一种PLGA纳米载药纤维膜及其制备方法转让专利

申请号 : CN202210020816.5

文献号 : CN114470322B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 吴焕岭孙万超王乃涛赵言收蒙丽娟

申请人 : 盐城工学院

摘要 :

本发明公开了一种PLGA纳米载药纤维膜及其制备方法,包括,以六氟异丙醇作为溶剂,分别配制聚乳酸‑羟基乙酸共聚物溶液、胶原蛋白溶液、卵磷脂溶液和阿霉素溶液;将聚乳酸‑羟基乙酸共聚物溶液、胶原蛋白溶液、卵磷脂溶液和阿霉素溶液进行混合,充分搅拌均匀后,得到混合纺丝液;将混合纺丝液通过静电纺丝工艺,制得PLGA纳米载药纤维膜。本发明为改善聚乳酸‑羟基乙酸共聚物(PLGA)降解速率缓慢的问题,并提高PLGA载药材料的持续释药性能,借助静电纺丝技术,采用胶原蛋白(Col)和卵磷脂(lecithin)对PLGA复合改性与阿霉素(DOX)载药处理的方式制备得到PLGA/Col/lecithin/DOX纳米纤维,可作为载药组织工程支架材料使用。

权利要求 :

1.一种PLGA纳米载药纤维膜的制备方法,其特征在于:包括,以六氟异丙醇作为溶剂,分别配制聚乳酸‑羟基乙酸共聚物溶液、胶原蛋白溶液、卵磷脂溶液和阿霉素溶液;

将聚乳酸‑羟基乙酸共聚物溶液、胶原蛋白溶液、卵磷脂溶液和阿霉素溶液进行混合,充分搅拌均匀后,得到混合纺丝液;

将混合纺丝液通过静电纺丝工艺,制得PLGA纳米载药纤维膜;其中,所述聚乳酸‑羟基乙酸共聚物溶液、胶原蛋白溶液、卵磷脂溶液和阿霉素溶液的浓度分别为0.1g/mL、0.1g/mL、0.1g/mL和0.01g/mL;

聚乳酸‑羟基乙酸共聚物溶液、胶原蛋白溶液、卵磷脂溶液和阿霉素溶液的体积比为

10:2:2:1;

静电纺丝,其中,纺丝条件:环境温度为25℃,环境湿度为45%,电源电压为18 kV,喷丝头与接收板距离为15 cm,溶液流速为1.2 mL/ h,纺丝时间为1 h;

纳米载药纤维膜的接触角为0°,亲水性佳,纳米载药纤维膜的药物释放速率高。

2.如权利要求1所述的PLGA纳米载药纤维膜的制备方法,其特征在于:纺丝结束后,将纳米纤维膜放入真空干燥箱烘干,去除溶剂。

3.权利要求1或2所述的PLGA纳米载药纤维膜的制备方法制得的纳米载药纤维膜。

说明书 :

一种PLGA纳米载药纤维膜及其制备方法

技术领域

[0001] 本发明属于纳米纤维制备技术领域,具体涉及到一种PLGA纳米载药纤维膜及其制备方法。

背景技术

[0002] 聚乳酸‑羟基乙酸共聚物(PLGA),是一种环保绿色材料,具有良好的生物相容性和体内降解性。PLGA在体内可以通过水解作用完全分解为二氧化碳和水,并可通过新陈代谢排出体外。同时,PLGA具有非常好的成膜、成囊和成纤性能。因此,PLGA作为高分子材料被广泛用于药物载体材料、外科缝合线和医用组织工程材料等领域。
[0003] PLGA虽然在很多应用中具有优异的性能,但由于其较强的疏水性,在作为药物传递系统应用的过程中存在药物释放速率太慢、药物释放量过低的问题。尤其作为组织工程支架材料应用时,由于降解速率缓慢,多数在体内降解周期可达六个月以上,长期留存于体内对身体产生潜在组织炎症和机体排异等副作用。

发明内容

[0004] 本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。
[0005] 鉴于上述和/或现有技术中存在的问题,提出了本发明。
[0006] 因此,本发明的目的是,克服现有技术中的不足,提供一种PLGA纳米载药纤维膜的制备方法。
[0007] 为解决上述技术问题,本发明提供了如下技术方案:一种PLGA纳米载药纤维膜的制备方法,包括,
[0008] 以六氟异丙醇作为溶剂,分别配制聚乳酸‑羟基乙酸共聚物溶液、胶原蛋白溶液、卵磷脂溶液和阿霉素溶液;
[0009] 将聚乳酸‑羟基乙酸共聚物溶液、胶原蛋白溶液、卵磷脂溶液和阿霉素溶液进行混合,充分搅拌均匀后,得到混合纺丝液;
[0010] 将混合纺丝液通过静电纺丝工艺,制得PLGA纳米载药纤维膜。
[0011] 作为本发明所述PLGA纳米载药纤维膜的制备方法的一种优选方案,其中:所述聚乳酸‑羟基乙酸共聚物溶液、胶原蛋白溶液、卵磷脂溶液和阿霉素溶液的浓度分别为0.05~0.1g/mL、0.05~0.1g/mL、0.05~0.1g/mL和0.01~0.02g/mL。
[0012] 作为本发明所述PLGA纳米载药纤维膜的制备方法的一种优选方案,其中:所述聚乳酸‑羟基乙酸共聚物溶液、胶原蛋白溶液、卵磷脂溶液和阿霉素溶液的浓度分别为0.1g/mL、0.1g/mL、0.1g/mL和0.01g/mL。
[0013] 作为本发明所述PLGA纳米载药纤维膜的制备方法的一种优选方案,其中:所述将聚乳酸‑羟基乙酸共聚物溶液、胶原蛋白溶液、卵磷脂溶液和阿霉素溶液进行混合,其中,聚乳酸‑羟基乙酸共聚物溶液、胶原蛋白溶液和阿霉素溶液的体积比为6~10:0~4:0~4:0~1。
[0014] 作为本发明所述PLGA纳米载药纤维膜的制备方法的一种优选方案,其中:聚乳酸‑羟基乙酸共聚物溶液、胶原蛋白溶液、卵磷脂溶液和阿霉素溶液的体积比为10:2:2:1。
[0015] 作为本发明所述PLGA纳米载药纤维膜的制备方法的一种优选方案,其中:静电纺丝,其中,纺丝条件:环境温度为25℃左右,环境湿度为45%,电源电压为18kV,喷丝头与接收板距离为15cm,溶液流速为1.2mL/h,纺丝时间为1h。
[0016] 作为本发明所述PLGA纳米载药纤维膜的制备方法的一种优选方案,其中:纺丝结束后,将纳米纤维膜放入真空干燥箱烘干,去除溶剂。
[0017] 本发明的再一个目的是,克服现有技术中的不足,提供一种PLGA纳米载药纤维膜的制备方法制得的纳米载药纤维膜,纳米载药纤维膜的接触角为0°,亲水性佳;纳米载药纤维膜的药物释放速率高。
[0018] 本发明有益效果:
[0019] (1)本发明为改善聚乳酸‑羟基乙酸共聚物(PLGA)降解速率缓慢的问题,并提高PLGA载药材料的持续释药性能,借助静电纺丝技术,采用胶原蛋白(Col)和卵磷脂(lecithin)对PLGA复合改性与阿霉素(DOX)载药处理的方式制备得到PLGA/Col/lecithin/DOX纳米纤维,可作为载药组织工程支架材料使用。
[0020] (2)本发明PLGA/Col/lecithin/DOX纳米纤维,体外药物释放实验表明,经胶原蛋白和卵磷脂改性后的载药纳米纤维的药物释放速率明显提高,能够有效改善PLGA释药速率和释药量过低的问题,提高了药物利用率。
[0021] (3)本发明将聚乳酸‑羟基乙酸共聚物经过胶原蛋白溶液、卵磷脂溶液改性协同作用,制得的纳米纤维膜材料的接触角测量结果为0°,胶原蛋白和卵磷脂的同时载入能够促进纳米纤维膜材料界面亲水性的巨大改善,实现了纳米结构表面材料疏水与亲水之间的单向转变。

附图说明

[0022] 为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
[0023] 图1为本发明实施例中PLGA(a)和PLGA/Col/lecithin/DOX(b)纳米纤维的扫描电镜图(×20000)。
[0024] 图2为本发明实施例中纯PLGA(a)和PLGA/Col/lecithin/DOX(b)纳米纤维膜的接触角图。
[0025] 图3为本发明实施例中PLGA/DOX、PLGA/Col/DOX和PLGA/Col/lecithin/DOX载药纳米纤维膜的药物释放对比图。

具体实施方式

[0026] 为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书实施例对本发明的具体实施方式做详细的说明。
[0027] 在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
[0028] 其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
[0029] 本发明中材料与仪器:
[0030] 聚乳酸‑羟基乙酸75/25(PLGA)(Mw=12~16万,济南岱罡生物工程有限公司);牛跟腱I型胶原蛋白(Col)、盐酸阿霉素(DOX·HCl,98%)、六氟异丙醇(99.5%)(上海麦克林生化科技有限公司);磷酸缓冲盐溶液(PBS,pH=7.4)(南京森贝伽生物科技有限公司);
[0031] DP30‑S型静电纺丝机(天津云帆科技有限公司);JCY‑2型接触角测试仪(上海轩准仪器有限公司);BX‑51型光学显微镜(奥林巴斯有限公司);UV1810S型紫外分光光度计(上海精科实业有限公司);WHY‑2型恒温水浴振荡锅(上海达姆实业有限公司)。
[0032] 本发明测试与表征方法:
[0033] 纤维形貌表征:
[0034] 扫描电镜观察。对纳米纤维膜喷金处理后,利用Nova NanoSEM 450型场发射扫描电子显微镜(美国FEI公司)观察纳米纤维的形貌。
[0035] 接触角测试:
[0036] 将纳米纤维膜的待测样品连同锡箔纸一同裁剪成20mm×20mm的试样尺寸,平铺固定并放置在JCY‑2型接触角测试仪(上海轩准仪器有限公司)工作台上进行测试并读数。液滴为去离子水,液滴体积为3μL,每个样品测量3次求平均值。
[0037] 载药纳米纤维膜体外药物释放速率测试:
[0038] 使用电子分析天平精确称量载药纳米纤维膜各25mg并置于50mL离心管中,随后注入25mL、pH=7.4的PBS缓冲溶液,每个样品设置3份平行样。
[0039] 将离心管密封后置于恒温摇床中,设置温度为37℃,摇床速度为100r/min。在适当的时间间隔量取2mL溶液待测,同时向原样中补充5mL新鲜PBS溶液,保持离心管中的液体体积不变。
[0040] 使用UV1810S型紫外‑可见分光光度计(上海精科实业有限公司)将取出的样品溶液在DOX最大吸收波长波长480.0nm处测试其吸光度A,并通过标准曲线(标准曲线A=12.079C+0.1517。其中A为DOX溶液的吸光度值;C为DOX溶液的浓度,单位为g/L。)计算出样品溶液中药的浓度C,进一步计算其累积释放量。
[0041] 实施例1
[0042] 本实施例提供一种PLGA纳米载药纤维膜的制备方法,主要步骤为:
[0043] (1)DOX、PLGA、Col和lecithin溶液的制备
[0044] 以六氟异丙醇作为DOX、PLGA、Col和lecithin的溶剂,分别配制浓度为0.1g/mL PLGA溶液、0.1g/mL胶原蛋白溶液、0.1g/mL卵磷脂溶液和0.01g/mL DOX溶液。
[0045] (2)PLGA、胶原蛋白溶液的复配
[0046] 按照表1所示不同组分的体积比进行纺丝液的混合,待充分搅拌均匀后,分别得到PLGA、PLGA/collagen、PLGA/lecithin和PLGA/Col/lecithin/DOX纺丝液,于纺丝前分别转移至注射器中,备用。
[0047] 表1纺丝液的复配组分
[0048]  PLGA/mL collagen/mL lecithin/mL DOX/mL
PLGA 10 0 0 0
PLGA/collagen 10 4 0 0
PLGA/lecithin 10 0 4 0
PLGA/Col/lecithin/DOX 10 2 2 1
[0049] (3)静电纺丝工艺的条件控制
[0050] DP30‑S型静电纺丝机(天津云帆科技有限公司)纺丝条件:环境温度为25℃,环境湿度为45%,电源电压为18kV,喷丝头与接收板距离为15cm,溶液流速为1.2mL/h,每一个样品设置三个平行样,每个平行样的纺丝时间为1h。
[0051] 纺丝结束后,关闭所有电源开关并将电压恢复至零,然后取下铝箔纸,并将这些覆有纳米纤维膜的铝箔纸放入真空干燥箱烘干48h以去除残余溶剂,制得纤维膜。
[0052] 实施例2
[0053] 将实施例1制得的PLGA纤维、PLGA/Col/lecithin/DOX纤维,进行纳米纤维的形貌表征。
[0054] 图1采用场发射扫描电镜观察纳米纤维的形貌;可见,PLGA、PLGA/Col/lecithin/DOX两种纳米纤维的直径为250~500nm,呈现出变细的趋势。
[0055] 实施例3
[0056] 将实施例1制得的纳米纤维膜进行亲疏水性分析。
[0057] 图2是实施例1中PLGA和PLGA/Col/lecithin/DOX制得的纳米纤维膜接触角测量图,表2为不同纳米纤维膜的接触角。
[0058] 表2
[0059]
[0060] 可以看出,PLGA纳米纤维膜的接触角为93.5°,显示疏水性;PLGA/胶原蛋白复合纳米纤维膜、载有lecithin的PLGA纳米纤维膜的接触角均将至50°左右,说明胶原蛋白或lecithin的载入能够使得PLGA膜材料的固体界面上呈现出一定程度的亲水性。
[0061] PLGA/Col/lecithin三者共混纳米纤维膜材料的接触角测量结果为0°,该结果进一步说明,胶原蛋白和lecithin的同时载入能够促进纳米纤维膜材料界面亲水性的巨大改善,实现了纳米结构表面材料疏水与亲水之间的单向转变。
[0062] 其中一方面与胶原蛋白上的极性基团有关,处于纤维表层的卵磷脂由于具有亲水基,能够进一步增加纤维表层的亲水性;而纤维膜的亲水性越好,水分子越容易进入聚合物内部,从而促进PLGA高聚物发生水解反应,同时有助于提高纳米纤维载药体系的释药性。
[0063] 实施例4
[0064] 体外释药性能测定:
[0065] PLGA/DOX、PLGA/collagen/DOX和PLGA/Col/lecithin/DOX结果见表3。
[0066] 表3
[0067]  PLGA/mL collagen/mL lecithin/mL DOX/mL
PLGA/DOX 10 0 0 1
PLGA/collagen/DOX 10 4 0 1
PLGA/Col/lecithin/DOX 10 2 2 1
[0068] 体外释药性能测定结果见图3,可以看出,添加亲水性的胶原蛋白和双亲性的卵磷脂具有协同作用:卵磷脂在混合纺丝液喷出的时候,在静电作用下发生重组,处于纤维内部的卵磷脂更加容易形成空腔结构,促进药物分子储存和溶出,处于纤维表层的卵磷脂由于具有亲水基,能够进一步增加纤维表层的亲水性,结合胶原蛋白上的极性基团作用,经胶原蛋白和卵磷脂改性后的载药纳米纤维的药物释放速率明显提高,能够有效改善PLGA释药速率和释药量过低的问题,提高物利用率。
[0069] 本发明为改善聚乳酸‑羟基乙酸共聚物(PLGA)降解速率缓慢的问题,并提高PLGA载药材料的持续释药性能,借助静电纺丝技术,采用胶原蛋白(Col)对PLGA复合改性与阿霉素(DOX)载药处理的方式制备得到PLGA/Col/DOX纳米纤维,可作为载药组织工程支架材料使用。
[0070] 应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。