一种煤层气井固井用耐冲刷型界面增强剂及制备方法和应用转让专利

申请号 : CN202210042635.2

文献号 : CN114231264B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 步玉环赵旗郭胜来柳华杰郭辛阳赵凌云魏元龙

申请人 : 中国石油大学(华东)贵州省油气勘查开发工程研究院

摘要 :

本发明属于油气井固井及油田化学领域,具体涉及一种耐冲刷型界面增强剂的制备方法和应用。该耐冲刷型界面增强剂是由0.1%表面活性剂CAEO‑15和0.3%硅烷偶联剂为溶质,清水与无水乙醇为溶剂配制的复配溶液,其中质量比清水:无水乙醇=9:1。本发明所述的煤层气井固井前置液用耐冲刷型界面增强剂具有良好的润湿改性效果和耐水泥浆冲刷效果,与水泥浆体系具有良好的配伍性,对煤层二界面胶结强度与气密性具有明显的改善作用,可以有效地提高煤层气井的固井质量。

权利要求 :

1.一种耐冲刷型界面增强剂,其特征在于,该耐冲刷型界面增强剂是以表面活性剂CAEO‑15和硅烷偶联剂为溶质,以清水与无水乙醇的混合液为溶剂配制的复配溶液;

所述表面活性剂CAEO‑15的质量百分数为0.1%;所述硅烷偶联剂的质量百分数为

0.3%。

2.根据权利要求1所述的一种耐冲刷型界面增强剂,其特征在于,以质量比计,清水:无水乙醇=9:1。

3.权利要求1所述的一种耐冲刷型界面增强剂的制备方法,其特征在于,其具体步骤为:(1)将清水与无水乙醇按比例混合,得溶液I;

(2)向溶液I中加入表面活性剂CAEO‑15,低速搅拌过程中逐滴加入硅烷偶联剂,继续低速搅拌15min,即得耐冲刷型界面增强剂。

4.权利要求1所述的一种耐冲刷型界面增强剂在煤层气井固井中的应用。

说明书 :

一种煤层气井固井用耐冲刷型界面增强剂及制备方法和应用

技术领域

[0001] 本发明属于油气井固井及油田化学领域,具体涉及一种耐冲刷型界面增强剂及制备方法和应用。

背景技术

[0002] 能源是世界经济与社会发展的基础。我国是一个煤炭资源大国,煤层气资源量与我国的常规天然气资源量相当,具有丰富的储量资源。煤层气无污染、热值高,作为新能源具有十分广阔的应用前景。
[0003] 作为一种新能源,煤层气的开发和利用可以解决能源不足的重大问题,同样可以起到减灾和改善地球大气环境的作用,但煤层气的开采同样面临着诸多问题。基于煤层的本身成分及其结构特性,煤层是有机岩,与无机水泥浆胶结强度低,煤层固井质量差,造成瓦斯事故、井壁易坍塌、漏失量大、开采量小、污染地层等不良后果。煤层气的安全高效开发需要钻探大量的煤层气井,并配合压裂等增产工艺。由于煤层的特殊性,再加上煤层气井压裂对煤层气井井筒完整性的危害问题,决定了煤层气井的固井问题是影响煤层气安全高效开发的关键问题之一。
[0004] 由于煤层表面的亲油性与水泥浆的亲水性相矛盾导致煤层固井二界面交接质量差,煤层表面的润湿改性成为提高煤层二界面胶结质量的关键之一。但是煤层表面经前置液润湿改性后,水泥浆的驱替冲刷对煤层表面润湿性的二次影响有待进一步探究。

发明内容

[0005] 本发明的目的在于提供一种耐冲刷型界面增强剂及其制备方法和应用。该增强剂应用于煤层气井固井,可以将煤岩表面由油湿改性为完全水湿,并且经水泥浆冲刷后煤岩表面仍可保持水湿特性,经该增强剂处理过的煤岩,其二界面胶结质量将会得到明显的改善。
[0006] 本发明所述的耐冲刷型界面增强剂是以表面活性剂CAEO‑15和硅烷偶联剂为溶质,以清水与无水乙醇的混合液为溶剂配制的复配溶液。
[0007] 所述表面活性剂CAEO‑15的质量百分数为0.1%;所述硅烷偶联剂的质量百分数为0.3%。
[0008] 以质量比计,清水:无水乙醇=9:1。
[0009] 本发明中,表面活性剂CAEO‑15增加煤岩表面的润湿改性效果,使煤岩表面达到完全水湿;硅烷偶联剂增加煤岩表面的耐冲刷效果,使煤岩表面经水泥浆冲刷后仍保持水湿;无水乙醇为硅烷偶联剂提供稳定的环境,在水中加入适当的乙醇可以确保硅烷偶联剂有效水解产生硅羟基,并防止生成的硅羟基发生逆转反应。
[0010] 本发明所述的耐冲刷型界面增强剂的制备方法,具体步骤为:
[0011] (1)将清水与无水乙醇按比例混合,得溶液I;
[0012] (2)向溶液I中加入表面活性剂CAEO‑15,低速搅拌过程中逐滴加入硅烷偶联剂,继续低速搅拌15min,即得耐冲刷型界面增强剂。硅烷偶联剂的滴加速度不宜太快,否则大量的硅烷偶联剂聚集,容易发生缩聚反应,影响硅烷偶联剂反应生成硅羟基,影响实际的效果。
[0013] 将本发明所述的耐冲刷型界面增强剂应用于煤层气井固井中,所述的耐冲刷型界面增强剂对煤层二界面胶结质量具有明显的改善效果,对于煤层二界面剪切强度与气密性均具有明显的改善作用,并且本发明所述的耐冲刷型界面增强剂与水泥浆具有良好的配伍性。

具体实施方式

[0014] 实施例1
[0015] 从现场煤块中取若干小块煤样,将上下两表面用低目数砂纸打磨平整,上表面用高目数砂纸打磨光滑,用于测量润湿角。
[0016] 实施例2
[0017] (1)分别将不同浓度乳化剂OP‑10溶解于清水中,慢速搅拌15min,得溶液I;
[0018] (2)分别将不同浓度平平加O‑25溶解于清水中,慢速搅拌15min,得溶液2;
[0019] (3)分别将不同浓度表面活性剂CAEO‑15溶解于清水中,慢速搅拌15min,得溶液3;
[0020] (4)分别将不同浓度椰子油二乙醇酰胺溶解于清水中,慢速搅拌15min,得溶液4;
[0021] (5)分别将不同浓度吐温60溶解于清水中,慢速搅拌15min,得溶液5;
[0022] (6)分别将不同浓度十二烷基硫酸钠溶解于清水中,慢速搅拌15min,得溶液6;
[0023] (7)分别将不同浓度十八烷基三甲基氯化铵溶解于清水中,慢速搅拌15min,得溶液7。
[0024] 所述浓度为表面活性剂占清水质量比。
[0025] 实施例3
[0026] (1)将清水与无水乙醇混合,得溶液1;
[0027] (2)向溶液1中加入表面活性剂CAEO‑15,慢速搅拌,搅拌过程中逐滴加入硅烷偶联剂,慢速搅拌15min,即得产物。
[0028] 所述清水与无水乙醇质量比为9:1;
[0029] 所述表面活性剂CAEO‑15浓度为0.1%;
[0030] 所述硅烷偶联剂浓度为0.3%。
[0031] 对比例1
[0032] 对现场不同区块煤样表面润湿角进行测试,实验仪器采用光学法接触角/界面张力仪,滴定液体分别选用蒸馏水与水泥浆滤液。润湿角测量三个点取平均值。从表1可以看出,各区块煤样表面润湿角都大于90°,呈亲油特性,水泥浆滤液滴定测试结果略小于蒸馏水滴定,为模拟现场,后续均采用水泥浆滤液滴定测量润湿角。
[0033] 表1不同区块煤样润湿角
[0034]
[0035] 实验例1
[0036] 对各种表面活性剂对煤岩表面润湿改性效果进行测试,分别测量煤样浸泡于7种表面活性剂不同浓度溶液中,统一浸泡10min,取出风干测量表面润湿角。
[0037] 表2乳化剂OP‑10最佳浓度优选
[0038] 浓度/% 干煤样 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8润湿角/° 107.3 63.9 55.7 57.3 31.1 26.9 30.9 33.8 35.1
[0039] 表3平平加O‑25最佳浓度优选
[0040]浓度/% 干煤样 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4
润湿角/° 110.1 86.7 86.0 53.2 38.0 9.6 16.3 26.3 38.6
[0041] 表4CAEO‑15最佳浓度优选
[0042] 浓度/% 干煤样 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4润湿角/° 111.3 57.9 44.8 38.6 15.6 0.0 0.0 16.2 26.7
[0043] 表5椰子油二乙醇酰胺最佳浓度优选
[0044]浓度/% 干煤样 0.1 0.2 0.22 0.24 0.26 0.3 0.4 0.5
润湿角/° 106.2 42.1 14.7 6.9 6.4 0.0 0.0 0.0 0.0
[0045] 表6吐温60最佳浓度优选
[0046] 浓度/% 干煤样 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4润湿角/° 106.3 56.5 51.0 36.6 19.7 0.0 0.0 20.7 28.5
[0047] 表7十二烷基硫酸钠最佳浓度优选
[0048]浓度/% 干煤样 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4
润湿角/° 108.9 40.5 24.4 9.9 15.7 24.0 29.3 30.5 31.2
[0049] 表8十八烷基三甲基氯化铵最佳浓度优选
[0050] 浓度/% 干煤样 0.05 0.07 0.1 0.13 0.15 0.2 0.3 0.4润湿角/° 109.1 36.2 17.3 10.5 2.0 8.2 8.8 11.5 15.7
[0051] 由表2~表8可以看出,7种表面活性剂都能起到很好的润湿改性效果,使煤样表面由油湿转变为水湿。综合考虑表面活性剂的价格与润湿改性最优浓度,优选出的表面活性剂为CAEO‑15,其最优浓度为0.1%。
[0052] 实验例2
[0053] 对表面活性剂润湿改性耐冲刷性能进行测试,同区块煤样分别经0.1%CAEO‑15溶液、0.3%硅烷偶联剂溶液与0.1%CAEO‑15+0.3%硅烷偶联剂复配溶液浸泡10min后取出风干,经恒定流速0.42m/s水泥浆滤液冲刷,测量不同冲刷时间条件下煤样表面润湿角。
[0054] 表9CAEO‑15溶液润湿改性耐冲刷效果
[0055] 冲刷时间 干煤样 润湿改性 5s 30s 2min 5min 15min 30min润湿角/° 112.8 0.0 17.9 28.3 55.2 77.1 86.3 91.2
[0056] 表10硅烷偶联剂溶液润湿改性耐冲刷效果
[0057]冲刷时间 干煤样 润湿改性 5s 30s 2min 5min 15min 30min
润湿角/° 111.3 30.7 37.1 42.3 55.2 62.5 66.6 70.0
[0058] 表11复配溶液润湿改性耐冲刷效果
[0059]冲刷时间 干煤样 润湿改性 5s 30s 2min 5min 15min 30min
润湿角/° 112.3 0.0 10.2 15.0 19.8 24.6 26.3 27.9
[0060] 由表9~表11可以看出,CAEO‑15溶液可以使煤样表面改性为完全水湿,但经水泥浆滤液冲刷30min后润湿角回到91.2°,说明其润湿改性效果好但耐冲刷效果差;硅烷偶联剂溶液不能使煤样表面改性为完全水湿,但经水泥浆滤液冲刷30min后润湿角仍保持在70.0°,说明其润湿改性效果较差但耐冲刷效果较好;复配溶液可以使煤样表面改性为完全水湿,并且经水泥浆滤液冲刷30min后润湿角仍保持在27.9°,说明其润湿改性效果与耐冲刷效果都很好。该复配溶液即为一种耐冲刷型界面增强剂。
[0061] 实验例3
[0062] 对耐冲刷型界面增强剂与水泥浆进行配伍性测试,按以下配方配制水泥浆:40%G级油井水泥+30%矿渣(S140)+30%沉珠粉煤灰+1.5%触变剂+2.5%降失水剂+4%无水硫酸钠,水固比为0.6。将耐冲刷型界面增强剂与水泥浆按一定容积比混合,分别测量耐冲刷型界面增强剂对水泥浆流变、滤失、稠化以及对水泥石抗压强度的影响。
[0063] 表12耐冲刷型界面增强剂对水泥浆流变参数影响
[0064]
[0065] 表13耐冲刷型界面增强剂对水泥浆稠化时间影响
[0066]
[0067] 表14耐冲刷型界面增强剂对水泥浆失水量影响
[0068]
[0069] 表15耐冲刷型界面增强剂对水泥石抗压强度影响
[0070]
[0071]
[0072] 由表12~表15可以看出,耐冲刷型界面增强剂对水泥浆的流变参数、API失水量、稠化时间以及水泥石的抗压强度影响较小,说明耐冲刷型界面增强剂与水泥浆具有良好的配伍性。
[0073] 实验例4
[0074] 对耐冲刷型界面增强剂对煤层二界面胶结质量的影响进行测试,按以下配方配制水泥浆:40%G级油井水泥+30%矿渣(S140)+30%沉珠粉煤灰+1.5%触变剂+2.5%降失水剂+4%无水硫酸钠,水固比为0.6。煤芯分别浸泡于耐冲刷型界面增强剂与清水中一定时间,取出后注入水泥浆,35℃常压条件下养护48h与72h,测量二界面剪切强度。相同步骤下浸泡5min,养护48h,通过自主研发的固井第一二界面密封性能测试装置,测试二界面的气密性,测三次取平均值。
[0075] 表16耐冲刷型界面增强剂对二界面胶结强度影响
[0076]
[0077] 表17耐冲刷型界面增强剂对煤层水泥环二界面气密性影响
[0078] 序号 清水浸泡突破压强/MPa 界面增强剂浸泡突破压强/MPa1 2.7 3.1
2 2.5 3.2
3 2.8 3.6
平均值 2.67 3.3
[0079] 由表16和表17可以看出,经耐冲刷型界面增强剂浸泡处理过的煤岩岩心,其二界面胶结强度明显高于清水浸泡处理的煤岩岩心,且随着浸泡处理时间的增大,其二界面胶结强度增大幅度明显,5min与10min处理后其胶结强度结果相近,说明胶结质量增强剂处理5min后即可达到很好地提高二界面胶结强度的效果。耐冲刷型界面增强剂同样可以明显增强煤层水泥环二界面的气密能力。所以,耐冲刷型界面增强剂对煤层二界面胶结质量具有明显的改善作用。