MDK抑制剂在制备用于抑制干扰素-γ治疗引起的肿瘤转移的药物中的应用转让专利

申请号 : CN202210327740.0

文献号 : CN114404601B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 刘健温韬郑路雨姚健楠

申请人 : 首都医科大学附属北京朝阳医院

摘要 :

本发明公开了MDK抑制剂在制备用于抑制干扰素‑γ治疗引起的肿瘤转移的药物中的应用。本发明提供了一种用于治疗肿瘤的药物组合物,含有干扰素‑γ和能够抑制MDK表达的物质。本发明证实MDK可作为一种常见的治疗靶点来消除IFN‑γ在治疗肿瘤过程中或治疗后诱导的促转移不良反应,联合应用MDK可以扩大IFN‑γ在癌症治疗中的应用,并提高基于IFN‑γ单独或与其他药物联合治疗的临床疗效。

权利要求 :

1.一种用于治疗肿瘤的药物组合物,含有干扰素‑γ和能够抑制MDK表达的物质;

所述能够抑制MDK表达的物质为MDK抑制剂;

所述MDK抑制剂为iMDK。

2.根据权利要求1所述的药物组合物,其特征在于:所述肿瘤为肾癌、肺癌、结肠癌、宫颈癌、乳腺癌或卵巢癌。

3.干扰素‑γ和能够抑制MDK表达的物质在制备用于治疗肿瘤的药物中的应用;

所述能够抑制MDK表达的物质为MDK抑制剂;

所述MDK抑制剂为iMDK。

4.根据权利要求3所述的应用,其特征在于:所述肿瘤为肾癌、肺癌、结肠癌、宫颈癌、乳腺癌或卵巢癌。

说明书 :

MDK抑制剂在制备用于抑制干扰素‑γ治疗引起的肿瘤转移的

药物中的应用

技术领域

[0001] 本发明涉及生物医学领域,具体涉及MDK抑制剂在制备用于抑制干扰素‑γ治疗引起的肿瘤转移的药物中的应用。

背景技术

[0002] 干扰素(IFN)是一个具有抗病毒、抗增殖和免疫调节特性的细胞因子家族[Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer. 2016. 16(3): 131‑44.]。IFN家族中有三类主要的细胞因子:IFN‑I(IFN‑α、β、ε、κ和ω)、IFN‑II(IFN‑γ)和IFN‑III(IFN‑λ1、λ2、λ3和λ4)[Chow KT, Gale M Jr. SnapShot: Interferon Signaling. Cell. 2015. 163(7): 
1808‑1808.e1.]。这些细胞因子在宿主防御病毒和细菌感染以及对恶性细胞的免疫监视中起着关键作用[Platanias LC. Mechanisms of type‑I‑ and type‑II‑interferon‑
mediated signalling. Nat Rev Immunol. 2005. 5(5): 375‑86.]。
[0003] IFN‑γ由IFNG基因编码,是IFN‑II的唯一成员。它是一种多效性细胞因子,在癌症治疗方面有着悠久的临床试验历史[Dighe AS, Richards E, Old LJ, Schreiber RD. Enhanced in vivo growth and resistance to rejection of tumor cells expressing 
dominant negative IFN gamma receptors. Immunity. 1994. 1(6): 447‑56.]。自1985
年进行的第一次临床试验[Foon KA, Sherwin SA, Abrams PG, et al. A phase I trial 
of recombinant gamma interferon in patients with cancer. Cancer Immunol 
Immunother. 1985. 20(3): 193‑7.]以来,IFN‑γ的治疗应用已经在多种恶性肿瘤中进行了测试,包括黑色素瘤、白血病、卵巢癌、肾细胞癌、肝细胞癌、肺癌、乳腺癌、膀胱癌和结直肠癌[Shen J, Xiao Z, Zhao Q, et al. Anti‑cancer therapy with TNFα and IFNγ: A comprehensive review. Cell Prolif. 2018. 51(4): e12441.]。基于干扰素‑γ的治
疗所产生的临床益处已经在几种癌症中被报道[Tamura K, Makino S, Araki Y, Imamura 
T, Seita M. Recombinant interferon beta and gamma in the treatment of adult 
T‑cell leukemia. Cancer. 1987. 59(6): 1059‑62.],突出了干扰素‑γ在抗击癌症中的治疗价值。
[0004] IFN‑γ通过增强抗肿瘤免疫和直接作用于癌细胞来发挥抗肿瘤作用[Du W, Frankel TL, Green M, Zou W. IFNγ signaling integrity in colorectal cancer 
immunity and immunotherapy. Cell Mol Immunol. 2022. 19(1): 23‑32.]。IFN‑γ增强细胞毒性CD8 T细胞、NK细胞、Th1细胞、树突状细胞和巨噬细胞的活性;刺激主要组织相容性复合体(MHC)I类和II类分子在肿瘤细胞和抗原提呈细胞(APC)中的表达;促进巨噬细胞向促炎(M1样)表型分化;并连接先天性和适应性免疫反应[Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon‑Gamma at the Crossroads of Tumor 
Immune Surveillance or Evasion. Front Immunol. 2018. 9: 847.]。IFN‑γ还通过抗
增殖、抗血管生成和促凋亡机制对肿瘤细胞产生直接的细胞毒性作用[Ealick SE, Cook 
WJ, Vijay‑Kumar S, et al. Three‑dimensional structure of recombinant human 
interferon‑gamma. Science. 1991. 252(5006): 698‑702.]。
[0005] 尽管IFN‑γ具有这些抗肿瘤的活性,但也有报道称IFN‑γ会增加肿瘤转移的风险。这种促肿瘤活性已在结肠腺癌[Kelly SA, Gschmeissner S, East N, Balkwill FR. 
Enhancement of metastatic potential by gamma‑interferon. Cancer Res. 1991. 51
(15): 4020‑7.]、非小细胞肺癌 [Song M, Ping Y, Zhang K, et al. Low‑Dose IFNγ Induces Tumor Cell Stemness in Tumor Microenvironment of Non‑Small Cell Lung 
Cancer. Cancer Res. 2019. 79(14): 3737‑3748.]、前列腺癌 [Lo UG, Pong RC, Yang D, et al. IFNγ‑Induced IFIT5 Promotes Epithelial‑to‑Mesenchymal Transition in Prostate Cancer via miRNA Processing. Cancer Res. 2019. 79(6): 1098‑
1112.]、肾癌 [Lo UG, Bao J, Cen J, et al. Interferon‑induced IFIT5 promotes 
epithelial‑to‑mesenchymal transition leading to renal cancer invasion. Am J 
Clin Exp Urol. 2019. 7(1): 31‑45.]、三阴性乳腺癌 [Singh S, Kumar S, Srivastava RK, et al. Loss of ELF5‑FBXW7 stabilizes IFNGR1 to promote the growth and 
metastasis of triple‑negative breast cancer through interferon‑γ signalling. Nat Cell Biol. 2020. 22(5): 591‑602.] 和黑色素瘤 [Zaidi MR, Davis S, Noonan 
FP, et al. Interferon‑γ links ultraviolet radiation to melanomagenesis in 
mice. Nature. 2011. 469(7331): 548‑53.] 中通过不同的机制进行了报道。然而,IFN‑γ诱导肿瘤转移的潜在机制尚不清楚,在不同来源的癌症中是否存在共同的机制介导IFN‑γ诱导的肿瘤转移尚不清楚。

发明内容

[0006] 本发明的目的是提供MDK抑制剂在制备用于抑制干扰素‑γ治疗引起的肿瘤转移的药物中的应用。
[0007] 第一方面,本发明要求保护一种用于治疗肿瘤的药物组合物。
[0008] 本发明要求保护的用于治疗肿瘤的药物组合物,含有干扰素‑γ和能够抑制MDK表达的物质。
[0009] 其中,所述能够抑制MDK表达的物质可为MDK抑制剂或者能够敲除或敲低MDK基因表达的基因干预工具。
[0010] 进一步地,所述能够敲除或敲低MDK基因表达的基因干预工具可为能够在基因层面对MDK基因进行敲除或敲低的任何干预工具,如RNAi片段(如siRNA、shRNA、miRNA)或基因编辑工具(如CRISPR‑Cas9、ZFN、TALENs等)。
[0011] 在本发明的具体实施方式中,所述MDK抑制剂为iMDK。iMDK的化学式为C21H13FN2O2S,结构式如图1所示。
[0012] 进一步地,所述肿瘤包括但不限于肾癌、肺癌、结肠癌、宫颈癌、乳腺癌和卵巢癌等。
[0013] 进一步地,所述药物组合物以干扰素‑γ和所述能够抑制MDK表达的物质为主要成分。
[0014] 更进一步地,所述药物组合不仅限于干扰素‑γ和所述能够抑制MDK表达的物质两种药物,也可包括多种药物组合(比如3种、4种、5种等,因为干扰素‑γ一般是作为辅助治疗药物与其他药物联合使用),只要该治疗药物中含有干扰素‑γ,就可以联合所述能够抑制MDK表达的物质一同使用。
[0015] 第二方面,本发明要求保护干扰素‑γ和能够抑制MDK表达的物质在制备用于治疗肿瘤的药物中的应用。
[0016] 其中,所述用于治疗肿瘤的药物可以只由干扰素‑γ和所述能够抑制MDK表达的物质组成,也可以在含有干扰素‑γ和所述能够抑制MDK表达的物质的基础上再含有其他肿瘤治疗药物。
[0017] 第三方面,本发明要求保护能够抑制MDK表达的物质在如下任一中的应用:
[0018] P1、制备能够抑制干扰素‑γ在治疗肿瘤时引发的促肿瘤副作用(即促进肿瘤转移)的产品;所述治疗肿瘤可为干扰素‑γ单独治疗肿瘤,也可为干扰素‑γ与其他药物联合使用辅助治疗肿瘤。
[0019] P2、制备能够抑制干扰素‑γ对肿瘤细胞的促迁移和/或促侵袭作用的产品。
[0020] 在第二方面和第三方面中,所述能够抑制MDK表达的物质为MDK抑制剂或者能够敲除或敲低MDK基因表达的基因干预工具。
[0021] 进一步地,所述能够敲除或敲低MDK基因表达的基因干预工具可为能够在基因层面对MDK基因进行敲除或敲低的任何干预工具,如RNAi片段(如siRNA、shRNA、miRNA)或基因编辑工具(如CRISPR‑Cas9、ZFN、TALENs等)。
[0022] 在本发明的具体实施方式中,所述MDK抑制剂为iMDK。
[0023] 在第二方面和第三方面中,所述肿瘤包括但不限于肾癌、肺癌、结肠癌、宫颈癌、乳腺癌和卵巢癌等。
[0024] 在第三方面中,所述肿瘤细胞为肾癌细胞、肺癌细胞、结肠癌细胞、宫颈癌细胞、乳腺癌细胞或卵巢癌细胞。
[0025] 在本发明的具体实施方式中,所述肾癌细胞具体为肾癌细胞系Caki‑1;所述肺癌细胞具体为肺癌细胞系A549;所述宫颈癌细胞具体为宫颈癌细胞系CaSki;所述乳腺癌细胞具体为乳腺癌细胞系BT549;所述结肠癌细胞具体为结肠癌细胞系HCT116;所述卵巢癌细胞具体为卵巢癌细胞系SKOV3。
[0026] 本发明验证了IFN‑γ治疗会导致各种癌症细胞系上皮‑间质转化(EMT)程序的激活和转移,包括肾癌细胞系Caki‑1、肺癌细胞系A549、宫颈癌细胞系CaSki、乳腺癌细胞系BT549、结肠癌细胞系HCT116和卵巢癌细胞系SKOV3。进一步发现,中期因子(MDK)是一种新兴的癌蛋白和EMT诱导因子,是IFN‑γ在这些细胞系中的共同作用靶点。从机制上讲,IFN‑γ通过 STAT1上调MDK,STAT1是IFN‑γ信号传导中的主要下游效应分子。在TCGA数据库中,MDK在大多数癌症类型中都是升高的,在所有被检测的细胞系中,MDK的过表达均促进了EMT激活和癌症转移。使用MDK抑制剂(iMDK)靶向MDK可广泛逆转IFN‑γ激活的EMT,并随后消除IFN‑γ触发的转移。总的来说,本发明揭示了一种共同的MDK依赖性的EMT诱导机制,它是IFN‑γ驱动的癌症转移的基础,可以通过药理学抑制MDK来减弱。基于这些研究结果,本发明提出MDK可作为一种常见的治疗靶点来消除IFN‑γ在治疗肿瘤过程中及治疗后诱导的促转移不良反应,联合应用MDK抑制剂可以扩大IFN‑γ在癌症治疗中的应用,并提高基于IFN‑γ单独或辅助治疗肿瘤的临床疗效。

附图说明

[0027] 图1为iMDK结构式。
[0028] 图2为YOE‑LV004‑hMDK的质粒图谱。
[0029] 图3为IFN‑γ可增强各种肿瘤的上皮间质转化(EMT)和肿瘤转移。其中,A为 Transwell 测定法检测不同肿瘤细胞在 IFN‑γ 处理(50 ng/ml,48h;肾癌额外增加了10 ng/ml组)和不处理的情况下 的迁移和侵袭能力。B为蛋白质印迹分析显示 IFN‑γ 处理
(50 ng/ml,48h;肾癌额外增加了10 ng/ml组)对上皮间质转化标志物的影响。β‑肌动蛋白用作内参。C为实时定量PCR测定以检测 IFN‑γ(50 ng/ml,48h)处理后上皮间质转化的标志物在mRNA水平上的表达变化。结果以平均值±标准偏差形式展示。*P<0.05,**P<
0.01,***P<0.001,****P<0.0001。
[0030] 图4为IFN‑γ促进不同癌症中MDK的表达。其中,A为通过实时定量PCR检测IFN‑γ处理(50 ng/ml,48h)和未处理的情况下MDK在六种癌细胞系中的表达。B为通过蛋白质印迹测定法测定IFN‑γ处理(50 ng/ml,48h)后六种肿瘤细胞中MDK的表达。结果以平均值±标准偏差形式展示。*P<0.05,**P<0.01,***P<0.001,****P<0.0001。
[0031] 图5为IFN‑γ通过STAT1调节MDK的表达。A为使用GEPIA2在线工具对来自癌症基因组图谱(TCGA)数据库的不同癌症的转录组学数据中STAT1和MDK表达的相关性进行分析。B为IFN‑γ处理(50ng/ml,48h)后,通过蛋白质印迹测定法和实时定量PCR检测六种癌细胞中STAT1和磷酸化STAT1(P‑STAT1)的mRNA和蛋白表达水平。C为检测STAT1抑制剂对六种癌细胞系中STAT1、MDK mRNA 表达水平的影响。D为应用蛋白质印迹测定法检测STAT1抑制剂对
六种癌细胞系中STAT1、磷酸化的STAT1、MDK蛋白表达水平的影响。结果以平均值±标准偏
差形式展示。*P<0.05,**P<0.01,***P<0.001,****P<0.0001。
[0032] 图6为MDK 通过激活 EMT 程序促进癌症转移。其中,A为实时定量PCR检测六种癌细胞系中MDK过表达情况。B为通过 Transwell 测定法检测 MDK 过表达对六种癌细胞迁移
和侵袭能力的影响。C为蛋白质印迹法测定MDK过表达之后,上皮间质转化标志物蛋白水平
的表达情况。D为实时定量PCR检测MDK过表达之后,上皮间质转化标志物mRNA的表达水平。E为实时定量PCR检测MDK抑制剂—iMDK(100nM,48h)对MDK mRNA表达的影响。F为实时定量PCR和蛋白质印迹法测定iMDK对六种癌细胞上皮间质转化的影响。G为Transwell测定以评
估iMDK对六种癌细胞使侵袭和迁移的能力的影响。结果以平均值±标准偏差形式展示。*P
<0.05,**P<0.01,***P<0.001,****P<0.0001。
[0033] 图7为MDK在TCGA数据库中的大多数癌症类型中均升高。
[0034] 图8为靶向 MDK抑制 IFN‑γ诱导的肿瘤转移。A为实时定量PCR检测MDK抑制剂在IFN‑γ处理的癌细胞中对MDK的抑制情况。B为通过实时定量PCR和蛋白质印迹分析评估MDK抑制剂—iMDK对IFN‑γ 激活的上皮间质转化的影响。C为Transwell 测定检测MDK 抑制
剂—iMDK对IFN‑γ 驱动的细胞侵袭和迁移的影响。结果显示平均值±标准偏差。*P<
0.05,**P<0.01,***P<0.001,****P<0.0001。
[0035] 图9为IFN‑γ‑STAT1‑MDK信号轴在驱动癌症转移中的示意图。IFN‑γ‑STAT1‑MDK信号轴通过激活上皮间质转化促进癌症转移,而 MDK抑制剂通过抑制MDK可以消除IFN‑γ诱导的上皮间质转化和肿瘤转移。

具体实施方式

[0036] 下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术
人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。
[0037] 下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
[0038] 实施例1、MDK抑制剂逆转IFN‑γ肿瘤治疗引发的促肿瘤副作用
[0039] 一、实验材料与方法
[0040] 1、细胞系和细胞培养
[0041] 人肾癌细胞系Caki‑1、人肺癌细胞系A549、人结肠腺癌细胞系HCT116、宫颈癌细胞系CaSki、人乳腺癌细胞系BT549、人卵巢癌细胞系SKOV3和人胚肾细胞系HEK293T均来自于国家实验细胞资源共享平台(北京)。Caki‑1、A549、SKOV3和HCT116细胞在改良的McCoy’s 
5A培养基中培养。CaSki和BT549细胞在RPMI‑1640培养基中培养。HEK293T在DMEM培养基中培养。所有培养基均含有10%胎牛血清和1%青霉素‑链霉素混合物。所有细胞系在37℃、5%CO2的加湿培养箱中孵育。
[0042] 2、抗体和试剂
[0043] MDK抗体(1:1000稀释,11009‑1‑AP)、 E‑cadherin抗体(1:1000稀释度,3195T)、ZO1抗体(1:1000稀释度,8193T)、Vimentin抗体(1:1500稀释度,5741T)、Slug抗体(1:500稀释度,9585T)和Snail抗体(1:500稀释度,3879T)来自CST。STAT1抗体(1:5000稀释度,ab109320)和磷酸化STAT1抗体(1:1000稀释度,ab109457)来自Abcam公司。β‑actin抗体(1:1000稀释度,AF5001)来自碧云天。重组人干扰素‑γ从PeproTech获得,以10ng/ml或50 ng/ml的浓度作用48h。MDK抑制剂iMDK(货号508052)来自从默克公司,并在生长培养基中稀释到100 nM的最终浓度。STAT1抑制剂氟达拉滨来自MCE,浓度为5μM,作用48h。
[0044] 3、RNA提取及定量实时聚合酶链反应(qRT‑PCR)
[0045] 总RNA提取采用Trizol。用NanoDrop 1000测定RNA的浓度和纯度。OD260/OD280的比值在1.8至2.0之间表示可以接受。使用逆转录试剂盒进行cDNA合成。使用qPCR SYBR 
‑ΔΔCT
Green Master Mix进行qRT‑PCR。每个样本在3个重复的孔中运行,用2 方法分析不同样
本之间的相对RNA表达水平,并以β‑actin为内参。其中所涉及的各引物序列如下:
[0046] (1)用于检测MDK基因的引物:
[0047] 正向引物:5’‑CGCGGTCGCCAAAAAGAAAG ‑3’(SEQ ID No.1);
[0048] 反向引物:5’‑ TACTTGCAGTCGGCTCCAAAC ‑3’(SEQ ID No.2)。
[0049] (2)用于检测ZO1基因的引物:
[0050] 正向引物:5’‑ CAACATACAGTGACGCTTCACA ‑3’(SEQ ID No.3);
[0051] 反向引物:5’‑ CACTATTGACGTTTCCCCACTC ‑3’(SEQ ID No.4)。
[0052] (3)用于检测E‑cadherin基因的引物:
[0053] 正向引物:5’‑ CGAGAGCTACACGTTCACGG ‑3’(SEQ ID No.5);
[0054] 反向引物:5’‑GGGTGTCGAGGGAAAAATAGG ‑3’(SEQ ID No.6)。
[0055] (4)用于检测Snail基因的引物:
[0056] 正向引物:5’‑ AAGGCCTTCTCTAGGCCCT ‑3’(SEQ ID No.7);
[0057] 反向引物:5’‑ CGCAGGTTGGAGCGGTCAG ‑3’(SEQ ID No.8)。
[0058] (5)用于检测Slug基因的引物:
[0059] 正向引物:5’‑ CGAACTGGACACACATACAGTG ‑3’(SEQ ID No.9);
[0060] 反向引物:5’‑ CTGAGGATCTCTGGTTGTGGT ‑3’(SEQ ID No.10)。
[0061] (6)用于检测Vimentin基因的引物:
[0062] 正向引物:5’‑AGTCCACTGAGTACCGGAGAC‑3’(SEQ ID No.11);
[0063] 反向引物:5’‑CATTTCACGCATCTGGCGTTC‑3’(SEQ ID No.12)。
[0064] (7)用于检测β‑actin基因的引物:
[0065] 正向引物:5’ ‑CATGTACGTTGCTATCCAGGC‑3’(SEQ ID No.13);
[0066] 反向引物:5’‑ CTCCTTAATGTCACGCACGAT ‑3’(SEQ ID No.14)。
[0067] (8)用于检测STAT1基因的引物:
[0068] 正向引物:5’‑ATCAGGCTCAGTCGGGGAATA ‑3’(SEQ ID No.15);
[0069] 反向引物:5’ ‑TGGTCTCGTGTTCTCTGTTCT ‑3’(SEQ ID No.16)。
[0070] 4、慢病毒的产生和MDK的高表达
[0071] 耐新霉素的人MDK过表达慢病毒载体YOE‑LV004‑hMDK和相应的对照载体YOE‑LV004均来自广州源井生物科技有限公司。YOE‑LV004‑hMDK为在原始骨架质粒YOE‑LV004的EF1A启动子下游插入hMDK基因(基因ID:4192,转录本[NM_001012333.2])后得到的重组载体。YOE‑LV004‑hMDK的质粒图谱如图2所示。慢病毒载体与psPAX2(Addgene公司,货号#
12260)和pMD2.G(Addgene公司,货号#12259)包装载体通过脂质体3000共转染HEK293T细胞产生慢病毒。用polybrene进行慢病毒感染Caki‑1、A549、HCT116、CaSki、BT549和SKOV3细胞,用400μg/ml的G418筛选,以空载体YOE‑LV004为对照。
[0072] 5、Transwell法检测癌细胞的侵袭和迁移能力
[0073] Transwell法检测癌细胞的侵袭和迁移能力。简而言之,将1×105个细胞在无血清培养液中接种到Transwell板的上室,而下室则加入含有10%的FBS培养液。为了进行侵袭试验,用Matrigel胶预涂覆Transwell小室。接种后约16 24h,用棉签仔细擦拭残留在上室的~
细胞,将迁移的细胞用4%多聚甲醛固定20min,再用0.2%结晶紫溶液染色20 25min。用洗涤~
缓冲液清洗小室3次后,在倒置明视场显微镜下计数迁移的细胞。
[0074] 6、Western blotting
[0075] 用RIPA裂解缓冲液加蛋白酶抑制剂和磷酸酶抑制剂制备细胞裂解产物。用BCA分析试剂盒测定蛋白质浓度。蛋白质样品(50μg)在100℃下煮沸10min,用10 12% SDS‑PAGE分~
离,然后通过半干转移仪器转移到PVDF膜上。在5%脱脂牛奶中室温封闭1h后,用一抗在4℃中孵育过夜,再与抗兔或小鼠IgG‑HRP二抗在室温下孵育1h。使用显影液对膜进行可视化。
[0076] 7、统计分析
[0077] 所有统计分析在GraphPad Prism 8.0中进行。用非配对和多重T检验评估对照组和实验组之间的差异。P值<0.05为有统计学意义。结果以平均值±标准差(SD)表示。
[0078] 二、结果与分析
[0079] 1、IFN‑γ治疗可增强各种肿瘤的EMT和转移
[0080] 干扰素γ(IFN‑γ)是一种多效性细胞因子,具有抗增殖、促凋亡和免疫调节功能。在临床前和临床试验中,IFN‑γ已被用于治疗多种恶性肿瘤,然而获得的益处有限,这可能是由于其包括引起转移的促肿瘤副作用[Zaidi MR, Merlino G. The two faces of 
interferon‑γ in cancer. Clin Cancer Res. 2011. 17(19): 6118‑24.]。在解释IFN‑γ诱导癌症转移的机制之前,本发明首先验证了IFN‑γ在六种不同人类癌症细胞系中的促转移作用(图3中A):肾癌细胞系Caki‑1、肺癌细胞系A549、宫颈癌细胞系CaSki、乳腺癌细胞系BT549、结肠癌细胞系HCT116和卵巢癌细胞系SKOV3。Transwell实验清楚地表明,IFN‑γ暴露明显增加了所有六种癌细胞系的迁移和侵袭能力(图3中A),这与之前在结肠癌[Kelly SA, Gschmeissner S, East N, Balkwill FR. Enhancement of metastatic potential 
by gamma‑interferon. Cancer Res. 1991. 51(15): 4020‑7.]、前列腺癌[Lo UG, Pong RC, Yang D, et al. IFNγ‑Induced IFIT5 Promotes Epithelial‑to‑Mesenchymal 
Transition in Prostate Cancer via miRNA Processing. Cancer Res. 2019. 79(6): 
1098‑1112.]、非小细胞肺癌[Song M, Ping Y, Zhang K, et al. Low‑Dose IFNγ 
Induces Tumor Cell Stemness in Tumor Microenvironment of Non‑Small Cell Lung 
Cancer. Cancer Res. 2019. 79(14): 3737‑3748.]和黑色素瘤[Gong W, Zhang GM, Liu Y, et al. IFN‑gamma withdrawal after immunotherapy potentiates B16 melanoma 
invasion and metastasis by intensifying tumor integrin alphavbeta3 signaling. 
Int J Cancer. 2008. 123(3): 702‑8.]中的研究结果一致,表明IFN‑γ治疗确实可以增强癌症的转移。
[0081] EMT是驱动癌症转移的常见机制[Li L, Liu J, Xue H, et al. A TGF‑β‑MTA1‑SOX4‑EZH2 signaling axis drives epithelial‑mesenchymal transition in tumor metastasis. Oncogene. 2020. 39(10): 2125‑2139.]。然后,本发明研究了IFN‑γ在EMT程序中的作用。Western blotting结果显示,IFN‑γ治疗导致上皮标记物ZO‑1、E‑cadherin的表达降低,并伴随上述细胞系中间充质标记物如Vimentin、Snail和Slug在蛋白质水平的上调(图3中B)。在mRNA水平上进一步验证了EMT标记物表达的变化(图3中C)。这些数据表明,IFN‑γ可能通过激活癌症中的EMT程序来促进转移。
[0082] 2、IFN‑γ暴露促进肿瘤中MDK的表达
[0083] MDK是一种肝素结合生长因子,已被证实可促进肿瘤EMT和转移[Filippou PS, Karagiannis GS, Constantinidou A. Midkine (MDK) growth factor: a key player 
in cancer progression and a promising therapeutic target. Oncogene. 2019  .]。
本发明猜测癌症中的IFN‑γ治疗会导致MDK激活,从而触发EMT和转移。为了验证这一假设,我们用IFN‑γ(50 ng/ml)处理不同的癌细胞系,然后检测mRNA和蛋白质水平中MDK表达的变化。实时qPCR分析显示,IFN‑γ在所有检测的癌细胞系中显著上调MDK mRNA表达水平,包括肾癌细胞系Caki‑1、肺癌细胞系A549、宫颈癌细胞系CaSki、乳腺癌细胞系BT549、结肠癌细胞系HCT116和卵巢癌细胞系SKOV3(图4中A),通过蛋白质水平上的蛋白质印迹进一步得到验证(图4中B),表明这是不同癌症之间的共同调控。
[0084] 3、IFN‑γ以STAT1依赖的方式激活MDK
[0085] STAT1是IFN‑γ信号传导的关键下游效应分子[Chow KT, Gale M Jr. SnapShot: Interferon Signaling. Cell. 2015. 163(7): 1808‑1808.e1.],因此我们进一步推测
IFN‑γ‑MDK调节可能依赖于IFN‑γ诱导的STAT1激活。TCGA数据库中各种癌症中STAT1和MDK之间的显著相关性初步支持了这一推测(图5中A)。此外,正如报道的那样,实时qPCR和Western blotting分析显示,IFN‑γ暴露导致STAT1丰度和磷酸化水平显著上调(图5中B)。
然后我们用STAT1抑制剂氟达拉宾阻断STAT1的激活,并评估其对IFN‑γ激活MDK的影响。值得注意的是,STAT1抑制剂显著降低了IFN‑γ诱导的STAT1激活,并在所有检测细胞系的
mRNA水平上显著消除了IFN‑γ诱导的MDK激活(图5中C),这在蛋白质水平上通过Western blotting分析得到了进一步验证(图5中D)。所有这些都表明,IFN‑γ通过STAT1激活癌细胞中的MDK。
[0086] 4、MDK通过激活EMT程序促进癌症转移
[0087] 为了进一步探索MDK是IFN‑γ触发多种癌症转移的共同机制的可能性,本发明首先在上述癌细胞系中检测了MDK对癌症转移的影响。Transwell分析清楚地表明,MDK过度表达(图6中A)增强了所有六种癌细胞系的迁移和侵袭能力(图6中B)。因此,MDK的过度表达导致EMT程序的激活,这可以从上皮标记物 ZO‑1、E‑cadherin的降低和伴随的间充质标记物 Vimentin、Snail和Slug在蛋白水平(图6中C)和mRNA水平(图6中D)的增加中得到证明。为了进一步验证MDK是癌症转移所必需的,本发明使用MDK抑制剂iMDK沉默了MDK的表达,该抑制剂在降低所有六种细胞系的内源性MDK表达(图6中E)和随后的EMT激活(图6中F)方面表现出高效性。相应地,在Transwell实验中iMDK抑制了所有六种细胞系的迁移和侵袭(图6中
G)。与其致癌作用一致,MDK在TCGA数据库中的大多数癌症类型中均升高(图7)。
[0088] 5、药物靶向MDK可消除IFN‑γ诱导的转移
[0089] 为了证实抑制MDK是否能减弱IFN‑γ诱导的癌细胞转移,本发明在IFN‑γ处理的癌细胞中加入iMDK(100 nM),这在显微镜下不会导致明显的细胞死亡。如预期的那样,iMDK在mRNA和蛋白质水平上有效地消除了IFN‑γ诱导的MDK表达(图8中A和B),通过Western blotting和RT‑qPCR检测逆转了IFN‑γ驱动的EMT激活(图8中B),在Transwell实验中(图8中C),所有被检测的癌细胞系均消除了IFN‑γ触发的迁移和侵袭。这些数据表明,MDK可以促进IFN‑γ诱导的多种肿瘤转移,并且药理学抑制MDK可以广泛而有效地消除IFN‑γ治疗引起的癌症转移。
[0090] 本发明的数据确定了一个新的IFN‑γ‑STAT1‑MDK信号轴(图9),它在免疫治疗中产生了IFN‑γ的促转移副作用,而靶向MDK可以有效地消除IFN‑γ诱导的癌症转移。在癌症治疗过程中,减少促转移活性有助于增强IFN‑γ的抗肿瘤作用,因此本发明的结果表明应用MDK抑制剂(iMDK或其他抑制剂)或MDK基因干预手段可以抑制IFN‑γ治疗引发的促肿瘤副作用,在肿瘤治疗中可以将MDK抑制剂(或基因靶向干预)与IFN‑γ联合应用。
[0091] 以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。
总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。按以下附带的权利要求的范围,可以进行一些基本特征的应用。