基平皿上,每个平皿上放约50个茎段。用透气的微孔滤膜将平皿封好,19℃暗培养2‑4天。
[0127] 转移共培养的马铃薯茎段到再生培养基的平皿(含有Kan和Timentin)中,置于光照培养箱中,19℃全光照培养。每14天更换一个新的再生培养基的平皿到再生的小植株出现。当小植株长到至少0.5cm长时剪下转移到含有繁殖培养基的组培瓶中。
[0128] 将培养瓶放在光照培养箱中,采用光照培养与暗培养交替的方式。24℃光照培养8hr,16℃暗培养16hr。培养几周后到植株生根为止。如果植株60天到90天还未见生根,可以弃掉。
[0129] 3.转基因植株的鉴定方法
[0130] 提取转基因植株DNA,组成型启动子质粒以引物NF‑1(SEQ ID NO:5)和NF‑2(SEQ ID NO:6)对DNA进行PCR扩增,扩增靶标为新霉素磷酸转移酶基因;诱导型启动子的用引物Hyg‑1(SEQ ID NO:7)和Hyg‑2(SEQ ID NO:8)进行扩增,扩增靶标为潮霉素B磷酸转移酶基因。
[0131] 检测反应体系如下:
[0132]
[0133]
[0134] PCR扩增条件如下:
[0135]
[0136] 用1.5%的琼脂糖凝胶电泳检测PCR产物。
[0137] 结果如下:利用农杆菌介导的植物转化方法将StCRK22‑pRI 101AN转化马铃薯,通过将963个马铃薯节间茎外植体与农杆菌共培养后诱导愈伤,将在抗性培养基中长出的独立马铃薯幼苗培养扩繁,能生根存活的幼苗为6株,提取基因组DNA,用引物NF‑1和NF‑2通过PCR扩增表达载体所携带的新霉素转移酶基因,未能鉴定出转基因马铃薯。
[0138] 利用农杆菌介导的植物转化方法将StCRK22‑GC TA 7002转化马铃薯,通过将253个马铃薯节间茎外植体与农杆菌共培养后诱导愈伤,将在抗性培养基中长出的19棵独立马铃薯幼苗培养扩繁,能生根存活的幼苗为5株,提取基因组DNA,用引物Hyg‑1和Hyg‑2通过PCR扩增表达载体所携带的潮霉素B磷酸转移酶基因,鉴定出5个转基因马铃薯,琼脂糖凝胶电泳检测。PCR产物结果如图6所示,有507bp预期大小特异性目的条带。
[0139] 实施例4转基因马铃薯StCRK22基因诱导型转录水平检测
[0140] 1.DEX诱导表达:
[0141] DEX先用DMSO溶解后,再用0.05%的Tween 20稀释到100μM,叶片喷施,以诱导StCRK22的表达。野生型为未转基因的马铃薯品种底西芮,培养和处理条件同转基因株系。
[0142] 2.转基因马铃薯StCRK22基因诱导型转录水平检测
[0143] DEX喷施8hr后取样,提取RNA反转录为cDNA,用CRK22q‑F(SEQ ID NO:9)和CRK22q‑R(SEQ ID NO:10)引物进行RT‑qPCR,延伸因子1α(elongation factor 1α,EF1α)为内参基因,引物为EF1α‑3(SEQ ID NO:11)和EF1α‑4(SEQ ID NO:12)。采用2–ΔΔCT计算基因的相对表达量。反应体系如下:
[0144]
[0145] 反应条件如下:
[0146]
[0147]
[0148] 通过对转基因马铃薯和野生型的StCRK22基因转录水平进行鉴定,结果表明在不诱导的情况下在转录水平没有差异,鉴定结果如图7所示。DEX诱导后,转基因马铃薯在转录水平表现出了显著的升高。如图7A,浅灰色的为用灭菌的双蒸水做对照处理后StCRK22基因的表达水平,深灰色的为经DEX诱导后StCRK22基因的表达水平;图7B为两个转基因株系StCRK22‑OE1、StCRK22‑OE4及未转基因对照植株。
[0149] 选用StCRK22‑OE1和StCRK22‑OE4两株DEX诱导高水平表达StCRK22基因的株系进行后续抗病实验。
[0150] 实施例5转基因马铃薯对致病疫霉和青枯菌的抗性检测
[0151] 1、致病疫霉培养及孢子囊收集
[0152] (1)将致病疫霉接种在新鲜的黑麦培养基上,19℃,暗培养7‑10天(使疫霉菌扩散到整个培养基)。
[0153] (2)取5ml 7℃预冷无菌水加在疫霉菌平板上,用涂布器涂匀后将菌丝体刮下(注:溶液看上去呈乳白色),再加5ml 7℃预冷无菌水清洗收集,以此方法在多个疫霉菌平板收集备用。
[0154] (3)将收集液用50μm的滤膜过滤即得到孢子囊悬液,将滤液转移到50mL离心管中,7℃,3300rpm离心10min,轻轻吸出上清,留下10mL液体重悬孢子囊,将孢子囊悬液在7℃静置30min释放孢子。
[0155] (4)用血球计数板在显微镜下计数。分别稀释至105、106、107游动孢子悬液备用。
[0156] 2、青枯雷尔氏菌培养及菌体收集
[0157] 将‑80℃甘油冻存的菌株在LB固体培养基划线活化培养30℃,2天。在平板上挑取单菌落在LB液体培养基中培养,180rpm,30℃,2天。5000rpm,3min钟离心收集菌体,去上清,用等体积无菌水重悬。
[0158] 3、马铃薯基因组DNA、致病疫霉生物量、青枯菌生物量定量标准曲线的绘制[0159] a)马铃薯基因组DNA定量标准曲线的绘制
[0160] (1)将马铃薯基因组DNA分别稀释至0.02ng/ul、0.2ng/ul、2ng/ul、20ng/ul、200ng/ul。
[0161] (2)以EF1αF(SEQ ID NO:13),EF1αR(SEQ ID NO:14)为引物进行qPCR检测,反应条件及体系如下:
[0162]
[0163]
[0164]
[0165] (3)标准曲线的绘制:以log10(马铃薯DNA量)为横坐标,以qPCR反应Ct值为纵坐标建立标准曲线(如图8A)。
[0166] b)致病疫霉生物量定量标准曲线的绘制
[0167] (1)将致病疫霉DNA分别稀释至0.002ng/ul、0.02ng/ul、0.2ng/ul、2ng/ul、20ng/ul。
[0168] (2)以PiO8‑3‑3F(SEQ ID NO:15),PiO8‑3‑3R(SEQ ID NO:16)为引物进行qPCR检测,除引物不同外,qPCR反应体系及反应条件同上。
[0169] (3)标准曲线的制定:以log10(致病疫霉DNA量)为横坐标,以qPCR反应Ct值为纵坐标建立标准曲线(如图8B)。
[0170] c)青枯菌生物量定量标准曲线的绘制
[0171] (1)将青枯菌DNA分别稀释至0.002ng/ul、0.02ng/ul、0.2ng/ul、2ng/ul、20ng/ul。
[0172] (2)以RS‑1F,RS‑1R为引物进行qPCR检测,除引物不同外,qPCR反应体系及反应条件同上。
[0173] (3)标准曲线的制定:以log10(青枯菌DNA量)为横坐标,以qPCR反应Ct值为纵坐标建立标准曲线(如图8C)。
[0174] 4、致病微生物侵染转基因植物
[0175] 将转基因马铃薯和对照喷施100μM DEX,24hr后用无菌喷雾器均匀喷撒120ul的浓6
度为10cfu孢子液。
[0176] 培养青枯菌菌体至OD600为1.8,5000rpm离心5min沉淀菌体,用无菌水重悬并稀释至OD600为0.5。用无菌喷雾器将转基因马铃薯和对照均匀喷施120ul青枯菌收集液,用无菌水作对照。
[0177] 5、实时荧光定量RT‑qPCR检测接种植物后的病原菌生物量
[0178] 1)RT‑qPCR方法对致病疫霉病原菌定量分析
[0179] 将接种致病疫霉孢子悬浮液10天后的马铃薯试管提取DNA做模板,利用RT‑qPCR检测样品中EF1α和PiO8基因,通过标准曲线分别求出EF1α和PiO8的量,用PiO8/EF1α表示致病疫霉的相对生物量,反应条件及体系如下:
[0180]
[0181]
[0182] 2)RT‑qPCR方法对青枯病病原菌定量分析
[0183] 将接种青枯菌2天后的马铃薯试管苗提取DNA做模板,利用RT‑qPCR检测样品中EF1α和HrpB基因,通过标准曲线分别求出EF1α和HrpB的量,用HrpB/EF1α表示青枯菌的相对生物量。反应条件及体系如下:
[0184]
[0185]
[0186] 6、接种致病菌后病程相关蛋白基因表达量检测
[0187] 将喷施DEX 24hr后接种致病疫霉StCRK22转基因及野生型马铃薯,分别在接种处理0h、2h、4h、8h、12h、24h后取样,提取RNA,反转录成cDNA,利用RT‑qPCR检测PR基因的表达,方法同上。所用检测引物如下表所示:
[0188]
[0189] 用马铃薯晚疫病的病原菌‑‑致病疫霉HQK8‑3孢子处理马铃薯后,转基因马铃薯中的病程相关蛋白基因StPR1b、StPR5、StPR2表达量显著上升(图9)。
[0190] 7、接种致病疫霉后抗性相关酶活性检测
[0191] a)过氧化氢酶(CAT)活性检测:马铃薯StCRK22转基因试管苗及野生型在MS固体培养基快繁,24℃,16hr光照;20℃,8hr黑暗交替培养28天。用致病疫霉孢子液或青枯菌分别处理DEX诱导24hr后的StCRK22转基因及野生型马铃薯,取样测定CAT活性。CAT活性测定采用紫外分光光度计法。
[0192] b)超氧化物歧化酶(SOD)活性检测:将马铃薯StCRK22转基因试管苗及野生型在MS固体培养基快繁,24℃,16hr光照;20℃,8hr黑暗交替培养21天。用致病疫霉孢子液或青枯菌分别处理DEX诱导24hr后的StCRK22转基因及野生型马铃薯,测定SOD活性。
[0193] c)过氧化物酶(POD)活性检测:
[0194] 将马铃薯StCRK22转基因试管苗及野生型在MS固体培养基快繁,24℃,16hr光照;20℃,8hr黑暗交替培养21天。用致病疫霉孢子液或青枯菌分别处理DEX诱导24hr后的StCRK22转基因及野生型马铃薯,取样测定POD活性。
[0195] 结果显示,过氧化物酶(POD)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性均高于野生型和对照(图10),致病疫霉的生物量比野生型减少了26%(图11)。
[0196] 接种青枯菌后,转基因马铃薯中的POD、CAT和SOD活性更高(图12),青枯菌的生物量减少了32%(图13)。转基因马铃薯表现出对致病疫霉和青枯菌更强的抗病能力。
[0197] 实施例6转基因马铃薯对盐胁迫的响应
[0198] 将马铃薯StCRK22转基因试管苗及野生型在MS固体培养基快繁后用150mM NaCl溶液处理DEX诱导后的StCRK22转基因及野生型马铃薯,分别在处理0h、2h、4h、8h后取样,提取RNA,反转录成cDNA,利用RT‑qPCR检测胁迫响应基因StP5CS和StNCD3基因的表达。150mM NaCl溶液处理14天后检测StCRK22转基因试管苗及野生型的存活率。反应条件及体系如下:
[0199]
[0200]
[0201] 涉及引物序列如下:
[0202]
[0203] 结果如图14所示,经高盐胁迫后转基因马铃薯中StP5CS和StNCD3基因的表达量显著提高。
[0204] 在高盐培养基中检测能够存活的植株结果如图15所示,转基因马铃薯较野生型的生存率提高了165%。
[0205] 虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。