一种水声网络的并行通信方法、设备及介质转让专利

申请号 : CN202111679446.8

文献号 : CN114301542B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 胡海驹陈焱琨张军黄兴华水胜陈梅森刘远海张毅胜康美兰梁亚朋陈凤董超陈芳炯杨萃李杰季飞

申请人 : 广东省国土资源测绘院国家海洋局南海调查技术中心(国家海洋局南海浮标中心)南方海洋科学与工程广东省实验室(珠海)华南理工大学

摘要 :

本发明涉及水声网络领域,具体公开了一种水声网络的并行通信方法、设备及介质,包括初始化水声网络中的各节点,检测并保存各所述节点与其他节点间的传播时延;将全部所述源节点的前数两个传输周期和当前传输周期重组为第一数据;其中,所述第一数据是该节点前数第二个传输周期的应答信令、前数第一个传输周期的数据包和当前传输周期的握手信令;依据各所述源节点到各所述目标节点的第一传输参数和所述传播时延,获得本传输节拍各所述源节点无冲突的发送所述第一数据的第二传输参数;控制全部所述源节点,按照第二传输参数,向全部所述目标节点传输所述第一数据。本发明提高了水声网络的利用率,降低了传输延迟,降低了水声网络设备的能耗。

权利要求 :

1.一种水声网络的并行通信方法,其特征在于,包括:

初始化水声网络中的各节点,检测并保存各所述节点与其他节点间的传播时延;其中,所述节点在某一传输节拍用于发送数据时是源节点,所述节点在某一传输节拍用于接收数据则是目标节点;

将当前传输节拍中,全部所述源节点的前数两个传输周期数据和当前传输周期数据重组为第一数据;其中,所述传输周期数据包括握手信令、数据包和应答信令;所述第一数据是该节点前数第二个传输周期数据的应答信令、前数第一个传输周期数据的数据包和当前传输周期数据的握手信令;

依据各所述源节点到各所述目标节点的第一传输参数和所述传播时延,获得本传输节拍各所述源节点无冲突的发送所述第一数据的第二传输参数;其中,所述第一传输参数包括各所述源节点在前数两个传输节拍中所有握手成功的历史信息,所述第二传输参数包括当前传输节拍中,各所述源节点发送所述第一数据各信令或数据包的时刻,以及该传输节拍的总时长;

控制全部所述源节点,按照第二传输参数,向全部所述目标节点传输所述第一数据;

其中,所述依据各所述源节点到各所述目标节点的第一传输参数和所述传播时延,获得本传输节拍各所述源节点无冲突的发送所述第一数据的第二传输参数,具体为:建立所述第一数据中所有数据的第一集合;采用相同的非随机算法,计算第一集合中各数据从源节点传输到目标节点的时延,得到第二集合;依据第二集合,计算各源节点发送第一数据中各自对应数据的最优时刻,并计算当前传输节拍的总时长,得到第二传输参数;

所述依据第二集合,计算各源节点发送第一数据中各自对应数据的最优时刻,并计算当前传输节拍的总时长,得到第二传输参数,具体为:对于所述源节点发送应答信令和数据包的最优时刻时,选择令所述总时长最小的发送时刻作为最优时刻;当计算所述源节点握手信令中发送请求发送信号的最优时刻时,若第二集合存在该源节点的清除发送信号预留时隙,则将该节点对应的将大于清除发送信号预留时隙起点的发送时刻删除,从该节点剩下的发送时刻中选择令所述总时长最小者作为最优时刻;当计算所述源节点握手信令中接收清除发送信号的最优时刻时,若第二集合存在该源节点的请求发送信号预留时隙,则将该节点对应的小于请求发送信号预留时隙终点的发送时刻删除,从该节点剩下的发送时刻中选择令所述总时长最小者作为最优时刻。

2.根据权利要求1所述的一种水声网络的并行通信方法,其特征在于,所述初始化水声网络中的各节点,检测并保存各所述节点与其他节点间的传播时延,具体为:将所述水声网络中所有节点的时钟进行同步;

每个节点记录其与各节点之间的传播时延;

在所述水声网络中广播启动信令。

3.一种水声网络的并行通信设备,其特征在于,包括:初始化模块、重组模块、优化模块和控制模块;

所述初始化模块用于初始化水声网络中的各节点,检测并保存各所述节点与其他节点间的传播时延;其中,所述节点在某一传输节拍用于发送数据时是源节点,所述节点在某一传输节拍用于接收数据则是目标节点;

所述重组模块用于将当前传输节拍中,全部所述源节点的前数两个传输周期数据和当前传输周期数据重组为第一数据;其中,所述传输周期数据包括握手信令、数据包和应答信令;所述第一数据是该节点前数第二个传输周期数据的应答信令、前数第一个传输周期数据的数据包和当前传输周期数据的握手信令;

所述优化模块用于依据各所述源节点到各所述目标节点的第一传输参数和所述传播时延,获得本传输节拍各所述源节点无冲突的发送所述第一数据的第二传输参数;其中,所述第一传输参数包括各所述源节点在前数两个传输节拍中所有握手成功的历史信息,所述第二传输参数包括当前传输节拍中,各所述源节点发送所述第一数据各信令或数据包的时刻,以及该传输节拍的总时长;

所述控制模块用于控制全部所述源节点,按照第二传输参数,向全部所述目标节点传输所述第一数据;

其中,所述依据各所述源节点到各所述目标节点的第一传输参数和所述传播时延,获得本传输节拍各所述源节点无冲突的发送所述第一数据的第二传输参数,具体为:建立所述第一数据中所有数据的第一集合;采用相同的非随机算法,计算第一集合中各数据从源节点传输到目标节点的时延,得到第二集合;依据第二集合,计算各源节点发送第一数据中各自对应数据的最优时刻,并计算当前传输节拍的总时长,得到第二传输参数;

所述依据第二集合,计算各源节点发送第一数据中各自对应数据的最优时刻,并计算当前传输节拍的总时长,得到第二传输参数,具体为:对于所述源节点发送应答信令和数据包的最优时刻时,选择令所述总时长最小的发送时刻作为最优时刻;当计算所述源节点握手信令中发送请求发送信号的最优时刻时,若第二集合存在该源节点的清除发送信号预留时隙,则将该节点对应的将大于清除发送信号预留时隙起点的发送时刻删除,从该节点剩下的发送时刻中选择令所述总时长最小者作为最优时刻;当计算所述源节点握手信令中接收清除发送信号的最优时刻时,若第二集合存在该源节点的请求发送信号预留时隙,则将该节点对应的小于请求发送信号预留时隙终点的发送时刻删除,从该节点剩下的发送时刻中选择令所述总时长最小者作为最优时刻。

4.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行如权利要求1至2中任意一项所述的水声网络的并行通信方法。

说明书 :

一种水声网络的并行通信方法、设备及介质

技术领域

[0001] 本发明涉及水声网络领域,尤其涉及一种水声网络的并行通信方法、设备及介质。

背景技术

[0002] 水声网络是水下通信研究的重要方向,在水下勘探、水下石油开采、战术监控、污染监测、海啸预警、辅助导航、生态监控等方面有着广泛的用途。然而受到传递介质的影响,水声信道的频带窄、干扰强、时延长,且传输能量受限,因此,控制节点共享信道方式的媒体接入控制(Med i um Access Contro l,MAC)技术成为影响水声网络性能的关键因素。
[0003] 水声网络常用的MAC协议可分为非竞争式和竞争式两种,前者将整个通信的频谱资源按时间、频率、编码空间等划分为多个子信道,固定分配给不同节点单独使用,可以避免冲突的发生,适用于负载较重、连续、各节点较平衡的场合;而后者中,用户需要通过竞争获取信道的使用权,更适合处理较轻的、突发的或不平衡的通信负载。握手是竞争式MAC协议中常用的冲突避免方法,它通常将一个传输周期划分为RTS(Request‑to‑Send)、CTS(Clear‑to‑Send)、DATA和ACK(Acknowledge)四个阶段,串行进行。由于水声信道的特点,握手协议用于水声网络时效率较低,其原因主要有:(1)RTS、CTS、DATA和ACK四个阶段需串行进行,由于水下信息传播时延很长,等待握手的RTS、CTS和等待回应的ACK时间在整个传输周期中占的比例很大,显著降低了传输的效率;(2)传统握手协议中节点的通信采用了串行的方式,即上一个节点的传输周期完成后下一节点的传输周期才能够开始,由于水下点对点通信速率低,因此网络性能难以提高。
[0004] 为了降低握手周期和等待回应所浪费的时间,现有的水声网络技术中,利用水下信息传播时延长的特点来实现多个节点的信令和数据包并发传输,每个节点采用经过优化的时分复用方法发送RTS/CTS信令和数据包,可以有效避免它们之间的冲突,同时将ACK/NACK信令的发送与下一传输周期的RTS/CTS信令发送相结合,并提供了节点休眠的机制,能有效地提高信道利用率,节约能耗。然而,该技术中RTS/CTS/ACK和DATA阶段相互独立,即上一阶段全部信令或数据传输完毕后,才能进入下一阶段,这种串行的方式令RTS/CTS/ACK和DATA阶段的并行传输无法一起进行全局的优化,限制了性能的提高。

发明内容

[0005] 为了克服现有的水声网络通信技术传输等待周期长、信道利用率较低、网络性能难以优化和提高的问题,本发明提供一种水声网络的并行通信方法、设备及介质。
[0006] 本发明提供了一种水声网络的并行通信方法,包括:
[0007] 初始化水声网络中的各节点,检测并保存各所述节点与其他节点间的传播时延;其中,所述节点在某一传输节拍用于发送数据时是源节点,所述节点在某一传输节拍用于接收数据则是目标节点;
[0008] 将当前传输节拍中,全部所述源节点的前数两个传输周期和当前传输周期重组为第一数据;其中,所述传输周期包括握手信令、数据包和应答信令;所述第一数据是该节点前数第二个传输周期的应答信令、前数第一个传输周期的数据包和当前传输周期的握手信令;
[0009] 依据各所述源节点到各所述目标节点的第一传输参数和所述传播时延,获得本传输节拍各所述源节点无冲突的发送所述第一数据的第二传输参数;其中,所述第一传输参数包括各所述源节点在前数两个传输节拍中所有握手成功的历史信息,所述第二传输参数包括当前传输节拍中,各所述源节点发送所述第一数据各信令或数据包的时刻,以及该传输节拍的总时长;
[0010] 控制全部所述源节点,按照第二传输参数,向全部所述目标节点传输所述第一数据。
[0011] 作为优选地,所述初始化水声网络中的各节点,检测并保存各所述节点与其他节点间的传播时延,具体为:
[0012] 将所述多信道水声网络中所有节点的时钟进行同步;
[0013] 每个节点记录其与各节点之间的传播时延;
[0014] 在所述多信道水声网络中广播启动信令。
[0015] 优选地,所述依据各所述源节点到各所述目标节点的第一传输参数和所述传播时延,获得本传输节拍各所述源节点无冲突的发送所述第一数据的第二传输参数,具体为:
[0016] 建立所述第一数据中所有数据的第一集合;
[0017] 采用相同的非随机算法,计算第一集合中各数据从源节点传输到目标节点的时延,得到第二集合;
[0018] 依据第二集合,计算各源节点发送第一数据中各自对应数据的最优时刻,并计算当前传输节拍的总时长,得到第二传输参数。
[0019] 优选地,所述依据第二集合,计算各源节点发送第一数据中各自对应数据的最优时刻,并计算当前传输节拍的总时长,得到第二传输参数,具体为:
[0020] 对于所述源节点发送应答信令和数据包的最优时刻时,选择令所述总时长最小的发送时刻作为最优时刻;
[0021] 当计算所述源节点握手信令中发送请求发送信号的最优时刻时,若第二集合存在该源节点的清除发送信号预留时隙,则将该节点对应的将大于清除发送信号预留时隙起点的发送时刻删除,从该节点剩下的发送时刻中选择令所述总时长最小者作为最优时刻;
[0022] 当计算所述源节点握手信令中接收清除发送信号的最优时刻时,若第二集合存在该源节点的请求发送信号预留时隙,则将该节点对应的小于请求发送信号预留时隙终点的发送时刻删除,从该节点剩下的发送时刻中选择令所述总时长最小者作为最优时刻。
[0023] 本发明还提供了一种水声网络的并行通信设备,包括:初始化模块、重组模块、优化模块和控制模块;
[0024] 所述初始化模块用于初始化水声网络中的各节点,检测并保存各所述节点与其他节点间的传播时延;其中,所述节点在某一传输节拍用于发送数据时是源节点,所述节点在某一传输节拍用于接收数据则是目标节点;
[0025] 所述重组模块用于将当前传输节拍中,全部所述源节点的前数两个传输周期和当前传输周期重组为第一数据;其中,所述传输周期包括握手信令、数据包和应答信令;所述第一数据是该节点前数第二个传输周期的应答信令、前数第一个传输周期的数据包和当前传输周期的握手信令;
[0026] 所述优化模块用于依据各所述源节点到各所述目标节点的第一传输参数和所述传播时延,获得本传输节拍各所述源节点无冲突的发送所述第一数据的第二传输参数;其中,所述第一传输参数包括各所述源节点在前数两个传输节拍中所有握手成功的历史信息,所述第二传输参数包括当前传输节拍中,各所述源节点发送所述第一数据各信令或数据包的时刻,以及该传输节拍的总时长;
[0027] 所述控制模块用于控制全部所述源节点,按照第二传输参数,向全部所述目标节点传输所述第一数据。
[0028] 本发明提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行上述水声网络的并行通信方法。
[0029] 本发明的有益效果是:
[0030] (1)通过将当前传输节拍中,全部所述源节点的前数两个传输周期和当前传输周期重组为第一数据;其中,所述第一数据是该节点前数第二个传输周期的应答信令、前数第一个传输周期的数据包和当前传输周期的握手信令;在同一传输节拍中同时包含了点对点式的数据包传输和广播式的信令传输,缩短了单个传输周期相对占用的传输时间,提高了水声网络的利用率;
[0031] (2)通过依据各所述源节点到各所述目标节点的第一传输参数和所述传播时延,获得本传输节拍各所述源节点无冲突的发送所述第一数据的第二传输参数;其中,所述第一传输参数包括各所述源节点在前数两个传输节拍中所有握手成功的历史信息,所述第二传输参数包括当前传输节拍中,各所述源节点发送所述第一数据各信令或数据包的时刻,以及该传输节拍的总时长;对各源节点的数据发送时间进行联合优化,进一步提高了网络的整体利用率,降低了传输延迟,降低了水声网络设备的能耗。
[0032] 优选地,采用重复计算技术消除额外的信息交换,能有效地提高水声网络利用率,可以广泛用于全连通结构的水声通信网、水声传感网等场合。

附图说明

[0033] 下文将结合说明书附图对本发明进行进一步的描述说明,其中:
[0034] 图1为本发明其中一个实施例的方法流程图。

具体实施方式

[0035] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0036] 参见图1,作为本发明的其中一个实施例,公开了一种水声网络的并行通信方法,其实现步骤如下:
[0037] S1、初始化水声网络中的各节点,检测并保存各所述节点与其他节点间的传播时延;其中,所述节点在某一传输节拍用于发送数据时是源节点,所述节点在某一传输节拍用于接收数据则是目标节点;
[0038] S2、将当前传输节拍中,全部所述源节点的前数两个传输周期和当前传输周期重组为第一数据;其中,所述传输周期包括握手信令、数据包和应答信令;所述第一数据是该节点前数第二个传输周期的应答信令、前数第一个传输周期的数据包和当前传输周期的握手信令;
[0039] S3、依据各所述源节点到各所述目标节点的第一传输参数和所述传播时延,获得本传输节拍各所述源节点无冲突的发送所述第一数据的第二传输参数;其中,所述第一传输参数包括各所述源节点在前数两个传输节拍中所有握手成功的历史信息,所述第二传输参数包括当前传输节拍中,各所述源节点发送所述第一数据各信令或数据包的时刻,以及该传输节拍的总时长;
[0040] S4、控制全部所述源节点,按照第二传输参数,向全部所述目标节点传输所述第一数据。
[0041] 作为优选地,所述步骤S1包括分步骤如下:
[0042] S11、将所述多信道水声网络中所有节点的时钟进行同步;
[0043] S12、每个节点记录其与各节点之间的传播时延;
[0044] S13、在所述多信道水声网络中广播启动信令。
[0045] 优选地,所述步骤S3中,包含分步骤如下:
[0046] S31、建立所述第一数据中所有数据的第一集合;
[0047] S32、采用相同的非随机算法,计算第一集合中各数据从源节点传输到目标节点的时延,得到第二集合;
[0048] S33、依据第二集合,计算各源节点发送第一数据中各自对应数据的最优时刻,并计算当前传输节拍的总时长,得到第二传输参数。
[0049] 优选地,所述S33,具体为:
[0050] S331对于所述源节点发送应答信令和数据包的最优时刻时,选择令所述总时长最小的发送时刻作为最优时刻;
[0051] S332、当计算所述源节点握手信令中发送请求发送信号的最优时刻时,若第二集合存在该源节点的清除发送信号预留时隙,则将该节点对应的将大于清除发送信号预留时隙起点的发送时刻删除,从该节点剩下的发送时刻中选择令所述总时长最小者作为最优时刻;
[0052] S333、当计算所述源节点握手信令中接收清除发送信号的最优时刻时,若第二集合存在该源节点的请求发送信号预留时隙,则将该节点对应的小于请求发送信号预留时隙终点的发送时刻删除,从该节点剩下的发送时刻中选择令所述总时长最小者作为最优时刻。
[0053] 本实施例还提供了一种水声网络的并行通信设备,包括:初始化模块、重组模块、优化模块和控制模块;
[0054] 所述初始化模块用于初始化水声网络中的各节点,检测并保存各所述节点与其他节点间的传播时延;其中,所述节点在某一传输节拍用于发送数据时是源节点,所述节点在某一传输节拍用于接收数据则是目标节点;
[0055] 所述重组模块用于将当前传输节拍中,全部所述源节点的前数两个传输周期和当前传输周期重组为第一数据;其中,所述传输周期包括握手信令、数据包和应答信令;所述第一数据是该节点前数第二个传输周期的应答信令、前数第一个传输周期的数据包和当前传输周期的握手信令;
[0056] 所述优化模块用于依据各所述源节点到各所述目标节点的第一传输参数和所述传播时延,获得本传输节拍各所述源节点无冲突的发送所述第一数据的第二传输参数;其中,所述第一传输参数包括各所述源节点在前数两个传输节拍中所有握手成功的历史信息,所述第二传输参数包括当前传输节拍中,各所述源节点发送所述第一数据各信令或数据包的时刻,以及该传输节拍的总时长;
[0057] 所述控制模块用于控制全部所述源节点,按照第二传输参数,向全部所述目标节点传输所述第一数据。
[0058] 作为本发明的另一实施例,设当前的传输节拍为第n传输节拍,则本实施例的针对上述实施例中步骤SS的具体计算步骤如下:
[0059] S31、初始化一个空队列S0,建立集合 初始化迭代变量r,使r=1,当r小于K时,重复步骤S21至步骤S24,直至r不小于K;其中,K为所述第一数据中全部信令和数据包的总数量,Si为该传输节拍参与并行通信的全部所述节点的集合;对于前数第二个传输周期的应答信令和前数第一个传输周期的数据包,Si=(si,di),其中si、di为本次传输中的发送节点及接收节点;对于当前传输周期中的握手信令,Si=(si,Λ),其中Λ表示网络中所有节点的集合;
[0060] S32、从 中选择Si;
[0061] 当Si=(si,di)时;
[0062] 通过:
[0063] 计算所有Sj=(sj,dj)∈Sr‑1;
[0064] 通过:
[0065] 计算所有Sj=(sj,Λ)∈Sr‑1;
[0066] 当Si=(si,Λ)时;
[0067] 通过:
[0068] 计算所有Sj=(sj,dj)∈Sr‑1;
[0069] 通过 计算所有Sj=(sj,Λ)∈Sr‑1;
[0070] 其中, 表示sk到dl的传播时延, 为sj发送包的时刻, 是si在 发送包到达dl的时刻等于sk在 发送包到达dl的时刻,din∈Λ,djm∈Λ;
[0071] S33、如果Si=(si,di),通过:
[0072]
[0073]
[0074] 计算得到集合;
[0075] 如果Si=(si,Λ),则通过:
[0076]
[0077] 计算得到集合;
[0078] 其中, 为sj发送包所需的时长,C为保护时间;求 在(‑∞,∞)的补集[0079] S34、将Si从 中删除,并将Si加入Sr‑1,得到Sr;通过:
[0080]
[0081] RTS时隙早于CTS时隙;
[0082] 得到 其中,Sj∈Sr‑1,pl∈Λ;
[0083] S35、当r不小于K时,令传输的起始时间为T0,则节点si实际发送包的时间 为:total
第n个传输节拍的总时长T 为:
[0084] 其中1≤i≤K,1≤j≤K,pl∈Λ;
[0085] 优选地,通过得到 具体为:
[0086] S341、初始化集合 其中, 表示 中的第l个区间,1≤l≤L,L为 包含的区间数目;
[0087] S342、对 中的区间 若满足则将 添加到 中;
[0088] S343、对所有 通过:
[0089]
[0090] 计算出Fk;其中,Sj∈Sr‑1,pl∈P;
[0091] 对于应答信令和数据包,选择令Fk最小的Tk作为Tsi;
[0092] 当计算握手信令中的RTS预留时隙时,若Sr‑1存在相同节点的CTS预留时隙,则将大于CTS预留时隙起点的Tk删除,从剩下的Tk中选择令Fk最小者作为
[0093] 当计算握手信令中的CTS预留时隙时,若Sr‑1存在相同节点的RTS预留时隙,则将小于RTS预留时隙终点的Tk删除,从剩下的Tk中选择令Fk最小者作为
[0094] 作为本发明的又一个实施例,一个具有6个节点的水声通信网络,节点按1~6进行编号。每个节点为静态节点且均能监听到其他节点的信号,每个节点配备1个水声调制解调器,上述水声调制解调器的通信方式为全方向、半双工。上述实施例中,网络采用竞争式的MAC协议进行接入控制,所有节点采用握手的方式来传输数据,将一个传输周期分为RTS、CTS、DATA和ACK四个阶段,与传统握手协议不同之处在于,上述实施例相邻的传输周期部分重叠,采用流水线的方式进行并发传输,这样可以将多个传输周期中需要发送的信令、数据包的时刻和预留时隙进行联合优化,从而提高传输效率。具体流程如图1所示,采用以下步骤进行:
[0095] 步骤1:在网络初始化状态,网络中所有节点同步时钟,检测网络中所有节点间的传播时延并保存到每个节点中;网络初始化完毕后,由其中一个节点广播网络启动信令;
[0096] 上述实施例中,网络中所有节点首先采用同步算法校准各自的时钟,然后轮流发送测量传播时延的信令,每个节点通过计算信令中的时间标签与其接收时间之差得到本节点与其他节点之间的传播时延,最后广播上述时延;每个节点通过上述步骤得到网络中所有节点间的传播时延,并将其保存到一张记录所有节点间传播时延的表中;网络初始化完毕后,由节点1广播网络启动信令,信令中包含网络启动的时刻;各个节点接收到网络启动信令后,计时至上述网络启动时刻,然后进入通信状态;
[0097] 步骤2:在第n个传输节拍中,网络中的每个节点根据各自记录的第n‑2和n‑1个传输周期中所有握手成功的历史信息,采用相同的非随机算法,计算可以无冲突发送第n‑2个传输周期中所有目的节点ACK/NACK信令的时刻、发送第n‑1个传输周期中所有源节点数据包的时刻和第n个传输周期中所有节点RTS和CTS的预留时隙,并计算第n个传输节拍的总时total长T ,然后开始计时;
[0098] 上述实施例中,将三个传输周期的RTS、CTS、DATA和ACK四个阶段采用流水线的方式进行并发传输,即第n个传输周期的RTS和CTS阶段、第n‑1个传输周期的DATA阶段和n‑2个传输周期的ACK阶段放在同一传输节拍中,并对其中的RTS时隙、CTS时隙、数据包和ACK/NACK信令的发送时刻进行统一的优化调度,从而可以更充分地利用水下声传播时延长的特点进行并发的传输,提高传输的效率;此外,为了减少用于协调并发传输所需交换的信息,上述实施例中采用了重复计算的技术,即网络中的每个节点根据各自记录的第n‑2和n‑1个传输周期中所有握手成功的历史信息,独立采用相同的非随机算法计算网络中所有节点的第n‑2、n‑1和n个传输周期中RTS时隙、CTS时隙、数据包和ACK/NACK信令的发送时刻以及第ntotal个传输节拍的总时长T ,具体采用以下步骤进行:
[0099] 步骤2.1:初始化一个空队列S0,并建立集合 其中K为第n‑2个传输周期中需发送的ACK/NACK信令、第n‑1个传输周期中需发送的数据包和第n个传输周期中的所有节点RTS和CTS时隙的数量总和,Si为发送数据包、信令或预留时隙的源节点和目的节点集合,对于第n‑2个传输周期中需发送的ACK/NACK信令、第n‑1个传输周期中需发送的数据包,Si=(si,di),其中si,di为本次传输中的发送节点及相应的接收节点,对于第n个传输周期中的RTS预留时隙和CTS预留时隙,Si=(si,Λ),其中Λ表示网络中所有节点的集合;初始化迭代变量r=1;
[0100] 以第n‑2个传输周期中,节点1需要发送ACK信令至节点2,第n‑1个传输周期中,节点1和节点3需要发送数据包至节点5和节点6为例,则有S1=(1,2),S2=(1,5),S3=(3,6),S4=(1,Λ),S5=(2,Λ),S6=(3,Λ),S7=(4,Λ),S8=(5,Λ),S9=(6,Λ),S10=(1,Λ),S11=(2,Λ),S12=(3,Λ),S13=(4,Λ),S14=(5,Λ),S15=(6,Λ),其中S1对应第n‑2个传输周期中节点1发送ACK信令至节点2,S2和S3对应第n‑1个传输周期中节点1和节点2发送数据包至节点5和节点6,S4至S9对应第n个传输周期中RTS的预留时隙,S10至S15对应第n个传输周期中CTS的预留时隙;
[0101] 步骤2.2:从 中选择Si,若Si=(si,di),则对所有Sj=(sj,dj)∈Sr‑1,计算:
[0102]
[0103]
[0104] 对所有Sj=(sj,Λ)∈Sr‑1,计算:
[0105]
[0106]
[0107] 若Si=(si,Λ),则对所有Sj=(sj,dj)∈Sr‑1,计算:
[0108]
[0109]
[0110] 对所有Sj=(sj,Λ)∈Sr‑1,计算
[0111]
[0112] 其中 表示sk到dl的传播时延, 为sj发送包的时刻, 满足si在 发送包到达dl的时刻等于sk在 发送包到达dl的时刻,
[0113] din∈Λ,djm∈Λ;
[0114] 上述实施例中,从 中随机选择Si,以S2={S1=(1,2),S7=(4,Λ)}为例,若从中选择S 3=(3 ,6) ,首先将 S1的发送时间映 射到S 3的 时间轴上 :然后将S7的发送时间映射到S3的时
间轴上:
[0115] 若从 中选择S12=(3,Λ),首先将S1的发送时间映射到S12的时间轴上:
然后将S7的发送时间映射到S12的时间轴
上:
[0116]
[0117] 步骤2.3:若Si=(si,di),求集合:
[0118]
[0119] 若Si=(si,Λ),求集合:
[0120]
[0121] 其中 为sj发送包所需的时长,C为保护时间;求 在(‑∞,∞)的补集
[0122] 上述实施例中,采用上述计算公式计算所有Sj∈Sr‑1对应的区间,并取它们的并集,得到 和 其中Lsj分别对应于ACK/NACK信令、数据包、RTS和CTS信令的长度;以S2={S1=(1,2),S7=(4,Λ)}为例,若从 中选择S3=(3,6),则:
[0123]
[0124] 若从 中选择S12=(3,Λ),则:
[0125]
[0126] 步骤2.4:将Si从 中删除,并加入Sr‑1,得到Sr;选择 满足
[0127]
[0128] RTS时隙早于CTS时隙;
[0129] 其中Sj=(sj,dj)∈Sr‑1,pl∈Λ;
[0130] 上述实施例中,采用上述计算公式选择令总发送时长最小的发送时刻为节点si的发送时刻 具体包含以下步骤:
[0131] 步骤2.4.1:初始化集合 其中 表示中的第l个区间,1≤l≤L,L为 包含的区间数目;
[0132] 步骤2.4.2:对 中的区间 若满足则将 添加到 中;
[0133] 步骤2.4.3:对所有 计算
[0134]
[0135] 其中Sj∈Sr‑1,pl∈P;对于ACK/NACK和数据包,选择令Fk最小的Tk作为 对于RTS和CTS预留时隙,采用以下方法选择 当计算RTS预留时隙时,若Sr‑1存在相同节点的CTS预留时隙,则将大于CTS预留时隙起点的Tk删除,从剩下的Tk中选择令Fk最小者作为 当计算CTS预留时隙时,若Sr‑1存在相同节点的RTS预留时隙,则将小于RTS预留时隙终点的Tk删除,从剩下的Tk中选择令Fk最小者作为
[0136] 步骤2.5:若r
[0137]
[0138] 第n个传输节拍的总时长为:
[0139]
[0140] 其中1≤i≤K,1≤j≤K,pl∈Λ;
[0141] 上述实施例中,通过上述计算公式将所有节点的发送时刻调整为大于0,然后计算第n个传输节拍的总时长;
[0142] 步骤3:每个节点根据步骤2中计算的ACK/NACK信令发送时刻、数据包发送时刻和RTS/CTS预留时隙,在计时到本节点的相应时刻时,发送数据包或RTS、CTS、ACK/NACK信令,并监听各个节点的CTS信令,记录第n个传输周期中握手成功的源节点和目的节点信息;
[0143] 上述实施例中,每个节点按照步骤2提供的方法独立计算出所有数据包发送时刻、ACK/NACK信令发送时刻和RTS、CTS预留时隙,并根据本节点的时钟进行计时,当计时至本节点发送包的时刻时,发送相应的数据包、ACK/NACK信令或RTS、CTS信令;每个节点将网络中所有节点的RTS和CTS预留时隙加上上述到本节点的传播时延后,在相应的RTS时间段内监听信道,当有RTS信令发送给本节点,则在可以接收数据时,在本节点的CTS信令预留时隙中发送CTS信令至源节点;在相应的CTS时间段内监听信道,获取所有节点发送的CTS信令,并记录下每一个CTS信令的源节点和目的节点,将其作为握手成功的节点信息,供第n+1个传输节拍计算信令和数据包的发送时刻使用;
[0144] 步骤4:计时至第n个传输节拍结束,令n=n+1,并转步骤2。
[0145] 上述实施例中,每个节点独立计算本传输节拍的总时长Ttotal,计时至Ttotal时,本传输节拍结束,进入下一传输节拍。
[0146] 本发明还公开了一种终端设备,包括处理器和存储装置,存储装置用于存储一个或多个程序;当一个或多个程序被处理器执行时,处理器实现上述的水声网络的并行通信方法。所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital  Signal  Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field‑Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所称处理器是测试设备的控制中心,利用各种接口和线路连接整个测试设备的各个部分。
[0147] 存储装置可用于存储计算机程序和/或模块,处理器通过运行或执行存储在存储装置内的计算机程序和/或模块,以及调用存储在存储装置内的数据,实现终端设备的各种功能。存储装置可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储装置可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
[0148] 其中,水声网络的并行通信设备集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于至少一个计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read‑Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。
[0149] 需说明的是,以上所描述的设备及装置的实施例仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例的附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
[0150] 以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步的详细说明,应当理解,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围。特别指出,对于本领域技术人员来说,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。