一种具有寄生二极管的MOS栅控晶闸管及制备方法转让专利

申请号 : CN202210090627.5

文献号 : CN114122111B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 程晨王彬徐凯吴李瑞张永生

申请人 : 江苏游隼微电子有限公司

摘要 :

本发明公开了一种具有寄生二极管的MOS栅控晶闸管及制备方法,在保证结构具有防止静电放电因栅介质击穿导致器件失效的功能前提下,利用沟槽隔离结构将阳极结构与其他结构隔离开,达到了将阳极结构与阴极结构调整制作到晶圆的同一个平面目的,做到了防止在器件背面离子注入形成阳极结构时受到玷污和离子注入过程中对硅片的过度损伤导致降低芯片使用寿命性能的问题。

权利要求 :

1.一种具有寄生二极管的MOS栅控晶闸管,其特征在于,包括P型衬底(200),P型衬底(200)顶部设置P型外延区(201),所述P型外延区(201)的表面进行氧化处理,在所述P型外延区(201)的表面进行反型掺杂形成N型漂移区(202),在N型漂移区(202)的表面部分区域进行反型掺杂形成P型阱区(203),在P型阱区(203)左侧和N型漂移区(202)交界的表面向下形成沟槽隔离结构(301);在P型阱区(203)内离子注入形成第一N型阱区(206)和第二N型阱区(204),所述第一N型阱区(206)在P型阱区(203)内的左侧,第二N型阱区(204)位于P型阱区(203)内的中间靠右的位置且第二N型阱区(204)的掺杂深度大于第一N型阱区(206)的掺杂深度;在第二N型阱区(204)内掺杂形成P型源区(205);

在所述沟槽隔离结构(301)左侧区域的N型漂移区(202)表面离子注入并进行激活,形成阳极区(401),在所述阳极区(401)顶部淀积阳极金属(404);在所述P型阱区(203)表面形成阴极金属(402),所述阴极金属(402)横跨P型阱区(203)的部分上表面、第二N型阱区(204)的部分上表面以及P型源区(205)的部分上表面;

栅极结构包括栅氧化层(302)、多晶硅(303)和栅极金属(403);栅氧化层(302)的底部同时与P型阱区(203)的部分上表面、第二N型阱区(204)的部分上表面以及P型源区(205)的部分上表面接触,多晶硅(303)位于所述栅氧化层(302)的表面;栅极金属(403)与多晶硅(303)的上表面接触,并延伸至远离多晶硅(303)一侧,且与第一N型阱区(206)的部分上表面接触,所述栅极金属(403)与阴极金属(402)之间通过绝缘介质层(304)完全隔离;

所述寄生二极管结构包括第一N型阱区(206)与P型阱区(203)构成的PN结,栅极金属(403)与第一N型阱区(206)上表面接触的部分作为寄生二极管的阴极,阴极金属(402)与P型阱区(203)接触的部分作为寄生二极管的阳极。

2.一种具有寄生二极管的MOS栅控晶闸管的制备方法,其特征在于,包括:步骤1:在P型衬底(200)上外延生长形成P型外延区(201),P型外延区(201)与P型衬底(200)有着完全相同的晶格结构;

步骤2:将衬底放入高温炉中,通入氧气与衬底表面反应生成氧化层;

步骤3:在P型外延区(201)表面进行反型掺杂形成N型漂移区(202);

步骤4:在N型漂移区(202)的上表面部分区域进行反型掺杂形成P型阱区(203);

步骤5:在P型阱区(203)和N型漂移区(202)交界处表面向下经过刻蚀、氧化填充以及氧化物平坦化步骤形成沟槽隔离结构(301);

步骤6:在P型阱区(203)中离子注入N型杂质形成第一N型阱区(206)和第二N型阱区(204),所述第一N型阱区(206)在P型阱区(203)内的左侧,第二N型阱区(204)位于P型阱区(203)内的中间靠右的位置且第二N型阱区(204)的掺杂深度大于第一N型阱区(206)的掺杂深度;

步骤7:在第二N型阱区(204)内离子注入P型杂质形成P型源区(205);

步骤8:通过热氧生长栅氧化层(302),所述栅氧化层(302)横跨P型阱区(203)的部分上表面、第二N型阱区(204)的部分上表面以及P型源区(205)的部分上表面,在栅氧化层(302)表面淀积多晶硅(303);

步骤9:在所述沟槽隔离结构(301)左侧区域的N型漂移区(202)表面离子注入并进行激活,形成阳极区(401),在所述阳极区(401)顶部淀积阳极金属(404);

步骤10:在器件表面淀积一层金属并刻蚀形成阴极金属(402),所述阴极金属(402)横跨P型阱区(203)的部分上表面、第二N型阱区(204)的部分上表面以及P型源区(205)的部分上表面;

步骤11:在器件表面淀积硼磷硅玻璃作为绝缘介质层(304),绝缘介质层(304)完全覆盖阴极金属(402)的上表面和侧面;

步骤12:通过图形化掩膜版,在器件表面刻蚀绝缘介质层(304),随后淀积第二层金属并刻蚀形成栅极金属(403),栅极金属(403)与多晶硅(303)的上表面接触,并延伸至远离多晶硅(303)一侧,且与第一N型阱区(206)的部分上表面接触;

步骤13:在器件表面淀积钝化层。

说明书 :

一种具有寄生二极管的MOS栅控晶闸管及制备方法

技术领域

[0001] 本发明涉及一种晶闸管,具体涉及一种MOS控制晶闸管。

背景技术

[0002] 常规MOS控制晶闸管(MOS‑Control Thyristors,MCTs)具有电流密度大、开关速度快、导通压降小等特点,很适合应用于功率脉冲领域。功率脉冲系统中,经常通过储能系统
以及利用功率半导体开关实现对能量在时间宽度上的压缩,产生瞬态的高功率脉冲。对于
电流脉冲,一般要求其具有较大峰值电流。而功率半导体开关作为功率脉冲系统中的关键
器件,决定着系统的输出功率。
[0003] 中国专利申请202011463075.5公开了一种具有寄生二极管的MOS栅控晶闸管,其工作原理是当栅极电压大于击穿电压时,寄生二极管被击穿并反向导通,从而在寄生二极
管内部形成了从栅极金属到阴极金属的泄放电流。因此,栅压远小于栅氧化层击穿电压时
就可以将栅上电压泄放掉,从而避免了静电放电时因栅介质击穿导致的器件失效。但是该
结构制作过程中需对其N型漂移区下表面进行减薄、抛光处理,离子注入并进行激活,形成
阳极区,而在离子注入等过程中容易受到玷污,且离子注入过程中会对硅片产生过度损伤,
导致降低芯片的使用寿命性能。

发明内容

[0004] 发明目的:针对上述现有技术,提出一种具有寄生二极管的MOS栅控晶闸管及制备方法,将阳极结构与阴极结构调整制作到晶圆的同一个平面目的,解决在器件背面离子注
入形成阳极结构时受到玷污和离子注入过程中对硅片的过度损伤导致降低芯片使用寿命
性能的问题。
[0005] 技术方案:一种具有寄生二极管的MOS栅控晶闸管,包括P型衬底,P型衬底顶部设置P型外延区,所述P型外延区的表面进行氧化处理,在所述P型外延区的表面进行反型掺杂
形成N型漂移区,在N型漂移区的表面部分区域进行反型掺杂形成P型阱区,在P型阱区左侧
和N型漂移区交界的表面向下形成沟槽隔离结构;在P型阱区内离子注入形成第一N型阱区
和第二N型阱区,所述第一N型阱区在P型阱区内的左侧,第二N型阱区位于P型阱区内的中间
靠右的位置且第二N型阱区的掺杂深度大于第一N型阱区的掺杂深度;在第二N型阱区内掺
杂形成P型源区;
[0006] 在所述沟槽隔离结构左侧区域的N型漂移区表面离子注入并进行激活,形成阳极区,在所述阳极区顶部淀积阳极金属;在所述P型阱区表面形成阴极金属,所述阴极金属横
跨P型阱区的部分上表面、第二N型阱区的部分上表面以及P型源区的部分上表面;
[0007] 栅极结构包括栅氧化层、多晶硅和栅极金属;栅氧化层的底部同时与P型阱区的部分上表面、第二N型阱区的部分上表面以及P型源区的部分上表面接触,多晶硅位于所述栅
氧化层的表面;栅极金属与多晶硅的上表面接触,并延伸至远离多晶硅一侧,且与第一N型
阱区的部分上表面接触,所述栅极金属与阴极金属之间通过绝缘介质层完全隔离;
[0008] 所述寄生二极管结构包括第一N型阱区与P型阱区构成的PN结,栅极金属与第一N型阱区上表面接触的部分作为寄生二极管的阴极,阴极金属与P型阱区接触的部分作为寄
生二极管的阳极。
[0009] 一种具有寄生二极管的MOS栅控晶闸管的制备方法,包括:
[0010] 步骤1:在P型衬底上外延生长形成P型外延区,P型外延区与P型衬底有着完全相同的晶格结构;
[0011] 步骤2:将衬底放入高温炉中,通入氧气与衬底表面反应生成氧化层;
[0012] 步骤3:在P型外延区表面进行反型掺杂形成N型漂移区;
[0013] 步骤4:在N型漂移区的上表面部分区域进行反型掺杂形成P型阱区;
[0014] 步骤5:在P型阱区和N型漂移区交界处表面向下经过刻蚀、氧化填充以及氧化物平坦化步骤形成沟槽隔离结构;
[0015] 步骤6:在P型阱区中离子注入N型杂质形成第一N型阱区和第二N型阱区,所述第一N型阱区在P型阱区内的左侧,第二N型阱区位于P型阱区内的中间靠右的位置且第二N型阱
区的掺杂深度大于第一N型阱区的掺杂深度;
[0016] 步骤7:在第二N型阱区内离子注入P型杂质形成P型源区;
[0017] 步骤8:通过热氧生长栅氧化层,所述栅氧化层横跨P型阱区的部分上表面、第二N型阱区的部分上表面以及P型源区的部分上表面,在栅氧化层表面淀积多晶硅;
[0018] 步骤9:在所述沟槽隔离结构左侧区域的N型漂移区表面离子注入并进行激活,形成阳极区,在所述阳极区顶部淀积阳极金属;
[0019] 步骤10:在器件表面淀积一层金属并刻蚀形成阴极金属,所述阴极金属横跨P型阱区的部分上表面、第二N型阱区的部分上表面以及P型源区的部分上表面;
[0020] 步骤11:在器件表面淀积硼磷硅玻璃作为绝缘介质层,绝缘介质层完全覆盖阴极金属的上表面和侧面;
[0021] 步骤12:通过图形化掩膜版,在器件表面刻蚀绝缘介质层,随后淀积第二层金属并刻蚀形成栅极金属,栅极金属与多晶硅的上表面接触,并延伸至远离多晶硅一侧,且与第一
N型阱区的部分上表面接触;
[0022] 步骤13:在器件表面淀积钝化层。
[0023] 有益效果:本发明在保证结构具有防止静电放电因栅介质击穿导致器件失效的功能前提下,利用沟槽隔离结构将阳极结构与其他结构隔离开,达到了将阳极结构与阴极结
构调整制作到晶圆的同一个平面目的,做到了防止在器件背面离子注入形成阳极结构时受
到玷污和离子注入过程中对硅片的过度损伤导致降低芯片使用寿命性能的问题。

附图说明

[0024] 图1为本发明的MOS栅控晶闸管的结构示意图;
[0025] 图2为本发明制备方法中步骤11得到的结构示意图。

具体实施方式

[0026] 下面结合附图对本发明做更进一步的解释。
[0027] 如图1所示,一种具有寄生二极管的MOS栅控晶闸管,包括P型衬底200,P型衬底200顶部设置P型外延区201,P型外延区201的表面进行氧化处理,用于保护P型外延区201表面
免受玷污和防止在后续离子注入过程中对硅片的过度损伤。在P型外延区201的表面进行反
型掺杂形成N型漂移区202,在N型漂移区202的表面部分区域进行反型掺杂形成P型阱区
203,在P型阱区203左侧和N型漂移区202交界的表面向下形成沟槽隔离结构301;在P型阱区
203内离子注入形成第一N型阱区206和第二N型阱区204,第一N型阱区206在P型阱区203内
的左侧,第二N型阱区204位于P型阱区203内的中间靠右的位置且第二N型阱区204的掺杂深
度大于第一N型阱区206的掺杂深度;在第二N型阱区204内掺杂形成P型源区205;
[0028] 在沟槽隔离结构301左侧区域的N型漂移区202表面离子注入并进行激活,形成阳极区401,在阳极区401顶部淀积阳极金属404;在P型阱区203表面形成阴极金属402,阴极金
属402横跨P型阱区203的部分上表面、第二N型阱区204的部分上表面以及P型源区205的部
分上表面;
[0029] 栅极结构包括栅氧化层302、多晶硅303和栅极金属403;栅氧化层302的底部同时与P型阱区203的部分上表面、第二N型阱区204的部分上表面以及P型源区205的部分上表面
接触,多晶硅303位于栅氧化层302的表面;栅极金属403与多晶硅303的上表面接触,并延伸
至远离多晶硅303一侧,且与第一N型阱区206的部分上表面接触,栅极金属403与阴极金属
402之间通过绝缘介质层304完全隔离;栅氧化层302、多晶硅303也与阴极金属402之间也通
过绝缘介质层304完全隔离;
[0030] 寄生二极管结构包括第一N型阱区206与P型阱区203构成的PN结,栅极金属403与第一N型阱区206上表面接触的部分作为寄生二极管的阴极,阴极金属402与P型阱区203接
触的部分作为寄生二极管的阳极。
[0031] 上述具有寄生二极管的MOS栅控晶闸管的制备方法,包括:
[0032] 步骤1:在P型衬底200上外延生长形成P型外延区201,P型外延区201与P型衬底200有着完全相同的晶格结构,P型外延区201的纯度更高,晶格缺陷更少,其作为缓冲层,当施
加大电压后,减轻大电流直接流向衬底导致器件被烧毁的风险。
[0033] 步骤2:将衬底放入高温炉中,通入氧气与衬底表面反应生成氧化层,保护外延层表面免受玷污和防止在后续离子注入过程中对硅片的过度损伤,同时还能控制注入过程中
杂质的注入深度。
[0034] 步骤3:通过显影、曝光、刻蚀步骤在P型外延区201表面进行反型掺杂形成N型漂移区202。
[0035] 步骤4:在N型漂移区202的上表面部分区域进行反型掺杂形成P型阱区203。
[0036] 步骤5:在P型阱区203和N型漂移区202交界处表面向下经过刻蚀、氧化填充以及氧化物平坦化步骤形成沟槽隔离结构301。此处形成的沟槽隔离结构用于避免了后续形成的
阳极区401、P型阱区203和后续形成的第一N型阱区206互相接触,起到隔离作用。
[0037] 步骤6:在P型阱区203中离子注入N型杂质形成第一N型阱区206和第二N型阱区204,第一N型阱区206在P型阱区203内的左侧,第二N型阱区204位于P型阱区203内的中间靠
右的位置且第二N型阱区204的掺杂深度大于第一N型阱区206的掺杂深度。
[0038] 步骤7:在第二N型阱区204内离子注入P型杂质形成P型源区205。
[0039] 步骤8:通过热氧生长栅氧化层302,栅氧化层302横跨P型阱区203的部分上表面、第二N型阱区204的部分上表面以及P型源区205的部分上表面,在栅氧化层302表面淀积多
晶硅303。
[0040] 步骤9:在沟槽隔离结构301左侧区域的N型漂移区202表面离子注入并进行激活,形成阳极区401,在阳极区401顶部淀积阳极金属404。
[0041] 步骤10:在器件表面淀积一层金属并刻蚀形成阴极金属402,阴极金属402横跨P型阱区203的部分上表面、第二N型阱区204的部分上表面以及P型源区205的部分上表面;
[0042] 步骤11:在器件表面淀积硼磷硅玻璃作为绝缘介质层304,绝缘介质层304完全覆盖阴极金属402的上表面和侧面,如图2所示。
[0043] 步骤12:通过图形化掩膜版,在器件表面刻蚀绝缘介质层304,随后淀积第二层金属并刻蚀形成栅极金属403,栅极金属403与多晶硅303的上表面接触,并延伸至远离多晶硅
303一侧,且与第一N型阱区206的部分上表面接触。
[0044] 步骤13:在器件表面淀积钝化层。
[0045] 通过上述步骤,在保证原结构防止静电放电因栅介质击穿导致器件失效的功能前提下,利用沟槽隔离结构将阳极结构与其他结构隔离开,达到了将阳极结构与阴极结构调
整制作到晶圆的同一个平面目的,做到了防止在器件背面离子注入形成阳极结构时受到玷
污和离子注入过程中对硅片的过度损伤导致降低芯片使用寿命性能的问题。
[0046] 以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应
视为本发明的保护范围。