一种含氰基多取代芳香二胺单体及其制备方法转让专利

申请号 : CN202210173343.2

文献号 : CN114456090B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 谢劲夏嗣禹朱成建

申请人 : 南京大学

摘要 :

本发明提供了一种含氰基多取代芳香二胺单体,所述含氰基多取代芳香二胺单体的结构式为:其中,R1、R2为‑H、‑CF3、‑OCH3或烷基中的一种。该二胺单体可应用于高性能聚酰亚胺膜材料的制备,可进一步改善所制聚酰亚胺膜材料的溶解成膜性能、光学透明性、拉伸强度性能、介电损耗性等的潜在应用价值。

权利要求 :

1.一种含氰基多取代芳香二胺单体,其特征在于,所述含氰基多取代芳香二胺单体的结构式为以下结构式的其中一种或几种的组合:、 、

、 、

、 、

、 、

和 。

2.权利要求1所述的一种含氰基多取代芳香二胺单体的制备方法,其特征在于,包括如下步骤:和

1 2

其中Ar与Ar与权利要求1中的结构式相对应;

所述离子液体催化剂为咪唑类离子催化剂;

所述咪唑类离子催化剂选择为以下催化剂的一种或几种:、 、 和 ;

其中,所含的卤素X取代基为Cl,Br,I其中的一种或几种。

3.根据权利要求2所述的制备方法,其特征在于, 与 之间的摩尔比为(1.0‑4.0):1.0。

4.根据权利要求2所述的制备方法,其特征在于,所述反应的温度为

25℃‑100℃。

5.根据权利要求2所述的制备方法,其 特征在于,所述反应的时间为

6h‑12h。

6.根据权利要求2所述的制备方法,其特征在于,所述制备方法还包括对所述目标产物进行后处理的方法:所述后处理的方法包括对目标产物进行离心,将离心出的固体经洗涤、干燥和重结晶后得到白色的芳香二胺单体。

7.根据权利要求6所述的制备方法,其特征在于,所述离心的速率为4000‑6000rpm,所述离心的时间为20‑40min。

8.根据权利要求6所述的制备方法,其特征在于,所述重结晶采用的溶剂为醇/水混合物;

其中,所述醇选自甲醇、乙醇、乙二醇、异丙醇、1,2‑丙二醇、正丁醇、2‑丁醇或1,3‑丁二醇中的一种或几种。

说明书 :

一种含氰基多取代芳香二胺单体及其制备方法

技术领域

[0001] 本发明涉及二胺单体及其制备领域,尤其涉及一种含氰基多取代芳香二胺单体及其制备方法。

背景技术

[0002] 聚酰亚胺是一类具有优异性能的高端聚合物材料,在高技术领域应用广泛。其含有强刚性的苯环和酰亚胺环,具有优良的耐高温性能、机械性能、耐腐蚀性能以及电性能而被广泛用航空航天、电子器件、精密机械、高性能包装、微电子等新技术领域。未来光电器件的发展逐渐呈现出轻质化、大型化、超薄化和柔性化的趋势,柔性聚合物材料由于具有质轻、高耐冲击性等优点,已成为未来柔性光电封装基板材料的首选。
[0003] 但是常见的聚酰亚胺熔融加工性和溶解性非常差,限制了其在民用领域的推广应用。在合成二胺单体过程中,目前大多采过加入无机强碱来合成该类单体,但在工业生产过程中大量无机碱的加入会导致在机械设备腐蚀,以及在反应过程中会放出巨大的热量,难以控制,具有一定的危险性,同时也会造成环境污染,且在工业生产中,大多数制备得到的含氰基取代二胺单体均为黑色或棕色,其纯度较低。而由本发明合成出的二胺单体产物不采用无机碱,无金属离子残留,制备出一系列高纯二胺单体。极大提高了使用该种单体制备出的聚酰亚胺薄膜的表观性状和电学性能,能够满足高纯电子化学品的需求。
[0004] 有鉴于此,特提出本发明。

发明内容

[0005] 本发明的第一目的提供一种含氰基多取代芳香二胺单体,该单体为新型的含氰基多取代芳香二胺单体结构,引入氰基非对称二胺结构,从该结构中也可以知晓本发明的含氰基多取代芳香二胺单体将不同的功能性官能团引入聚合物的分子链中,采用该方法所制备得到的非对称结构聚酰亚胺具有很好的溶解性,柔韧性、可加工性、较高的拉伸强度性及较低的介电损耗性。
[0006] 本发明的第二目的是提供上述含氰基多取代芳香二胺单体的制备方法,该制备方法首次采用碱性离子液体催化剂的绿色合成方法,无需额外引入强碱添加剂,离子液体本身作为催化剂兼溶剂,同时该制备方法有反应条件温和,产率高,能实现离子液体催化剂循环重复使用,回收方便,避免了使用传统强碱带来的浪费和污染等特点,满足绿色环保的合成要求,目前工业生产得到该类单体为棕色或黑色固体粉末,而采用本发明最终能够制备出无色或淡黄色且纯度大于99.5%的二胺单体。整个制备方法能耗低、成本低,纯度高值得广泛推广进行应用。
[0007] 为了实现本发明的上述目的,特采用以下技术方案:
[0008] 本发明提供了一种含氰基多取代芳香二胺单体,所述含氰基多取代芳香二胺单体的结构式为:1 2
[0009] 其中,R、R为‑H、‑CF3、‑OCH3或烷基中的一1 2
种,Ar、Ar为芳香环或芳香杂环。
[0010] 优选地,Ar1、Ar2为如下基团的一种,其中同一种芳环取代位置有所不同:
[0011]
[0012]
[0013] 优选地,当Ar1选择为 Ar2选择为1
其中一种时,,其中,Ar可以有间甲氧基取代基和间甲基取代基,其制得的二胺
单体的结构式依次为:
[0014]
[0015] 优选地,为了使获得的聚酰亚胺薄膜介电常数,介电损耗等性能较为优异,经过实2 1
验设计优化,当Ar选择为 时,Ar 选择为
其中的一种,其制得的二胺单体的结构式依次为:
[0016]
[0017]
[0018] 从结构上分析上述优选单体所制备的PI薄膜有较优异的介电性能:首先Ar1,Ar2满足自身结构有较高对称性的特点,其次上述芳香杂环结构刚性较大,减少了空间上分子链与链之间堆砌程度,而且杂原子如氮,氧等含量较高,其氮杂原子的极性可以使分子链间的作用力增加,降低了链的自由活动性,因此能保持较高的热稳定性。最后,含孤对电子的杂原子可能与酰亚胺环之间的存在相互作用,一定程度上有利于提高聚酰亚胺薄膜的电学性能。
[0019] 本发明通过对分子结构进行设计,开发了一种具有很好的溶解性,柔韧性、可加工性、较高的拉伸强度性及较低的介电损耗性用于制备透明聚酰亚胺薄膜的含氰基多取代芳香二胺单体,之所以设计成如此的结构,因为通过实践发现,当二胺单体中间苯环有氰基时,氰基具有三键结构,在一些化学反应发生的过程中,氰基会与其它原子产生较强的相互作用,含氰基的聚酰亚胺发生交联反应,交联固化后的薄膜显示更高的热稳定性,具有较高的热分解温度,使得该产物可以广泛应用于合成较高的拉伸强度性及较低的介电损耗性的聚酰亚胺薄膜。
[0020] 通过实验验证,当Ar1选择为 Ar2选择为 时,所制备的PI薄膜的性能最好。
[0021] 本发明除了提供上述含氰基多取代芳香二胺单体的结构式之外,还提供了该单体的制备方法,包括如下步骤:
[0022] 将带有取代基R1的对氨基苯酚、间二卤苯化合物与离子液体催化剂经过反应得到目标产物。
[0023] 本发明首次采用碱性离子液体催化剂的绿色合成方法,无需额外添加强碱添加剂,同时反应条件温和,产率高,能实现离子液体催化剂循环重复使用,满足绿色环保的合成要求。
[0024] 优选地,反应后的离子液体催化剂经减压蒸馏后可循环使用。
[0025] 优选地,所述间二卤苯化合物的结构式为:
[0026] 其中,所含的卤素X取代基为Cl,Br,I其中的一种或几种。
[0027] 优选地,所述带有取代基R1的对氨基苯酚与所述间二卤苯化合物的摩尔比为(1.0‑4.0):1.0。
[0028] 除此之外,所述取代基R1的对氨基苯酚与所述间二卤苯化合物的摩尔比还可以为1.1:1、1.3:1、1.5:1、1.8:1、2.0:1、2.1:1、2.2:1、2.5:1、2.7:1、3.0:1、3.1:1、3.2:1、3.3:
1、3.4:1、3.5:1、3.6:1、3.7:1、3.8:1、3.9:1等等。
[0029] 优选地,所述反应的温度为25℃‑100℃。
[0030] 除此之外,反应的温度还可以为28℃、30℃、35℃、36℃、40℃、42℃、45℃、50℃、55℃、58℃、60℃、62℃、65℃、69℃、70℃、75℃、78℃、79℃、85℃、89℃、92℃、95℃、97℃、99℃等等。
[0031] 优选地,所述反应的时间为6h‑12h。
[0032] 除此之外,所述反应的时间还可以为7h、8h、9h、11h等等。
[0033] 优选地,所述离子液体催化剂为咪唑类离子催化剂。
[0034] 本发明采用的咪唑类离子催化剂作为近几年新兴的催化介质,具有绿色环保、饱和蒸汽压低、热稳定能好等优点,可以替代传统的碱及有机溶剂应用在有机反应中,减少对设备的腐蚀和对环境的污染。
[0035] 优选地,所述咪唑类离子催化剂选择为以下催化剂的一种或几种:
[0036]
[0037] 优选地,所述制备方法还包括对目标产物进行后处理的方法:
[0038] 所述目标产物进行离心,将离心出的固体经洗涤、干燥和重结晶后得到白色的芳香二胺单体;
[0039] 优选地,所述离心的速率为4000‑6000rpm,所述离心的时间为20‑40min。
[0040] 优选地,所述离心的速率为5000rpm,所述离心的实践为30min。
[0041] 除此之外,所述离心的速率还可为4200rpm、4500rpm、4800rpm、5200rpm、5700rpm、5900rpm等等,所述离心的时间还可为22min、25min、27min、35min、38min、39min等等。
[0042] 优选地,所述离心后的液体经水洗,去除溶于水的盐后,经过干燥、蒸馏,获得纯净的离子液体,可回收继续利用。
[0043] 优选地,所述重结晶采用的溶剂为醇/水混合物;
[0044] 其中,所述醇选自甲醇、乙醇、乙二醇、异丙醇、1,2‑丙二醇、正丁醇,2‑丁醇或1,3‑丁二醇中的一种或几种。
[0045] 通过实践发现,上述所涉及的参数,比如原料之间的摩尔比、反应温度、反应压力以及离子液体催化剂试剂的用量等均需要控制在比较适宜的范围内,不能过高也不能过低,因为如果反应温度、反应时间过长一方面不够经济,也会使得反应中所涉及到的诸多物料不能保证在最好的活性条件下进行反应,温度太低,反应时间太短又会出现副产物过多,不能得到所要得到的目标产物,同样的尤其原料之间的摩尔比也是需要控制在比较适宜的范围内,因为如果二卤苯甲腈化合物B的用量太大或者太小也会产生过多的副产物,不利于反应的顺利进行。推测可能的机理为:
[0046]
[0047] 比如,当二卤苯甲腈化合物B与含取代基R1的对氨基苯酚A的摩尔比低于1.0:2.0会生成大量的单取代副产物A,当摩尔比高于1.0:4.0,原料A大量剩余,当采用单取代单体(副产物A)制备聚酰亚胺薄膜时,成膜后表观形状为黄色脆性碎片,无法成膜,距预期要求的热学性能及力学性能相差较大,因此控制在适宜的摩尔比范围内是必要的,同样地,当反应时间太短、或者温度太低的情况下也会容易生成大量的以下副产物A,因此通过控制适宜的操作条件是可以提高反应选择性的,单取代副产物A的结构为:
[0048]
[0049] 总之,上述结构式中的副产物A不是反应的目标产物,所以为了控制所得到的目标产物的纯度,对整个制备方法中所涉及到的诸多参数进行摸索,使其保持最优的操作条件进行制备。
[0050] 与现有技术相比,本发明的有益效果在于:
[0051] (1)本发明的含氰基多取代芳香二胺单体纯度大于99.5%,引入氰基非对称二胺结构,采用该方法所制备得到的非对称结构聚酰亚胺具有很好的溶解性,柔韧性、可加工性、较高的拉伸强度性及较低的介电损耗性。
[0052] (2)本发明的单体制备方法温度低,无需额外强碱添加剂,能实现离子液体催化剂循环重复使用,满足绿色环保的合成要求,整个制备方法能耗低、成本低,能得到高纯度白色或淡黄色固体,值得广泛推广进行应用。

附图说明

[0053] 通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
[0054] 图1为所述实施例1所提供的二胺单体的核磁共振碳谱图;
[0055] 图2为所述实施例1所提供的二胺单体的核磁共振氢谱图;
[0056] 图3为所述实施例8所提供的二胺单体的核磁共振碳谱图;
[0057] 图4为所述实施例8所提供的二胺单体的核磁共振氢谱图;
[0058] 图5为所述实施例9所提供的二胺单体的核磁共振碳谱图;
[0059] 图6为所述实施例9所提供的二胺单体的核磁共振氢谱图;
[0060] 图7为所述实施例10所提供的二胺单体的核磁共振碳谱图;
[0061] 图8为所述实施例10所提供的二胺单体的核磁共振氢谱图。

具体实施方式

[0062] 下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
[0063] 实施例1
[0064] (1)氮气保护下,在装有机械搅拌的三口烧瓶中加入摩尔比为2:1的含取代基R1的对氨基苯酚A与二卤苯甲腈化合物B,进一步分别离子液体催化剂,室温搅拌半小时后升温至65℃下反应10h后结束反应;
[0065] (2)经沉降、过滤、干燥和重结晶后可得到白色的二胺单体;
[0066] 上述反应中,所述离子液体催化剂选用离子液体催化剂1,所述离子催化剂的结构1
式为: 用量为含取代基R的对氨基苯酚A与二卤苯甲腈化合物B质量和
1 2
的2倍,Ar选择为: Ar选择为: 所得目标产物的化学结构式为:
[0067]
[0068] 具体表征数据如下:
[0069] 如图1所示,13C NMR(101MHz,DMSO‑d6)δ162.1,144.7,141.8,135.4,127.0,122.6,120.4,116.1,113.6,106.7,90.3,16.9,15.3.碳谱与预期产物图谱结构一致。
[0070] 如图2所示,1H NMR(400MHz,DMSO‑d6)δ7.33(t,J=8.5Hz,1H),6.75(s,2H),6.55(s,2H),6.16(d,J=8.5Hz,2H),4.83(s,4H),2.03(s,6H),1.97(s,6H).氢谱与预期产物图谱结构一致。
[0071] 高分辨质谱的具体表征数据为:HRMS(ESI)calcd for C23H23O2N3[M+H]+:374.1863;found 374.1839.高分辨质谱与预期产物图谱结构一致,具体检测数据如表1所示。
[0072] 实施例2‑7
[0073] 具体方法与实施例1一致,不同的在于反应温度、反应时间以及原料的摩尔比会有些差别,具体设置参数以及目标产物纯度具体如表1所示。
[0074] 实施例8
[0075] 具体方法与实施例1一致,不同之处如表1所示,离子液体催化剂选用离子液体催1
化剂4,所述离子催化剂4的结构式为: 用量为含取代基R的对氨基苯酚A
与二卤苯甲腈化合物B质量和的2倍,所得目标产物的化学结构式为:
[0076]
[0077] 具体表征数据如下:
[0078] 如图3所示,13C NMR(101MHz,DMSO‑d6)δ162.4,144.5,143.9,135.2,122.8,122.1,118.7,114.7,113.7,107.8,91.5,17.4.碳谱与预期产物图谱结构一致。
[0079] 如图4所示,1HNMR(400MHz,DMSO‑d6)δ7.36(t,J=8.5Hz,1H),6.83–6.81(m,2H),6.78–6.75(m,2H),6.69–6.67(m,2H),6.31(d,J=8.5Hz,2H),4.89(s,4H).氢谱与预期产物图谱结构一致。
[0080] 高分辨质谱的具体表征数据为:HRMS(ESI)calcd for C21H19O2N3[M+H]+:346.1550;found 346.1529.高分辨质谱与预期产物图谱结构一致。
[0081] 实施例9
[0082] 具体方法与实施例1一致,不同之处如表1所示,离子液体催化剂选用离子液体催1
化剂5,所述离子催化剂5的结构式为: 用量为含取代基R 的对氨基苯酚A与
二卤苯甲腈化合物B质量和的2倍,所得目标产物的化学结构式为:
[0083]
[0084] 具体表征数据如下:
[0085] 如图5所示,13C NMR(101MHz,DMSO‑d6)δ161.2,152.4,148.9,135.5,127.1,113.4,112.9,111.6,108.0,91.5,9.8.碳谱与预期产物图谱结构一致。
[0086] 如图6所示,1H NMR(400MHz,DMSO‑d6)δ7.39(t,J=8.5Hz,1H),6.97(t,J=8.0Hz,2H),6.59–6.57(m,2H),6.34–6.28(m,2H),6.26(d,J=8.5Hz,2H),5.18(s,4H),1.90(s,
6H).氢谱与预期产物图谱结构一致。
[0087] 高分辨质谱的具体表征数据为:HRMS(ESI)calcd for C21H19O2N3[M+H]+:346.1550;found 346.1528.高分辨质谱与预期产物图谱结构一致。
[0088] 实施例10
[0089] 具体方法与实施例1一致,不同之处如表1所示,离子液体催化剂选用离子液体催1
化剂3,所述离子催化剂3的结构式为: 用量为含取代基R的对氨基苯酚A
与二卤苯甲腈化合物B质量和的2倍,所得目标产物的化学结构式为:
[0090]
[0091] 具体表征数据如下:
[0092] 如图7所示,13C NMR(101MHz,DMSO)δ162.4,151.6,148.2,134.9,131.6,122.9,113.8,106.2,105.7,99.1,89.9,55.3.碳谱与预期产物图谱结构一致。
[0093] 如图8所示,1H NMR(400MHz,DMSO‑d6)δ7.29(t,J=8.5Hz,1H),6.85(d,J=8.5Hz,2H),6.40(d,J=2.4Hz,2H),6.20–6.18(m,2H),6.15(d,J=8.5
[0094] Hz,2H),5.19(s,4H),3.66(s,6H).氢谱与预期产物图谱结构一致。
[0095] 高分辨质谱的具体表征数据为:HRMS(ESI)calcd for C19H19O4N3[M+H]+:
[0096] 378.1448;found 378.1438.高分辨质谱与预期产物图谱结构一致。
[0097] 表1反应温度、反应时间以及原料的摩尔比对反应的影响
[0098]
[0099]
[0100] 注:表中所列的副产物含量是指副产物A的含量;
[0101] 副产物含量及目标产物含量检测手段气相色谱仪,被测物质(i)的量与它在色谱图上的峰面积成正比:m i=fi×Ai,fi为定量校正因子。
[0102] 通过分析表1数据,原料之间的摩尔比、反应温度、反应压力以及离子液体催化剂试剂的用量等均需要控制在比较适宜的范围内。如实施例8中,当原料之间的摩尔比为2:2时,会产生大量的副产物,极大降低了反应的效率。以及反应温度也要严格控制,如实施例1和实施例6,仅仅降低反应温度由65℃降低到25℃,目标产物的含量由99%降低到92%。
[0103] 实验例1
[0104] 以实施例1作为组别1为基础,其他组别单体的制备方法均一致,只是将选择不同1 2
的Ar、Ar,然后将制得的二胺单体制备成聚酰亚胺膜在室温25℃进行检测,厚度均为30μm。
[0105] 表2Ar1、Ar2对二胺单体结构式的影响
[0106]
[0107]
[0108]
[0109] 表3Ar1、Ar2对聚酰亚胺膜性能的影响
[0110]组别 介电常数(10GHz) 介电损耗(10GHz) 拉伸强度(MPa)
1 3.196 0.00204 170
2 3.214 0.00247 165
3 3.217 0.00225 158
4 3.870 0.00374 120
5 3.339 0.00278 134
6 3.313 0.00299 155
7 3.996 0.00364 157
8 3.256 0.00243 129
9 3.593 0.00388 133
10 3.661 0.00428 120
对比例1 4.625 0.00798 90
对比例2 4.312 0.00693 102
[0111] 通过分析以上组别1‑10以及对比例1‑2所制成的PI薄膜的介电常数、介电损耗和拉伸强度进行对比可知,采用本发明制备出的单体用于制备出的聚酰亚胺薄膜均有较低的介电常数,极低的介电损耗以及较高的拉伸强度。首先本发明设计了该种间位取代二胺的单体结构的合成,因为通过实践发现,当二胺单体中间苯环有氰基时,氰基具有三键结构,在一些化学反应发生的过程中,氰基会与其它原子产生较强的相互作用,含氰基的聚酰亚胺发生交联反应,交联固化后的薄膜显示更高的热稳定性,具有较高的热分解温度,使得该产物可以广泛应用于合成较高的拉伸强度性及较低的介电损耗性的聚酰亚胺薄膜。而对比例1和对比例2中,没有采用本发明结构,仅为普通二胺单体,因此其单体在聚合过程中,分子链的刚性较弱,空间排列无序同时会产生无规则运动,因此其表现出来的力学性能和介电常数等参数相对于本发明结构单体较差。
[0112] 其次,本发明采用了一种全新的离子液体催化合成单体的方法,避免了采用无机碱时金属阳离子如钾离子、钠离子等的残留。因为金属离子微量的残留对于聚酰亚胺薄膜测定也会产生较高的介电损耗。最后,单体中杂质或者副产物含量的高低极大影响了后续聚合工艺、薄膜性能的优劣。而采用本发明所制备的单体具有较高的纯度,纯度均大于99.5%,且为白色固体,为后续制备成膜提供了较大的纯度优势,由此制备出一系列低介电常数、介电损耗的聚酰亚胺薄膜。
[0113] 最后,可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域普通技术人员而言,在不脱离本发明的原理和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。