单星与地基设备联合的再入预报方法、装置和电子设备转让专利

申请号 : CN202210098432.5

文献号 : CN114114359B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张炜王秀红马鑫崔文杨洋田鑫王臻泓陈思睿

申请人 : 中国人民解放军32035部队

摘要 :

本发明公开了一种单星与地基设备联合的再入预报方法,包括:基于地基设备获取的探测数据,确定再入目标的初始轨道数据,并解算出初始弹道系数;利用初始轨道数据和初始弹道系数,预报再入目标的再入轨迹;根据再入轨迹预报多颗卫星对再入目标的可见性,并根据预报结果调整其中的可见卫星经过再入轨迹的空域时的侦照策略;基于一颗可见卫星对再入目标的监测数据,对初始弹道系数进行修正,得到修正后弹道系数;利用初始轨道数据和修正后弹道系数,获得再入目标的再入预报结果。本发明利用低轨巨型星座重访率高的优势,通过地基探测数据引导天基卫星对再入目标的再入轨迹进行监测来修正弹道系数,从而进行再入目标预报,可提高再入预报精度。

权利要求 :

1.一种单星与地基设备联合的再入预报方法,其特征在于,包括:基于地基设备获取的探测数据,确定再入目标的初始轨道数据,并解算出初始弹道系数;

利用所述初始轨道数据和所述初始弹道系数,预报所述再入目标的再入轨迹;其中,所述再入轨迹包括多个轨道数据,预报的截止高度为预设高度;

根据所述再入轨迹预报多颗卫星对所述再入目标的可见性,并根据预报结果调整其中的可见卫星经过所述再入轨迹的空域时的侦照策略;

基于一颗可见卫星对所述再入目标的监测数据,对所述初始弹道系数进行修正,得到修正后弹道系数;

利用所述初始轨道数据和所述修正后弹道系数,获得所述再入目标的再入预报结果;

其中,所述再入预报结果包括再入时刻、再入窗口和落点经纬度。

2.根据权利要求1所述的单星与地基设备联合的再入预报方法,其特征在于,所述根据所述再入轨迹预报多颗卫星对所述再入目标的可见性,并根据预报结果调整其中的可见卫星经过所述再入轨迹的空域时的侦照策略,包括:根据所述预报结果中所述多颗卫星对所述再入轨迹的可见情况,确定多个可见卫星;

其中,所述可见情况包括卫星对所述再入轨迹的可见时段和可见时长;

根据所述可见情况,以及可见卫星和所述再入轨迹的相对位置关系,调整所述多个可见卫星的侦照角度以监测所述再入目标的再入轨迹。

3.根据权利要求1所述的单星与地基设备联合的再入预报方法,其特征在于,所述基于一颗可见卫星对所述再入目标的监测数据,对所述初始弹道系数进行修正,得到修正后弹道系数,包括:

利用一颗可见卫星对所述再入目标的监测数据,采用区域元时间差的方法,对所述初始弹道系数进行修正,得到修正后弹道系数。

4.根据权利要求3所述的单星与地基设备联合的再入预报方法,其特征在于,所述利用一颗可见卫星对所述再入目标的监测数据,采用区域元时间差的方法,对所述初始弹道系数进行修正,得到修正后弹道系数,包括:S001,解析所述监测数据,并将其转换成点迹序列;其中,所述点迹序列包括多个点数据,每个点数据包括观测时刻、星下点经度和星下点纬度;

S002,设置积分初值为所述初始轨道数据和所述初始弹道系数,积分步长为预设的第一积分步长;

S003,使用数值法进行轨道积分;

S004,判断积分结束时刻与所述一颗可见卫星的首点观测时刻之差是否小于所述第一积分步长;若否,返回S003;若是,执行S005;

S005,将积分步长减小为预设的第二积分步长;

S006,使用数值法进行轨道积分;

S007,将各次积分结束时刻得到的所述再入目标的状态矢量转换为大地坐标;

S008,针对每个大地坐标,判断该大地坐标与所述点迹序列中某点的位置差是否小于或等于预设位置差阈值;若否,返回S006;若是,执行S009;

S009,利用计算所述位置差时的大地坐标和所述点迹序列中某点分别对应的时刻,以及所述首点观测时刻,计算得到经过同一区域元时观测时刻与预报时刻的时间差;

S010,判断积分结束时刻是否大于所述点迹序列中最后的观测时刻;若否,返回S006;

若是,执行S011;

S011,利用所述初始弹道系数和得到的多个时间差,计算弹道系数的修正因子;

S012,判断所述修正因子与所述初始弹道系数之商的绝对值是否小于预设的收敛阈值;若否,返回S002;若是,执行S013;

S013,将所述初始弹道系数与所述修正因子求和得到修正后弹道系数。

5.根据权利要求4所述的单星与地基设备联合的再入预报方法,其特征在于,所述针对每个大地坐标,判断该大地坐标与所述点迹序列中某点的位置差是否小于或等于预设位置差阈值,包括:

针对每个Qj,判断其与所述点迹序列中某点Pk(tk ,Bk ,Lk)的位置差是否小于或等于ε;

其中,所述点迹序列表示为{Pl(tl,Bl,Ll)|l=1,2,…},{Pl(tl,Bl,Ll)|l=1,2,…}中的tl、Bl和Ll分别为所述点迹序列中第l个点数据的观测时刻、星下点经度和星下点纬度;大地坐标表示为Qj(tj,Bj,Lj),j=1,2,…,Qj(tj,Bj,Lj),j=1,2,…中的tj、Bj和Lj分别为第j个大地坐标中的预报时刻、星下点经度和星下点纬度;ε表示预设位置差阈值;k表示所述点迹序列中点数据的序号,k为大于0的自然数,且上限值为所述点迹序列中点数据的总数。

6.根据权利要求4或5所述的单星与地基设备联合的再入预报方法,其特征在于,所述时间差的计算公式,包括:

其中,Δt表示所述时间差;t0表示所述首点观测时刻;tj和tk分别表示计算所述位置差时的大地坐标和所述点迹序列中某点分别对应的时刻。

7.根据权利要求6所述的单星与地基设备联合的再入预报方法,其特征在于,所述修正因子的计算公式,包括:

其中,ΔB表示所述修正因子;B0表示所述初始弹道系数; 表示得到的多个时间差的总和;N表示多个时间差的数量。

8.根据权利要求4所述的单星与地基设备联合的再入预报方法,其特征在于,所述第一积分步长为10秒,所述第二积分步长为0.1秒。

9.一种单星与地基设备联合的再入预报装置,其特征在于,包括:轨道数据和弹道系数初始获取模块,用于基于地基设备获取的探测数据,确定再入目标的初始轨道数据,并解算出初始弹道系数;

再入轨迹预报模块,用于利用所述初始轨道数据和所述初始弹道系数,预报所述再入目标的再入轨迹;其中,所述再入轨迹包括多个轨道数据,预报的截止高度为预设高度;

卫星侦照策略调整模块,用于根据所述再入轨迹预报多颗卫星对所述再入目标的可见性,并根据预报结果调整其中的可见卫星经过所述再入轨迹的空域时的侦照策略;

弹道系数修正模块,用于基于一颗可见卫星对所述再入目标的监测数据,对所述初始弹道系数进行修正,得到修正后弹道系数;

再入预报结果计算模块,用于利用所述初始轨道数据和所述修正后弹道系数,获得所述再入目标的再入预报结果;其中,所述再入预报结果包括再入时刻、再入窗口和落点经纬度。

10.一种电子设备,其特征在于,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;

存储器,用于存放计算机程序;

处理器,用于执行存储器上所存放的程序时,实现权利要求1‑8任一所述的方法步骤。

说明书 :

单星与地基设备联合的再入预报方法、装置和电子设备

技术领域

[0001] 本发明属于航天测量与控制领域,具体涉及一种单星与地基设备联合的再入预报方法、装置和电子设备。

背景技术

[0002] 绕地运行的低轨空间目标在完成任务后,受大气阻力作用,其轨道高度会逐渐降低,除少数航天器会在控制下安全返回底面,其他目标则会无控进入大气层,即发生再入事
件。
[0003] 大质量空间目标在再入过程中并不会被完全烧毁,仍有10~40%的残骸返回地球表面,这会对地表的生命群体、建筑设施、生态环境等产生很大威胁,这种目标也被称为危
险再入目标。对危险再入目标保持连续监测,并迭代预报其再入事件及再入地点,是当前有
效规避损害、为相关部门决策提供支撑的重要手段。再入预报的主要难点在于轨道确定和
大气阻力建模,受限于当前半经验性大气模型的精度,当前短期精密再入预报的相对误差
一般为15%左右,即提前10天预报,误差一般为1.5天;提前1天预报,误差为3.6小时。即使
是陨落临圈,预报误差也将近15分钟,误差范围达6400余公里。因此,在地基设备布设受限、
无法连续观测的情况下,对目标再入信息进行准确判别成为一个难题。
[0004] 由于监测弧段距离目标最终再入越近,再入时间和落点的预报精度越高。但在不能全球布站的情况下,目前地基设备对再入目标的重访周期较长,部分目标的地基跟踪间
隔甚至达16小时以上,因而无法实现持续监测,严重影响再入预报精度。其精度一般为轨道
周期量级,落点区域覆盖整个地球,因而对最终再入情况无法进行准确判断。
[0005] 因此,如何提出一种预报精度较高的判别再入事件方法,是本领域内一个亟待解决的问题。

发明内容

[0006] 为了解决现有技术中存在的上述问题,本发明提供了一种单星与地基设备联合的再入预报方法、装置和电子设备。本发明要解决的技术问题通过以下技术方案实现:
[0007] 第一方面,本发明实施例提供了一种单星与地基设备联合的再入预报方法,包括:
[0008] 基于地基设备获取的探测数据,确定再入目标的初始轨道数据,并解算出初始弹道系数;
[0009] 利用所述初始轨道数据和所述初始弹道系数,预报所述再入目标的再入轨迹;其中,所述再入轨迹包括多个轨道数据,预报的截止高度为预设高度;
[0010] 根据所述再入轨迹预报多颗卫星对所述再入目标的可见性,并根据预报结果调整其中的可见卫星经过所述再入轨迹的空域时的侦照策略;
[0011] 基于一颗可见卫星对所述再入目标的监测数据,对所述初始弹道系数进行修正,得到修正后弹道系数;
[0012] 利用所述初始轨道数据和所述修正后弹道系数,获得所述再入目标的再入预报结果;其中,所述再入预报结果包括再入时刻、再入窗口和落点经纬度。
[0013] 在本发明的一个实施例中,所述根据所述再入轨迹预报多颗卫星对所述再入目标的可见性,并根据预报结果调整其中的可见卫星经过所述再入轨迹的空域时的侦照策略,
包括:
[0014] 根据所述预报结果中所述多颗卫星对所述再入轨迹的可见情况,确定多个可见卫星;其中,所述可见情况包括卫星对所述再入轨迹的可见时段和可见时长;
[0015] 根据所述可见情况,以及可见卫星和所述再入轨迹的相对位置关系,调整所述多个可见卫星的侦照角度以监测所述再入目标的再入轨迹。
[0016] 在本发明的一个实施例中,所述基于一颗可见卫星对所述再入目标的监测数据,对所述初始弹道系数进行修正,得到修正后弹道系数,包括:
[0017] 利用一颗可见卫星对所述再入目标的监测数据,采用区域元时间差的方法,对所述初始弹道系数进行修正,得到修正后弹道系数。
[0018] 在本发明的一个实施例中,所述利用一颗可见卫星对所述再入目标的监测数据,采用区域元时间差的方法,对所述初始弹道系数进行修正,得到修正后弹道系数,包括:
[0019] S001,解析所述监测数据,并将其转换成点迹序列;其中,所述点迹序列包括多个点数据,每个点数据包括观测时刻、星下点经度和星下点纬度;
[0020] S002,设置积分初值为所述初始轨道数据和所述初始弹道系数,积分步长为预设的第一积分步长;
[0021] S003,使用数值法进行轨道积分;
[0022] S004,判断积分结束时刻与所述一颗可见卫星的首点观测时刻之差是否小于所述第一积分步长;若否,返回S003;若是,执行S005;
[0023] S005,将积分步长减小为预设的第二积分步长;
[0024] S006,使用数值法进行轨道积分;
[0025] S007,将各次积分结束时刻得到的所述再入目标的状态矢量转换为大地坐标;
[0026] S008,针对每个大地坐标,判断该大地坐标与所述点迹序列中某点的位置差是否小于或等于预设位置差阈值;若否,返回S006;若是,执行S009;
[0027] S009,利用计算所述位置差时的大地坐标和所述点迹序列中某点分别对应的时刻,以及所述首点观测时刻,计算得到经过同一区域元时观测时刻与预报时刻的时间差;
[0028] S010,判断积分结束时刻是否大于所述点迹序列中最后的观测时刻;若否,返回S006;若是,执行S011;
[0029] S011,利用所述初始弹道系数和得到的多个时间差,计算弹道系数的修正因子;
[0030] S012,判断所述修正因子与所述初始弹道系数之商的绝对值是否小于预设的收敛阈值;若否,返回S002;若是,执行S013;
[0031] S013,将所述初始弹道系数与所述修正因子求和得到修正后弹道系数。
[0032] 在本发明的一个实施例中,所述针对每个大地坐标,判断该大地坐标与所述点迹序列中某点的位置差是否小于或等于预设位置差阈值,包括:
[0033] 针对每个Qj,判断其与所述点迹序列中某点Pk(tk,Bk,Lk)的位置差是否小于或等于ε;
[0034] 其中,所述点迹序列表示为{Pl(tl,Bl,Ll)|l=1,2,…},{Pl(tl,Bl,Ll)|l=1,2,…}中的tl、Bl和Ll分别为所述点迹序列中第l个点数据的观测时刻、星下点经度和星下点纬度;
大地坐标表示为Qj(tj,Bj,Lj),j=1,2,…,Qj(tj,Bj,Lj),j=1,2,…中的tj、Bj和Lj分别为第j
个大地坐标中的预报时刻、星下点经度和星下点纬度;ε表示预设位置差阈值;k表示所述点
迹序列中点数据的序号,k为大于0的自然数,且上限值为所述点迹序列中点数据的总数。
[0035] 在本发明的一个实施例中,所述时间差的计算公式,包括:
[0036]
[0037] 其中,Δt表示所述时间差;t0表示所述首点观测时刻;tj和tk分别表示计算所述位置差时的大地坐标和所述点迹序列中某点分别对应的时刻。
[0038] 在本发明的一个实施例中,所述修正因子的计算公式,包括:
[0039]
[0040] 其中,ΔB表示所述修正因子;B0表示所述初始弹道系数; 表示得到的多个时间差的总和;N表示多个时间差的数量。。
[0041] 在本发明的一个实施例中,所述第一积分步长为10秒,所述第二积分步长为0.1秒。
[0042] 第二方面,本发明实施例提供了一种单星与地基设备联合的再入预报装置,包括:
[0043] 轨道数据和弹道系数初始获取模块,用于基于地基设备获取的探测数据,确定再入目标的初始轨道数据,并解算出初始弹道系数;
[0044] 再入轨迹预报模块,用于利用所述初始轨道数据和所述初始弹道系数,预报所述再入目标的再入轨迹;其中,所述再入轨迹包括多个轨道数据,预报的截止高度为预设高
度;
[0045] 卫星侦照策略调整模块,用于根据所述再入轨迹预报多颗卫星对所述再入目标的可见性,并根据预报结果调整其中的可见卫星经过所述再入轨迹的空域时的侦照策略;
[0046] 弹道系数修正模块,用于基于一颗可见卫星对所述再入目标的监测数据,对所述初始弹道系数进行修正,得到修正后弹道系数;
[0047] 再入预报结果计算模块,用于利用所述初始轨道数据和所述修正后弹道系数,获得所述再入目标的再入预报结果;其中,所述再入预报结果包括再入时刻、再入窗口和落点
经纬度。
[0048] 第三方面,本发明实施例提供了一种电子设备,包括处理器和存储器,其中,
[0049] 所述存储器,用于存放计算机程序;
[0050] 所述处理器,用于执行所述存储器上所存放的程序时,实现本发明实施例所提供的单星与地基设备联合的再入预报方法的步骤。
[0051] 本发明实施例提供了一种联合利用单颗天基监测卫星与地基探测设备判别再入事件的方案。首先基于地基设备获取的探测数据,确定再入目标的初始轨道数据,并解算出
初始弹道系数;其次利用所述初始轨道数据和所述初始弹道系数,预报所述再入目标的再
入轨迹;接下来根据所述再入轨迹预报多颗卫星对所述再入目标的可见性,并根据预报结
果调整其中的可见卫星经过所述再入轨迹的空域时的侦照策略;然后基于一颗可见卫星对
所述再入目标的监测数据,对所述初始弹道系数进行修正,得到修正后弹道系数;最后利用
所述初始轨道数据和所述修正后弹道系数,获得所述再入目标的再入预报结果。本发明实
施例利用低轨巨型星座重访率高的优势,通过地基探测数据引导天基卫星对再入目标的再
入轨迹进行监测,进而修正弹道系数,基于修正后弹道系数进行再入目标预报,可提高再入
时间和落点的预报精度、实现再入事件的准确判别。
[0052] 以下将结合附图及实施例对本发明做进一步详细说明。

附图说明

[0053] 图1为本发明实施例提供的一种单星与地基设备联合的再入预报方法的流程示意图;
[0054] 图2为本发明实施例提供的利用一颗可见卫星对再入目标的监测数据,采用区域元时间差的方法,修正初始弹道系数过程的流程示意图;
[0055] 图3为本发明实施例所提供的一种单星与地基设备联合的再入预报装置的结构示意图;
[0056] 图4为本发明实施例所提供的一种电子设备的结构示意图。

具体实施方式

[0057] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于
本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他
实施例,都属于本发明保护的范围。
[0058] 现有技术中由于地基探测设备布设受限、监测间隔过长会导致难以准确判别大型空间目标再入事件,而大型再入目标在再入大气层的过程中,会与稠密大气发生剧烈摩擦,
导致温度逐渐上升,最终烧蚀解体,其高温和光亮效应可被相关星载敏感器捕获。本发明实
施例的发明人研究发现,由于低轨巨型星座重访率高,而大型再入目标的烧蚀过程往往持
续近十分钟,星座组网联动则有极大概率发现目标再入过程,进而有望缩短预报时长、提高
再入时间和落点的预报精度,实现再入事件的准确判别。
[0059] 因此,本发明实施例提出了一种单星与地基设备联合的再入预报方法、装置和电子设备,通过联合利用单颗天基监测卫星与地基探测设备判别再入事件,以提高再入事件
的预报精度。
[0060] 第一方面,本发明实施例提供了一种单星与地基设备联合的再入预报方法,可以应用于地基设备或者除地基设备和卫星设备之外的其余设备中。请参见图1,图1为本发明
实施例提供的一种单星与地基设备联合的再入预报方法的流程示意图。该方法包括以下步
骤:
[0061] S1,基于地基设备获取的探测数据,确定再入目标的初始轨道数据,并解算出初始弹道系数。
[0062] 具体的,所述地基设备能够对再入目标进行跟踪,获取相应的探测数据。本发明实施例可以获取所述探测数据,计算出再入目标的初始轨道数据S0=(t0,x0,y0,z0,vx0,vy0,
vz0),并解算出初始弹道系数B0。
[0063] 其中,t0表示轨道历元时刻;x0,y0,z0表示J2000惯性系下的X,Y,Z三方向的位置;vx0,vy0,vz0表示三方向对应的速度。
[0064] 关于S0和B0的概念请参见现有技术理解;其相应的计算方法可以采用现有任意一种方法实现,在此不做限定。
[0065] S2,利用所述初始轨道数据和所述初始弹道系数,预报所述再入目标的再入轨迹。
[0066] 其中,所述再入目标的再入轨迹的预报方法属于现有技术,在此不做详细说明。
[0067] 所述再入轨迹包括多个轨道数据,以{S1,S2,…}表示,其中每个轨道数据所包含的内容与S0的内容类似。
[0068] 预报的截止高度为预设高度,比如可以为0km等。可选的一种实施方式中,所述预设高度可以为10km。
[0069] S3,根据所述再入轨迹预报多颗卫星对所述再入目标的可见性,并根据预报结果调整其中的可见卫星经过所述再入轨迹的空域时的侦照策略。
[0070] 可选的一种实施方式中,该步骤包括:
[0071] S31,根据所述预报结果中所述多颗卫星对所述再入轨迹的可见情况,确定多个可见卫星。
[0072] 其中,所述可见情况包括卫星对所述再入轨迹的可见时段和可见时长。
[0073] S32,根据所述可见情况,以及可见卫星和所述再入轨迹的相对位置关系,调整所述多个可见卫星的侦照角度以监测所述再入目标的再入轨迹。
[0074] 其中,卫星可见性预报属于现有技术,具体方法在此不做赘述。该步骤的目的是通过卫星可见性预报获取多颗卫星对所述再入轨迹的可见情况,从中确定能够监测到所述再
入目标的再入轨迹的部分卫星作为可见卫星,再调整所有可见卫星的光学载荷的侦照角
度,使其可监视再入目标的再入轨迹,以此保证至少有一颗可见卫星能够获取到针对所述
再入目标的监测数据。
[0075] S4,基于一颗可见卫星对所述再入目标的监测数据,对所述初始弹道系数进行修正,得到修正后弹道系数。
[0076] 由于实际的卫星数量较多,本发明实施例中能够监测到所述再入目标的再入轨迹的可见卫星有多个,仅从中获取一颗可见卫星的监测数据即可。
[0077] 可选的一种实施方式中,该步骤包括:
[0078] 利用一颗可见卫星对所述再入目标的监测数据,采用区域元时间差的方法,对所述初始弹道系数进行修正,得到修正后弹道系数。
[0079] 为了布局清晰,关于所述区域元时间差的方法在后文中予以说明。当然,任何能够利用所述一颗可见卫星对所述再入目标的监测数据,对所述初始弹道系数进行修正的方法
都属于本发明实施例的保护范围。
[0080] S5,利用所述初始轨道数据和所述修正后弹道系数,获得所述再入目标的再入预报结果。
[0081] 具体的,利用所述初始轨道数据和所述修正后弹道系数,同时考虑地球非球形引力、大气阻力等摄动力因素,使用数值法进行轨道外推,直到轨道高度低于所述预设高度,
可以得到所述再入目标的再入预报结果。
[0082] 其中,所述再入预报结果包括再入时刻、再入窗口和落点经纬度。
[0083] 该步骤中使用数值法进行轨道外推得到所述再入目标的再入预报结果的过程属于现有技术,在此不做详细说明。
[0084] 现有技术中,仅地基装备进行监测的情况下,跟踪间隔太长,无法持续监测,导致预报误差较大。仅天基装备进行监测的情况下,难以合理确定监测策略,无法实现再入目标
的有效捕获,且单颗天基监测卫星的光学测量精度有限,需要配合专门的再入预报方法,才
能达到提高预报精度的目的。
[0085] 本发明实施例提供了一种联合利用单颗天基监测卫星与地基探测设备判别再入事件的方案。首先基于地基设备获取的探测数据,确定再入目标的初始轨道数据,并解算出
初始弹道系数;其次利用所述初始轨道数据和所述初始弹道系数,预报所述再入目标的再
入轨迹;接下来根据所述再入轨迹预报多颗卫星对所述再入目标的可见性,并根据预报结
果调整其中的可见卫星经过所述再入轨迹的空域时的侦照策略;然后基于一颗可见卫星对
所述再入目标的监测数据,对所述初始弹道系数进行修正,得到修正后弹道系数;最后利用
所述初始轨道数据和所述修正后弹道系数,获得所述再入目标的再入预报结果。本发明实
施例利用低轨巨型星座重访率高的优势,通过地基探测数据引导天基卫星对再入目标的再
入轨迹进行监测,进而修正弹道系数,基于修正后弹道系数进行再入目标预报,可提高再入
时间和落点的预报精度、实现再入事件的准确判别。
[0086] 请参见图2,可选的一种实施方式中,所述利用一颗可见卫星对所述再入目标的监测数据,采用区域元时间差的方法,对所述初始弹道系数进行修正,得到修正后弹道系数,
包括以下步骤:
[0087] S001,解析所述监测数据,并将其转换成点迹序列。
[0088] 该步骤采用现有技术实现,在此不做详细说明。
[0089] 其中,所述点迹序列包括多个点数据,每个点数据包括观测时刻、星下点经度和星下点纬度。
[0090] 具体的,所述点迹序列表示为{Pl(tl,Bl,Ll)|l=1,2,…}。每个l对应一个点数据Pl;tl、Bl和Ll分别为所述点迹序列中第l个点数据的观测时刻、星下点经度和星下点纬度。
[0091] S002,设置积分初值为所述初始轨道数据和所述初始弹道系数,积分步长为预设的第一积分步长。
[0092] 其中,将所述初始轨道数据S0和所述初始弹道系数B0作为轨道积分的积分初值;所述第一积分步长可以为小于60秒的数值,比如可选的一种实施方式中,所述第一积分步长
为10秒,等等。
[0093] S003,使用数值法进行轨道积分。
[0094] 本发明实施例是将所述初始轨道数据S0和所述初始弹道系数B0输入数值法积分模型进行轨道积分,其中,数值法积分模型为现有通用模型,在此不做详细说明。
[0095] S004,判断积分结束时刻与所述一颗可见卫星的首点观测时刻之差是否小于所述第一积分步长。
[0096] 所述积分结束时刻以te表示。所述一颗可见卫星的首点观测时刻为所述点迹序列{Pl(tl,Bl,Ll)|l=1,2,…}中的t1。
[0097] 以所述第一积分步长为10秒举例说明,第一次积分的te为t0+10秒,第二次积分的te为t0+20秒,等等。在每一次积分结束时均需要判断te‑t1是否小于10秒,并根据当前判断
结果执行后续操作,若否,返回S003。若是,执行S005。
[0098] S005,将积分步长减小为预设的第二积分步长。
[0099] 所述第二积分步长可以选择小于所述第一积分步长的任意数值。可选的一种实施方式中,所述第二积分步长为0.1秒。
[0100] S006,使用数值法进行轨道积分。
[0101] 该步骤是在减小积分步长之前的积分结果基础上,利用所述第二积分步长继续进行轨道积分,具体过程与前文类似。
[0102] S007,将每次积分结束时刻得到的所述再入目标的状态矢量转换为大地坐标。
[0103] 本领域技术人员可以理解的是,每次轨道积分在积分结束时刻会输出所述再入目标的一个状态矢量,表示为Sh=(th,xh,yh,zh,vxh,vyh,vzh),其中h表示代表轨道积分次数的
一个序号,h为大于0的自然数,Sh的各参数的含义请参见S0理解。
[0104] 本发明实施例将积分步长调整后,每一次积分结束时刻得到的Sj均转换为大地坐标。具体转换过程请参见相关现有技术,在此不做赘述。得到的大地坐标表示为Qj(tj,Bj,
Lj),j=1,2,…,Qj(tj,Bj,Lj),j=1,2,…中的tj、Bj和Lj分别为第j个大地坐标中的预报时
刻、星下点经度和星下点纬度;ε表示预设位置差阈值。
[0105] S008,针对每个大地坐标,判断该大地坐标与所述点迹序列中某点的位置差是否小于或等于预设位置差阈值。
[0106] 具体的,针对每个Qj,判断其与所述点迹序列中某点Pk(tk,Bk,Lk)的位置差是否小于或等于ε。
[0107] 其中,所述点迹序列表示为{Pl(tl,Bl,Ll)|l=1,2,…},{Pl(tl,Bl,Ll)|l=1,2,…}中的tl、Bl和Ll分别为所述点迹序列中第l个点数据的观测时刻、星下点经度和星下点纬度;
大地坐标表示为Qj(tj,Bj,Lj),j=1,2,…,Qj(tj,Bj,Lj),j=1,2,…中的tj、Bj和Lj分别为第j
个大地坐标中的预报时刻、星下点经度和星下点纬度;ε表示预设位置差阈值;k表示所述点
迹序列中点数据的序号,k为大于0的自然数,且上限值为所述点迹序列中点数据的总数。
[0108] 所述点迹序列中点数据的总数在获取点迹序列时可以确定。
[0109] 根据当前判断结果执行后续操作,若否,返回S006;若是,执行S009。
[0110] S009,利用计算所述位置差时的大地坐标和所述点迹序列中某点分别对应的时刻,以及所述首点观测时刻,计算得到经过同一区域元时观测时刻与预报时刻的时间差。
[0111] 具体的,所述时间差的计算公式,包括:
[0112]
[0113] 其中,Δt表示所述时间差;t0表示所述首点观测时刻;tj和tk分别表示计算所述位置差时的大地坐标和所述点迹序列中某点分别对应的时刻。
[0114] S010,判断积分结束时刻是否大于所述点迹序列中最后的观测时刻。
[0115] 若否,返回S006。若是,执行S011。
[0116] S011,利用所述初始弹道系数和得到的多个时间差,计算弹道系数的修正因子。
[0117] 具体的,所述修正因子的计算公式,包括:
[0118]
[0119] 其中,ΔB表示所述修正因子;B0表示所述初始弹道系数; 表示得到的多个时间差的总和;N表示多个时间差的数量。
[0120] S012,判断所述修正因子与所述初始弹道系数之商的绝对值是否小于预设的收敛阈值。
[0121] 具体的,判断|ΔB/B0|是否小于预设的收敛阈值δ,若否,返回S002。若是,执行S013。
[0122] 其中,δ取值可以为0.0001等。
[0123] S013,将所述初始弹道系数与所述修正因子求和得到修正后弹道系数。
[0124] 具体的,修正后弹道系数表示为B'=B0+ΔB。
[0125] 为了便于理解本发明实施例所提供方案的效果,以具体实验进行说明。
[0126] 本发明实施例以北美防空联合司令部(NORAD)公开的编号为42821的空间目标作为再入目标进行举例,该目标为一个1U立方体卫星,根据Space‑track网站的发布结果,该
目标的再入时间为2019年5月21日。本发明实施例基于该再入目标的最后一组TLE(Two‑
Line Element,两行轨道根数)仿真生成地面跟踪的伪测量数据,作为S1中地基设备获取的
探测数据,确定该再入目标的初始轨道数据S0,并解算出初始弹道系数B0,结果如表1所示。
[0127] 表1再入目标的轨道确定结果
[0128]历元(UTC) 2019‑05‑21 02:56:34.63
x0(m) 4105855.455
y0(m) 5109505.943
z0(m) ‑7487.192
vx0(m/s) ‑3763.145473
vy0(m/s) 3033.108334
vz0(m/s) 6122.605828
2
B0(m/kg) 0.01987
[0129] 执行S2,利用S0和B0预报该再入目标的再入轨迹{S1,S2,…},其中,预报的截止高度为10km。对于该再入目标,预报至轨道高度为10km的时刻为2019年05月21日18时41分,再入
窗口约为4小时。
[0130] 执行S3,根据再入轨迹{S1,S2,…}仿真铱星系列卫星对该再入目标的再入轨迹的可见情况,结果如表2所示,表2中仅列出了可见铱星、对应的可见时段和可见时长。根据铱
星对再入轨迹的可见时段及相对位置关系,调整这些可见铱星光学载荷的侦照角度,使其
可监视该再入目标的再入轨迹。
[0131] 表2铱星对再入目标的再入轨迹的可见情况
[0132] 可见铱星 可见时段 可见时长(秒)IRIDIUM 17 11:48:30~11:57:27 537
IRIDIUM 911 13:48:46~14:19:34 1847
IRIDIUM 911 15:16:43~15:45:29 1726
IRIDIUM 921 17:40:33~17:49:58 565
IRIDIUM 921 18:21:38~18:39:51 1093
[0133] 虽然调整了多颗可见卫星,但是最终哪颗卫星可以监测到再入事件的发光现象并不确定。仿真发现IRIDIUM 921卫星于17时45分发现目标,则利用该可见卫星对所述再入目
2
标的监测数据执行S4。具体过程请参见前文所述,修正后的弹道系数B'为0.02194m/kg。
[0134] 最后,利用S0和B'使用数值法进行轨道外推直到轨道高度低于10km,得到该再入目标的再入预报结果,如表3所示。
[0135] 表3再入目标最终的再入预报结果
[0136]再入时刻(UTC) 2019‑05‑21 18:14:44
再入窗口(分钟) 5
落点经度(°) 178.27
落点纬度(°) ‑51.68
[0137] 可见,使用本发明实施例方法,能够修正最终的再入时间和落点位置,且使得再入窗口大大缩小。
[0138] 综上,本发明实施例给出的该种仅单颗卫星监测到目标再入过程的情况下,天地基联合的再入判别方法,能够大大提高再入时间和落点预报精度,缩小残骸散布区域范围。
[0139] 第二方面,相应于上述方法实施例,本发明实施例还提供了一种单星与地基设备联合的再入预报装置,如图3所示,该装置包括:
[0140] 轨道数据和弹道系数初始获取模块301,用于基于地基设备获取的探测数据,确定再入目标的初始轨道数据,并解算出初始弹道系数。
[0141] 再入轨迹预报模块302,用于利用所述初始轨道数据和所述初始弹道系数,预报所述再入目标的再入轨迹;其中,所述再入轨迹包括多个轨道数据,预报的截止高度为预设高
度。
[0142] 卫星侦照策略调整模块303,用于根据所述再入轨迹预报多颗卫星对所述再入目标的可见性,并根据预报结果调整其中的可见卫星经过所述再入轨迹的空域时的侦照策
略。
[0143] 弹道系数修正模块304,用于基于一颗可见卫星对所述再入目标的监测数据,对所述初始弹道系数进行修正,得到修正后弹道系数。
[0144] 再入预报结果计算模块305,用于利用所述初始轨道数据和所述修正后弹道系数,获得所述再入目标的再入预报结果;其中,所述再入预报结果包括再入时刻、再入窗口和落
点经纬度。
[0145] 进一步的,所述卫星侦照策略调整模块303具体用于:
[0146] 根据所述预报结果中所述多颗卫星对所述再入轨迹的可见情况,确定多个可见卫星;其中,所述可见情况包括卫星对所述再入轨迹的可见时段和可见时长。
[0147] 根据所述可见情况,以及可见卫星和所述再入轨迹的相对位置关系,调整所述多个可见卫星的侦照角度以监测所述再入目标的再入轨迹。
[0148] 进一步的,所述弹道系数修正模块304具体包括:
[0149] 基于区域元时间差的弹道系数修正子模块,用于利用一颗可见卫星对所述再入目标的监测数据,采用区域元时间差的方法,对所述初始弹道系数进行修正,得到修正后弹道
系数。
[0150] 进一步的,所述基于区域元时间差的弹道系数修正子模块,在利用一颗可见卫星对所述再入目标的监测数据,采用区域元时间差的方法,对所述初始弹道系数进行修正,得
到修正后弹道系数时,执行以下步骤:
[0151] S001,解析所述监测数据,并将其转换成点迹序列;其中,所述点迹序列包括多个点数据,每个点数据包括观测时刻、星下点经度和星下点纬度。
[0152] S002,设置积分初值为所述初始轨道数据和所述初始弹道系数,积分步长为预设的第一积分步长。
[0153] S003,使用数值法进行轨道积分。
[0154] S004,判断积分结束时刻与所述一颗可见卫星的首点观测时刻之差是否小于所述第一积分步长;若否,返回S003;若是,执行S005。
[0155] S005,将积分步长减小为预设的第二积分步长。
[0156] S006,使用数值法进行轨道积分。
[0157] S007,将各次积分结束时刻得到的所述再入目标的状态矢量转换为大地坐标。
[0158] S008,针对每个大地坐标,判断该大地坐标与所述点迹序列中某点的位置差是否小于或等于预设位置差阈值;若否,返回S006;若是,执行S009。
[0159] S009,利用计算所述位置差时的大地坐标和所述点迹序列中某点分别对应的时刻,以及所述首点观测时刻,计算得到经过同一区域元时观测时刻与预报时刻的时间差。
[0160] S010,判断积分结束时刻是否大于所述点迹序列中最后的观测时刻;若否,返回S006;若是,执行S011。
[0161] S011,利用所述初始弹道系数和得到的多个时间差,计算弹道系数的修正因子。
[0162] S012,判断所述修正因子与所述初始弹道系数之商的绝对值是否小于预设的收敛阈值;若否,返回S002;若是,执行S013。
[0163] S013,将所述初始弹道系数与所述修正因子求和得到修正后弹道系数。
[0164] 进一步的,S008中,所述针对每个大地坐标,判断该大地坐标与所述点迹序列中某点的位置差是否小于或等于预设位置差阈值,包括:
[0165] 针对每个Qj,判断其与所述点迹序列中某点Pk(tk,Bk,Lk)的位置差是否小于或等于ε。
[0166] 其中,所述点迹序列表示为{Pl(tl,Bl,Ll)|l=1,2,…},{Pl(tl,Bl,Ll)|l=1,2,…}中的tl、Bl和Ll分别为所述点迹序列中第l个点数据的观测时刻、星下点经度和星下点纬度;
大地坐标表示为Qj(tj,Bj,Lj),j=1,2,…,Qj(tj,Bj,Lj),j=1,2,…中的tj、Bj和Lj分别为第j
个大地坐标中的预报时刻、星下点经度和星下点纬度;ε表示预设位置差阈值;k表示所述点
迹序列中点数据的序号,k为大于0的自然数,且上限值为所述点迹序列中点数据的总数。
[0167] 进一步的,S009中,所述时间差的计算公式,包括:
[0168]
[0169] 其中,Δt表示所述时间差;t0表示所述首点观测时刻;tj和tk分别表示计算所述位置差时的大地坐标和所述点迹序列中某点分别对应的时刻。
[0170] 进一步的,S011中,所述修正因子的计算公式,包括:
[0171]
[0172] 其中,ΔB表示所述修正因子;B0表示所述初始弹道系数; 表示得到的多个时间差的总和;N表示多个时间差的数量。
[0173] 进一步的,所述第一积分步长为10秒,所述第二积分步长为0.1秒。
[0174] 关于具体内容请参见第一方面所述的方法部分,在此不做赘述。
[0175] 本发明实施例所提供的方案中,利用低轨巨型星座重访率高的优势,通过地基探测数据引导天基卫星对再入目标的再入轨迹进行监测,进而修正弹道系数,基于修正后弹
道系数进行再入目标预报,能够提高再入时间和落点的预报精度、实现再入事件的准确判
别。
[0176] 第三方面,本发明实施例还提供了一种电子设备,可以为地基设备或者除地基设备和卫星设备之外的其余设备。如图4所示,包括处理器401、通信接口402、存储器403和通
信总线404,其中,处理器401,通信接口402,存储器403通过通信总线404完成相互间的通
信,
[0177] 存储器403,用于存放计算机程序;
[0178] 处理器401,用于执行存储器403上所存放的程序时,实现如第一方面所述的单星与地基设备联合的再入预报方法的步骤。
[0179] 该电子设备可以为:台式计算机、便携式计算机、智能移动终端、服务器等。在此不作限定,任何可以实现本发明的电子设备,均属于本发明的保护范围。
[0180] 上述电子设备提到的通信总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry  Standard 
Architecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便
于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
[0181] 通信接口用于上述电子设备与其他设备之间的通信。
[0182] 存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non‑Volatile Memory,NVM),例如至少一个磁盘存储器。可选的,存储器还可
以是至少一个位于远离前述处理器的存储装置。
[0183] 上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal 
Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现
场可编程门阵列(Field‑Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立
门或者晶体管逻辑器件、分立硬件组件。
[0184] 对于装置/电子设备而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
[0185] 需要说明的是,本发明实施例的装置、电子设备分别是应用上述单星与地基设备联合的再入预报方法的装置、电子设备,则上述单星与地基设备联合的再入预报方法的所
有实施例均适用于该装置、电子设备,且均能达到相同或相似的有益效果。
[0186] 需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存
在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖
非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要
素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备
所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在
包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
[0187] 以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。