制备粒状陶瓷混合物的方法转让专利

申请号 : CN202080057464.X

文献号 : CN114269708B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : E·J·塞韦林E·N·费尔南德斯J·V·A·弥撒

申请人 : 维科IP控股有限公司

摘要 :

本申请涉及一种制备粒状陶瓷混合物的方法,其中该方法包括步骤:(a)用酸性水溶液接触流化床燃烧飞灰,以获得酸性流化床燃烧飞灰浆液;(b)从步骤(a)获得的浆液中去除过量的酸,以获得固体的酸处理的流化床燃烧飞酸;(c)使以下项接触在一起:(i)步骤(b)中获得的固体的酸处理的流化床燃烧飞灰;(ii)粘土;(iii)可选的,长石;和(iv)可选的,其它成分,以形成粒状陶瓷混合物。

权利要求 :

1.一种制备粒状陶瓷混合物的方法,其中所述方法包括步骤:(a)用酸性水溶液接触流化床燃烧飞灰,以获得酸性的流化床燃烧飞灰的浆液;

(b)从步骤(a)获得的浆液中去除过量的酸,以获得固体的酸处理的流化床燃烧飞灰;

(c)使以下项接触在一起:

(i)步骤(b)中获得的固体的酸处理的流化床燃烧飞灰;

(ii)粘土;

(iii)可选的,长石;和

(iv)可选的,包括化学添加剂和粘合剂的其它成分,以形成粒状陶瓷混合物。

2.根据权利要求1所述的方法,其中酸性水溶液选自醋酸水溶液、抗坏血酸水溶液、盐酸水溶液、硝酸水溶液、草酸水溶液及其任意组合。

3.根据前述权利要求中任一项所述的方法,其中酸性水溶液是醋酸的水溶液。

4.根据权利要求1所述的方法,其中酸性水溶液的摩尔浓度为0.2M至3.0M。

5.根据权利要求1所述的方法,其中步骤(b)包括冲洗浆液的步骤、以及从固体内容物去除上清液以获得固体的酸处理的流化床燃烧飞灰的步骤。

6.根据权利要求1所述的方法,其中,所述粒状陶瓷混合物包括:(a)10wt%至60wt%的流化床燃烧飞灰;

(b)15wt%至55wt%的粘土;

(c)0wt%至35wt%的长石;和(d)可选的,包括化学添加剂和粘合剂的其它成分,以达到100wt%。

7.根据权利要求1所述的方法,其中所述粒状陶瓷混合物包括:(a)20wt%至50wt%的流化床燃烧飞灰;

(b)15wt%至35wt%的粘土;

(c)0wt%至25wt%的长石;和(d)可选的,包括化学添加剂和粘合剂的其它成分,以达到100wt%。

8.根据权利要求1所述的方法,其中所述流化床燃烧飞灰是循环流化床燃烧飞灰。

9.根据权利要求1所述的方法,其中所述流化床燃烧飞灰包含大于5.0wt%的硫氧化物。

10.根据权利要求1所述的方法,其中,所述流化床燃烧飞灰包含大于10wt%的硫氧化物。

说明书 :

制备粒状陶瓷混合物的方法

技术领域

[0001] 本发明涉及将流化床燃烧飞灰,尤其是循环流化床燃烧飞灰掺入粒状陶瓷混合物中。

背景技术

[0002] 流化床燃烧(FBC)发电厂与煤粉燃烧(PCC)发电厂
[0003] 燃煤发电会产生大量飞灰。这将持续到可预见的未来。人们对如何利用这种飞灰废料很感兴趣。目前,许多飞灰作为火山灰或胶凝材料用于混凝土中。其它用途包括制砖、和用作土壤稳定材料。然而,许多飞灰继续进入垃圾填埋地。这具有明显的环境成本和经济成本。因此,在开发可使用飞灰作为原材料的产品和工艺方面存在持续的价值和兴趣。这最大限度地减少了进入垃圾填埋地的飞灰量,并减少了其它初始原料的使用量。
[0004] 由于火力发电和焚烧中引入了流化床燃烧(FBC)技术,因此如何重新利用得自发电的飞灰的问题变得更加困难。流化床燃烧(FBC)工厂设计与几十年来一直是发电厂标准的粉煤燃烧(PCC)工厂设计完全不同。FBC工厂生产的飞灰与PCC飞灰不同,而且FBC飞灰比PCC飞灰更难重新用于其它应用(例如陶瓷生产)中。
[0005] 流化床燃烧器在比PCC设计更低的温度下,在灰和/或沙子的加热流化床中燃烧煤。流化床燃烧(FBC)设计包括“鼓泡”流化床和“循环”流化床设计。鼓泡流化床也称为“沸腾流化床”。循环流化床(称为CFB)是最常见的。各种FBC设计可以根据它们运行的压力(常压或加压)而被进一步划分。
[0006] 循环流化床(CFB)锅炉通过不断地将来自燃烧区的废气流中的大部分热灰(包括任何细小的未燃烧燃料)再循环返回至流化床燃烧区的底部来运行。一部分最细的飞灰不断从废气中去除,并且新的燃料和添加剂不断添加到燃烧区。这种系统具有许多优点,包括极高水平的碳燃烧(因为燃烧颗粒反复通过燃烧区),而且燃料在被添加到燃烧区之前不必被粉碎。高温下的延长时间和高水平的颗粒:灰颗粒在CFB设计中经历的颗粒相互作用为PCC灰中通常不可见的矿物相提供了形成的机会。
[0007] 流化床燃烧(FBC)技术正变得越来越流行,因为使用此类技术的工厂污染较少。FBC工厂排放的氮氧化物相比于传统的PCC工厂低得多,硫氧化物的去除也更容易,而且FBC工厂可以燃烧更广泛的燃料,例如低品级煤,甚至是浸胶(tyre)和石油等燃料。这些低品级燃料通常具有高的硫含量。
[0008] FBC工厂设计中,具有热颗粒的固体/固体接触物提供了极高的热交换系数。这意味着FBC工厂可以在低得多的温度下高效发电:通常在800‑900℃之间,相较于PCC工厂中的1400‑1700℃。能够在较低的燃烧温度下有效运行具有很大的优势。特别地,在FBC工厂中形成的氮氧化物较少,因此减少了NOx污染。
[0009] 与PCC工厂相比,FBC工厂中硫氧化物的去除也更简单。通常,PCC工厂燃烧质量更高、硫酸盐含量更低的煤,例如无烟煤。通常,PCC工厂配备湿式洗涤器,该湿式除尘器通过称为烟道气体脱硫(FGD)的工艺处理废气以化学地去除硫氧化物。这是昂贵且精细的工艺。
[0010] 与PCC工厂相比,FBC工厂通常通过燃烧燃料和石灰石/白垩/白云石的混合物来减少硫氧化物排放。石灰石材料(碳酸钙)在流化床内形成氧化钙。这与燃料中硫化物燃烧产生的硫氧化物反应,就地形成硫酸钙。这是可能的,因为流化床中的温度足够低,使得硫酸钙矿物(如硬石膏)稳定且容易地形成。
[0011] 这样的反应在PCC工厂中是不可能的(由于所使用的高温)。因此它们需要单独的FGD系统。
[0012] 将石灰石材料添加到煤中以允许硫氧化物在原位进行反应是比必须洗涤烟道气体简单得多的过程。
[0013] 流化床燃烧(FBC)飞灰与煤粉燃烧(PCC)飞灰的区别
[0014] 向流化床燃烧(FBC)工厂的锅炉中添加大量石灰石材料意味着流化床燃烧(FBC)飞灰通常包含高含量的钙物质和硫物质。
[0015] FBC飞灰中的钙物质含量(通常报告为等效氧化钙含量)通常高于来自PCC工厂的高氧化钙(C型)飞灰。
[0016] 此外,FBC飞灰中硫物质的含量(通常报告为等效硫氧化物含量)高于PCC飞灰的硫氧化物含量。
[0017] ASTM‑C618标准通常用于限定适合用作火山灰或水泥产品的飞灰质量。符合ASTM‑C618的材料的SO3上限为5wt%。FBC飞灰通常包含高得多含量的硫氧化物。
[0018] 从物理上讲,FBC设计的飞灰与传统的PCC飞灰完全不同。FBC飞灰还未经受传统PCC工厂的排气系统中遇到的非常高的温度。PCC工厂中产生的飞灰悬浮在非常热的燃烧废气中。所经历的温度高到足以熔化颗粒。这意味着大部分PCC飞灰颗粒是球形的并且由玻璃状无定形相形成。
[0019] 相比之下,来自FBC工厂(尤其是CFB燃烧工厂)的飞灰不会被熔化,因为FBC的温度较低。因此,FBC飞灰颗粒具有不规则的形状并且不含玻璃相。另一个区别是,在FBC工厂中,尤其是在高含量飞灰被再循环的工厂中(例如在CFB燃烧工厂中),飞灰经受高温的时间通常要长得多。这意味着,例如,虽然PCC飞灰中的铁通常以磁铁矿和赤铁矿的形式存在,但在FBC飞灰和CFB燃烧飞灰中,它主要以铁素体形式存在。这具有重大意义,例如,去除铁的容易程度。
[0020] PCC和FBC飞灰在化学上不同(例如通常具有不同含量的钙物质和硫酸盐物质)、在物理上不同(例如通常具有不同的形态,例如规则的/玻璃态(PCC),相比于不规则的/非玻璃态(FBC))、以及矿物学上不同。FBC飞灰还具有比PCC飞灰更小的直径(由于自研磨行为),并且与PCC飞灰相比具有更低的残余碳含量。
[0021] 在粒状陶瓷混合物中加入流化床燃烧(FBC)飞灰,尤其是循环流化床(CFB)燃烧飞灰的问题
[0022] 大多数FBC飞灰目前被送往垃圾填埋地或用作价值非常低的土壤稳定物。作为火山灰,它不如PCC飞灰有效。此外,高硫酸盐含量会引起问题。越来越需要寻找FBC飞灰的替代用途。潜在的高价值用途是陶瓷制品,例如陶瓷地砖和瓷地砖。
[0023] 飞灰可用作陶瓷制品中粘土的部分替代品。飞灰可以与粘土和其它材料(如长石)结合以形成粒状陶瓷混合物。然后粒状陶瓷混合物可以形成为陶瓷制品,例如陶瓷砖,尤其是瓷地砖。这种陶瓷制品可以用大量飞灰制成,这在本领域中是已知的。
[0024] 用飞灰代替粘土是有益的,因为合适粘土的供应正变得受限。最大化可被飞灰替代的粘土的实际含量是有益的。
[0025] 然而,本领域使用的飞灰大多为PCC飞灰。FBC,特别是CFB燃烧技术是相对较新的发展,且并未在早期的陶瓷技术发展中使用。因此,与FBC飞灰在陶瓷应用中的使用相关的问题并未得到发现,甚至与大部分飞灰工作无关。例如,现有技术将飞灰描述为由无定形、玻璃相的球体组成,这是对PCC飞灰而非FBC飞灰的描述。很明显,该技术是指PCC飞灰。
[0026] 发明人已经发现,简单地用FBC飞灰(尤其是还包含粘土、长石和可选的其它成分的陶瓷组合物中的CFB燃烧飞灰)代替PCC飞灰会导致缺陷。已观察到用FBC飞灰制成的陶瓷制品在烧制周期中会破裂。这在制造高质量、大型陶瓷制品(例如陶瓷地砖,尤其是瓷地砖)时尤其成问题,其中此类缺陷特别不可接受。将飞灰掺入需要低吸水率和高抗弯强度的瓷地砖中尤其具有挑战性。
[0027] 发明人还看到,当FBC飞灰在陶瓷应用中以较高含量使用时,这种问题会加剧。
[0028] 不希望受理论束缚,假设典型陶瓷生产工艺的高能量环境、以及粘土和FBC飞灰颗粒之间的高强度水平的表面/表面接触导致更高含量的特定矿物相(这改变了材料的燃烧行为)的形成。这转而导致陶瓷制品开裂。
[0029] 发明人发现,如果在制备粒状陶瓷混合物期间用酸性水溶液处理FBC飞灰,则可以克服与将FBC飞灰(尤其是CFB燃烧飞灰)掺入粒状陶瓷混合物相关的问题。这允许将FBC飞灰,特别是CFB燃烧飞灰掺入到粒状陶瓷混合物中,然后可以形成陶瓷制品,例如陶瓷地砖和瓷地砖,而不会出现开裂的问题。
[0030] 不希望受理论束缚,假设对FBC飞灰进行酸处理,然后将其掺入粒状陶瓷混合物中,会导致形成不同的矿物成分和相,它们具有不同的热行为并且不容易破裂。

发明内容

[0031] 本申请提供了一种制备粒状陶瓷混合物的方法,其中该方法包括以下步骤:
[0032] (a)用酸性水溶液接触流化床燃烧飞灰,以获得酸性流化床燃烧飞灰浆液;
[0033] (b)从步骤(a)中获得的浆液中去除过量的酸,以获得固体的酸处理的流化床燃烧飞灰;
[0034] (c)使以下项接触在一起:
[0035] (i)步骤(b)中获得的固体的酸处理的流化床燃烧飞灰;
[0036] (ii)粘土;
[0037] (iii)可选地,长石;和
[0038] (iv)可选地,其它成分。
[0039] 以形成粒状陶瓷混合物。

具体实施方式

[0040] 制备粒状陶瓷混合物的方法
[0041] 制备粒状陶瓷混合物的方法包括以下步骤:
[0042] (a)用酸性水溶液接触流化床燃烧飞灰,以获得酸性流化床燃烧飞灰浆液;
[0043] (b)从步骤(a)中获得的浆液中去除过量的酸,以获得固体的酸处理的流化床燃烧飞灰;
[0044] (c)使以下项接触在一起:
[0045] (i)步骤(b)中获得的固体的酸处理的流化床燃烧飞灰;
[0046] (ii)粘土;
[0047] (iii)可选地,长石;和
[0048] (iv)可选地,其它成分。
[0049] 在将处理后的飞灰与其它陶瓷材料(例如粘土)接触之前,用酸水处理FBC飞灰具有多种优点。例如,这最大限度地减少了所需的酸量,因为在该应用中,实际上只有飞灰需要酸处理。本发明的方法可能需要去除酸和飞灰之间化学反应的可溶性产物。
[0050] 此外,仅将飞灰与酸接触使固体悬浮物的过滤更容易,因为飞灰不会像许多粘土那样在水性混合物中溶胀(并因此凝胶化)。除非使用非常稀的溶液,否则与洗涤粘土和飞灰相关联的胶凝和增稠会使上清液(supernatant liquid)的分离缓慢而复杂。获得酸性流化床燃烧飞灰浆液的步骤(a)
[0051] 流化床燃烧飞灰与酸性水溶液接触以得到酸性流化床燃烧飞灰浆液。优选地,步骤(a)的pH在2.0至小于7.0的范围内,优选2.0至6.0,或2.0至5.0,或甚至2.3至4.0。
[0052] 获得固体的酸处理的流化床燃烧飞灰的步骤(b)
[0053] 过量的酸从步骤(a)中获得的浆液中被去除以获得固体的酸处理的流化床燃烧飞灰。
[0054] 通常,步骤(b)包括冲洗浆液的步骤、以及从固体内容物中除去上清液的步骤。这种标准的冲洗步骤可以重复多次,例如两次或更多次、或者甚至三次或更多次、或者甚至四次或更多次。
[0055] 形成粒状陶瓷混合物的步骤(c)
[0056] 在步骤(c)期间,以下成分接触在一起:
[0057] (i)步骤(b)中获得的固体的酸处理的流化床燃烧飞灰;
[0058] (ii)粘土;
[0059] (iii)可选地,长石;和
[0060] (iv)可选地,其它成分
[0061] 粒状陶瓷混合物
[0062] 粒状陶瓷混合物包含固体的酸处理的流化床燃烧飞灰、粘土、长石和可选的其它成分。
[0063] 优选地,粒状陶瓷混合物包括:
[0064] (a)10wt%至60wt%,或20wt%至50wt%的固体的酸处理的流化床燃烧飞灰;
[0065] (b)15wt%至55wt%的粘土;
[0066] (c)0wt%至35wt%,或5wt%至25wt%的长石;和
[0067] (d)可选的,其它成分,以达到100wt%。
[0068] 优选地,粒状陶瓷混合物包括:
[0069] (a)20wt%至50wt%的固体的酸处理的流化床燃烧飞灰;
[0070] (b)15wt%至35wt%的粘土;
[0071] (c)0wt%至35wt%,或5wt%至25wt%的长石;和
[0072] (d)可选的,其它成分,以达到100wt%。
[0073] 流化床燃烧飞灰
[0074] 合适的流化床燃烧飞灰可以是常压的流化床燃烧飞灰、加压的流化床燃烧飞灰或它们的组合。
[0075] 合适的流化床燃烧飞灰可以是循环的流化床燃烧飞灰、鼓泡的流化床燃烧飞灰或其组合。
[0076] 优选的流化床燃烧飞灰是循环的流化床燃烧飞灰。
[0077] 通常,流化床燃烧飞灰包含大于4.0wt%的硫氧化物,或大于5.0wt%、或大于6.0wt%、或大于6.5wt%、或大于7.0wt%、或大于10wt%的硫氧化物。
[0078] 通常,流化床燃烧飞灰源自煤,通常为流化床燃烧煤飞灰。
[0079] 固体的酸处理的流化床燃烧飞灰
[0080] 通常,固体的酸处理的流化床燃烧飞灰包含大于4.0wt%的硫氧化物,或大于5.0wt%、或大于6.0wt%、或大于6.5wt%、或大于7.0wt%、或大于10wt%的硫氧化物。
[0081] 硫氧化物
[0082] 对飞灰的元素组成的分析最常用的是X射线荧光(XRF)技术。这可以测量较重元素(例如铁、铝、硅、硫酸盐和钙)的含量。惯例是这些随后被报告为等效的氧化物的化学计量水平。硫报告为SO3。
[0083] SO3在陶瓷文献中通常被称为“硫酸盐”,尽管术语“硫酸盐”在技术上指的是SO42‑离子。有时硫报告为元素硫,但硫的报告方式对实际存在的含量没有影响。因此,本发明使用术语“硫氧化物”更为通用。“硫氧化物”、SO3和“硫酸盐”在本文中使用时是可互换的术语。
[0084] 飞灰中存在的硫氧化物的含量可以使用以下的XRF方法来确定。
[0085] 合适的XRF设备是来自莫尔文Panalytical的Epsilon 4XRF分析仪,其使用样品盘,该样品盘使用Claisse的用于样品盘制备的Aegon 2自动融合设备来制备。灰样品自动地溶解在熔融硼酸锂熔剂中并形成圆盘。然后将其放置在Epsilon 4中进行分析。设备应按照制造商的说明进行操作。测量SO3时,Epsilon 4应设置为电压4.5kV、电流3000μa、以氦气为介质、不使用过滤器以及测量时间450s。
[0086] 粘土
[0087] 合适的粘土是标准粘土,例如乌克兰粘土或伊利石粘土。优选的粘土是标准粘土和高塑性粘土的组合。标准粘土与高塑性粘土的重量比率可以在2:1至5:1的范围内。合适的粘土是高塑性粘土,例如膨润土。通常,高塑性粘土的阿特堡塑性指数大于25.0。通常,标准粘土的阿特堡塑性指数小于或等于25.0。可以选择高塑性粘土的量来为粒状陶瓷混合物提供足够的坚固性和流动性。
[0088] 长石
[0089] 合适的长石包括钠和/或钾长石。
[0090] 可选的其它成分
[0091] 其它可选的成分包括化学添加剂和粘合剂。
[0092] 酸性水溶液
[0093] 酸性水溶液可以是有机酸性水溶液、无机酸性水溶液或其组合。酸性水溶液优选为弱酸。
[0094] 合适的酸性水溶液选自醋酸(乙酸)、抗坏血酸((2R)‑2‑[(1S)‑1,2‑二羟乙基]‑3,4‑二羟基‑2H‑呋喃‑5‑酮)、盐酸、硝酸、草酸(乙二酸)、硫酸及其任意组合。
[0095] 优选地,酸性水溶液是醋酸(乙酸)的水溶液。醋酸(乙酸)的合适来源是醋。
[0096] 通常,在步骤(a)期间,酸性水溶液的摩尔浓度为0.2M至3.0M、或0.4M至2.0M、或甚至0.5M至1.5M。
[0097] 优选地,在步骤(a)期间,酸性水溶液的pH在2.0至小于7.0的范围内,优选2.0至6.0、或2.0至5.0、或甚至2.3至4.0。
[0098] 优选地,酸不是硫酸,酸性水溶液不是硫酸的水溶液。
[0099] 示例
[0100] 发明示例
[0101] 取FBC飞灰,在10%(体积比)醋酸(乙酸)水溶液中(以50g FBC飞灰与500ml醋酸(乙酸)水溶液的比例)洗涤,来制备酸处理的FBC飞灰。将混合物在环境下剧烈搅拌60分钟。
[0102] 混合后,使混合物沉降,倒出上清液。然后通过旋转用新水冲洗混合物,使固体沉降并倾析上清液。然后将湿灰在120℃下干燥1小时以形成干燥的酸处理的FBC飞灰。
[0103] 然后将干燥的酸处理的FBC飞灰与粘土和长石混合,并根据以下工艺制成陶瓷制品。
[0104] 将100g酸处理的流化床燃烧飞灰与50g伊利石粘土和50g钠长石混合以形成粒状陶瓷混合物。将混合物研磨、筛分和润湿。然后将140g上述粒状陶瓷混合物在矩形软钢模具(155×40mm)中单向压制至40MPa的压力,保持1.5分钟(90秒)。将形成的主体从模具中释放出并放入110℃的烘箱中干燥。
[0105] 将干燥的主体在电窑中以2.5℃/分钟的升温速率烧制至1160℃。将温度保持在最高温度30分钟。然后允许烧制的物体自然地(因此缓慢地)冷却至室温。
[0106] 烧制的主体中没有观察到开裂。
[0107] 对照示例
[0108] 遵循与上述相同的程序,不同之处在于:流化床灰(虽然在除了酸处理步骤之外的每个其它方面都与酸处理的流化床燃烧飞灰相同)不进行酸冲洗步骤而是直接与其它成分混合。
[0109] 在烧制的主体中观察到了开裂。
[0110] 具有与FBC飞灰对照示例相同成分的对照示例(以完全相同的方式制造,但由PCC飞灰制成)没有显示任何开裂。