采用电压控制比例读出技术的MEMS电容型加速度计接口电路转让专利

申请号 : CN202110351837.0

文献号 : CN114509579B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 钟龙杰朱樟明刘术彬沈易

申请人 : 西安电子科技大学

摘要 :

本发明公开了一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路,包括动态激励源、差分电荷‑电压变换器、共模电荷‑电压变换器、模拟‑数字变换器,其中,动态激励源,用于产生激励信号以激发外部传感单元产生电荷信号;共模电荷‑电压变换器,用于将电荷信号中的共模分量读出并转换为共模电压;差分电荷‑电压变换器,用于将电荷信号中的差分分量读出并转换为差分电压;模拟‑数字变换器,用于根据共模电压转换差分电压,以实现电压控制比例读出。本发明所提出的架构支持动态激励,使得激励源不再限定于使用带隙基准和缓冲器的方式,从而提升了接口电路整体能效,且仅需要一个MEMS传感单元形成全差分结构,从而降低了制造成本。

权利要求 :

1.一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路,其特征在于,包括动态激励源、差分电荷‑电压变换器、共模电荷‑电压变换器、模拟‑数字变换器,其中,所述动态激励源,用于产生激励信号以激发外部连接的一传感单元产生电荷信号;

所述共模电荷‑电压变换器,连接所述传感单元,用于将所述电荷信号中的共模分量读出并转换为共模电压;

所述差分电荷‑电压变换器,连接所述传感单元,用于将所述电荷信号中的差分分量读出并转换为差分电压;

所述模拟‑数字变换器,连接所述共模电荷‑电压变换器、所述差分电荷‑电压变换器,用于根据所述共模电压转换所述差分电压,以实现电压控制比例读出;

所述动态激励源采用开环电荷泵实现;所述共模电荷‑电压变换器包括电容CCM、电容CH1、电容CCAL1、共模放大器A1,由所述电容CCM、所述电容CH1、所述电容CCAL1、所述共模放大器A1构建共模电荷放大器;所述差分电荷‑电压变换器包括电容CD、电容CH2、电容CCAL2、全差分放大器A2,由所述电容CD、所述电容CH2、所述电容CCAL2、所述全差分放大器A2构建差分电荷放大器;所述模拟‑数字变换器包括模数转换器ADC和数模转换器DAC,ADC与DAC构成信号除法器,分子为差分电荷‑电压变换器DCV电路输出的差分电压VOD,分母为共模电荷‑电压变换器CMCV电路输出的共模电压VOC。

2.根据权利要求1所述的采用电压控制比例读出技术的MEMS电容型加速度计接口电路,其特征在于,所述传感单元包括输入公共电极R、电容CS1、电容CS2、第一输出差分电极INA、第二输出差分电极INB,其中,所述输入公共电极R分别与所述电容CS1的一端、电容CS2的一端,所述电容CS1的另一端与所述第一输出差分电极INA连接,所述电容CS2的另一端与所述第二输出差分电极INB连接。

3.根据权利要求1所述的采用电压控制比例读出技术的MEMS电容型加速度计接口电路,其特征在于,所述模拟‑数字变换器中将所述共模电压作为参考电压来转换差分电压,以实现电压控制比例读出,其中,转换后的差分电压表示为:其中,DOUT表示模拟‑数字变换器的输出,VOC表示共模电荷‑电压变换器的输出,VOD表示差分电荷‑电压变换器的输出,CS1表示传感单元中电容CS1,CS2表示传感单元中电容CS2,CCM表示共模电荷‑电压变换器中电容CCM,CD表示差分电荷‑电压变换器中电容CD。

说明书 :

采用电压控制比例读出技术的MEMS电容型加速度计接口电路

技术领域

[0001] 本发明属于便携式电子应用技术领域,具体涉及一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路。

背景技术

[0002] 微机电子机械系统(Micro Electro‑Mechanical System,简称MEMS)加速度计是微小型惯性导航系统中重要的传感器之一,具有体积小、成本低、重量轻以及功耗低等特点,因此在我们的生产与生活中发挥着巨大作用,目前主要应用于运动感知、动作识别、姿态控制、振动探测、安防报警等方面,基于加速度传感器还可以实现更多的检测功能,获得更为广泛的应用。
[0003] MEMS加速度计根据其工作原理可以分为开环加速度计和闭环加速度计。开环加速度计通过测量质量块位移变化导致的电容变化来测量加速度,精度较低、线性度差。闭环加速度计也称为力平衡加速度计,其工作原理是:当惯性力作用在质量块上时,闭环系统检测质量块位移,并产生与惯性力大小相等、方向相反的静电力,抵消惯性力,使质量块始终处于平衡位置。闭环加速度计因其工作原理,线性度高、噪声低,非常适合于地震监测、倾角测量等高精度测量。目前比较常用的闭环加速度计接口电路包括:全模拟的PID闭环控制方式和数模混合的Delta‑sigma闭环控制方式。相比于闭环架构,开环架构的MEMS电容型加速度计由于在信号链路中不需要使用高增益设计以及环路补偿设计等获得了低成本和低功耗优势,因此,成为物联网(Internet of Things,简称IoT)应用主流选择。而开环架构面临的主要问题之一是传感单元的反比例传递函数特性所造成的非线性误差,该非线性误差随着输入加速度信号的增强而增强,因此极大的限制了开环架构的动态范围。目前常见开环架构的MEMS电容型加速度计采用电荷控制的具有比例传递函数的接口电路来实现,实现全差分架构需要两个MEMS传感单元,具有比例传递函数的接口电路能够很好的抵消传感单元的反比例函数特性。
[0004] 但是,传统这种电荷控制的具有比例传递函数的接口电路使用带隙基准和缓冲器作为激励源,限制了接口电路的整体能效,且实现全差分架构需要两个MEMS传感单元,导致制造成本高。

发明内容

[0005] 为了解决现有技术中存在的上述问题,本发明提供了一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路。
[0006] 本发明的一个实施例提供了一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路,包括:
[0007] 包括动态激励源、差分电荷‑电压变换器、共模电荷‑电压变换器、模拟‑数字变换器,其中,
[0008] 所述动态激励源,用于产生激励信号以激发外部连接的一传感单元产生电荷信号;
[0009] 所述共模电荷‑电压变换器,连接所述传感单元,用于将所述电荷信号中的共模分量读出并转换为共模电压;
[0010] 所述差分电荷‑电压变换器,连接所述传感单元,用于将所述电荷信号中的差分分量读出并转换为差分电压;
[0011] 所述模拟‑数字变换器,连接所述共模电荷‑电压变换器、所述差分电荷‑电压变换器,用于根据所述共模电压转换所述差分电压,以实现电压控制比例读出。
[0012] 在本发明的一个实施例中,所述动态激励源采用开环电荷泵实现。
[0013] 在本发明的一个实施例中,所述外部传感单元包括输入公共电极R、电容CS1、电容CS2、第一输出差分电极INA、第二输出差分电极INB,其中,
[0014] 所述输入公共电极R分别与所述电容CS1的一端、电容CS2的一端,所述电容CS1的另一端与所述第一输出差分电极INA连接,所述电容CS2的另一端与所述第二输出差分电极INB连接。
[0015] 在本发明的一个实施例中,所述共模电荷‑电压变换器包括由电容CCM、共模放大器A1构建的共模电荷放大器。
[0016] 在本发明的一个实施例中,所述共模电荷‑电压变换器还包括电容CH1、电容CCAL1,由所述电容CCM、所述电容CH1、所述电容CCAL1、所述共模放大器A1构建共模电荷放大器。
[0017] 在本发明的一个实施例中,所述差分电荷‑电压变换器包括由电容CD、全差分放大器A2构建的差分电荷放大器。
[0018] 在本发明的一个实施例中,所述差分电荷‑电压变换器还包括电容CH2、电容CCAL2,由所述电容CD、所述电容CH2、所述电容CCAL2、所述全差分放大器A2构建差分电荷放大器。
[0019] 在本发明的一个实施例中,所述模拟‑数字变换器中将所述共模电压作为参考电压来转换差分电压,以实现电压控制比例读出,其中,转换后的差分电压表示为:
[0020]
[0021] 其中,DOUT表示模拟‑数字变换器的输出,VOC表示共模电荷‑电压变换器的输出,VOD表示差分电荷‑电压变换器的输出,CS1表示传感单元中电容CS1,CS2表示传感单元中电容CS2,CCM表示共模电荷‑电压变换器中电容CCM,CD表示差分电荷‑电压变换器中电容CD。
[0022] 与现有技术相比,本发明的有益效果:
[0023] 本发明提供的采用电压控制比例读出技术的MEMS电容型加速度计接口电路,所提出的架构支持动态激励,使得激励源不再限定于使用带隙基准和缓冲器的方式,从而提升了接口电路整体能效,且仅需要一个MEMS传感单元形成全差分结构,从而降低了制造成本。
[0024] 以下将结合附图及实施例对本发明做进一步详细说明。

附图说明

[0025] 图1是本发明实施例提供的一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路的结构示意图;
[0026] 图2是本发明实施例提供的MEMS电容型加速度计中传感单元的典型结构示意图;
[0027] 图3是本发明实施例提供的传统采用电荷控制比例读出技术的接口电路结构示意图;
[0028] 图4是本发明实施例提供的一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路中动态激励源的电路结构示意图;
[0029] 图5是本发明实施例提供的另一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路的结构示意图;
[0030] 图6是本发明实施例提供的一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路中CMCV、DCV、传感单元的电路结构示意图。
[0031] 附图标记说明:
[0032] 101‑检测质量块;102‑弹簧;103‑定极板;104‑动极板;201‑第一传感单元;202‑第二传感单元;203‑积分器;204‑加法器;205‑带隙基准;206‑输出缓冲器;301‑共模电荷‑电压变换器;302‑差分电荷‑电压变换器;303‑模拟‑数字变换器;304‑动态激励源;305‑传感单元;306‑时钟波形输出电路。

具体实施方式

[0033] 下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
[0034] 实施例一
[0035] 请参见图1,图1是本发明实施例提供的一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路的结构示意图。本实施例提出了一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路,该采用电压控制比例读出技术的MEMS电容型加速度计接口电路包括:
[0036] 动态激励源、差分电荷‑电压变换器、共模电荷‑电压变换器、模拟‑数字变换器,其中,动态激励源,用于产生激励信号以激发外部连接的一传感单元产生电荷信号;共模电荷‑电压变换器,连接传感单元,用于将电荷信号中的共模分量读出并转换为共模电压;差分电荷‑电压变换器,连接传感单元,用于将电荷信号中的差分分量读出并转换为差分电压;模拟‑数字变换器,连接共模电荷‑电压变换器、差分电荷‑电压变换器,用于根据共模电压转换差分电压,以实现电压控制比例读出。
[0037] 具体而言,由于受机械梳齿电容结构的影响,MEMS电容型加速度计的传感单元的传递函数为反比例函数,反比例传递函数带来了随着信号幅度增加而增加的非线性。请参见图2,图2是本发明实施例提供的MEMS电容型加速度计中传感单元的典型结构示意图,为典型的MEMS电容型加速度计的传感单元结构。检测质量块101通过弹簧102悬挂,在电气上与公共电极R相连。定极板103和动极板104构成差分传感电容CS1和电容CS2。差分传感电容CS1和电容CS2的定极板103在电气上分别与传感单元的差分电极INA、INB相连。动极板104是随着检测质量块101移动的极板,电气上也与公共电极R相连。当有外界加速度信号a来临,检测质量块101发生位移,带动动极板104发生位移,从而使得传感电容的容值发生变化。完成加速度信号‑电容信号的转换,传感电容的表达式表示为:
[0038]
[0039] 其中,C0表示传感电容静态电容值,Δd表示加速度信号a激励下传感电容动极板的位移值,它与加速度信号a成线性关系,d0表示静态时动极板和定极板间距,x表示调制深度,k表示线性系数。传感电容产生的电容变化值。由公式(1)可见,加速度a到传感电容CS的传递函数是反比例函数,具有非线性,且非线性随着加速度信号a的增加而显著增加,这极大的限制了加速度计的动态范围。为了避免传递函数的反比例非线性,最有效的方法之一是设计一个比例传递函数:
[0040]
[0041] 由公式(2)表明,比例传递函数能够避免反比例非线性,从而有效的拓展加速度计的动态范围。
[0042] 请参见图3,图3是本发明实施例提供的传统采用电荷控制比例读出技术的接口电路结构示意图,图3为传统采用电荷控制比例读出技术的MEMS加速度计接口电路,也被称为“自平衡桥”。该架构的电路包括:第一传感单元201、第二传感单元202、积分器203和加法器204来完成比例传递函数,激励电压源采用带隙基准205和输出缓冲器206构成,其中,电容CS1和电容CS2均为第一传感单元201的两个差分电容,电容CS3和电容CS4均为第二传感单元
202的两个差分电容,VR是用于DAC的参考电压源,比如可以是激励电压VEXE。第一传感单元
201和第二传感单元202设计时需要保持匹配,使得CS1=CS4且CS2=CS3,第一传感单元201和第二传感单元202分别通过差分电极(INA1、INB1、INA2和INB2)进行反馈激励,电容CS1和电容CS2所产生的电荷差值通过公共电极R1输出给积分器203,而电容CS3和电容CS4所产生的电荷差值通过公共电极R2输出给积分器203。在第一传感单元201和第二传感单元202平衡之后,积分器203稳定,公共电极R1和公共电极R2不再产生电荷差值,即电容CS1上的电荷和电容CS1上的电荷相等,且电容CS3上的电荷和电容CS4上的电荷相等,于是有:
[0043]
[0044] 由于电容CS1和电容CS4相同,电容CS2和电容CS3相同,则公式(3)所得到的表达式解为:
[0045]
[0046] 由公式(4)表明自平衡桥能够实现比例读出,且比例读出和激励源VEXE有关,激励源限定于使用带隙基准和缓冲器的方式,限制了接口电路整体能效,且需要两个MEMS传感单元形成全差分结构,增加了制造成本。
[0047] 为了解决上述问题,请再参见图1,本实施例提出了一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路,动态激励源304产生激励信号以激发外部连接的一传感单元305,从而在传感单元305的输出端输出电荷信号,共模电荷‑电压变换器(Common‑mode Capacitance to Voltage Converter,简称CMCV)301将传感单元305传递过来的电荷信号中的共模分量吸收,并转换为相应的共模电压,差分电荷‑电压变换器(Differential Capacitance to Voltage Converter,简称DCV)302将传感单元305传递过来的电荷信号中的差分分量吸收,并转换为相应的差分电压,而后级的模拟‑数字变换器303根据CMCV电路输出的共模电压来转换DCV电路输出的差分电压。本实施例所提出的架构支持动态激励,使得激励源不再限定于使用带隙基准和缓冲器的方式,从而提升了接口电路整体能效,且仅需要一个MEMS传感单元形成全差分结构,从而降低了制造成本。
[0048] 进一步地,本实施例动态激励源304采用开环电荷泵实现。
[0049] 具体而言,动态激励源是幅值不需要固定的电压源,采用开环电荷泵实现,由于不需要使用闭环控制的高功耗带隙基准和缓冲器,因此,提升了接口电路的能效。此外,采用电荷泵的激励源可以输出高于电源电压的激励,激励源电压幅度越高,所激励出来的信号越强,接口电路所获得的等效输入噪声越低。请参见图4,图4是本发明实施例提供的一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路中动态激励源的电路结构示意图,图4为接口电路中所使用的动态激励源具体电路实现,但不局限该电路实现方式。本实施例动态激励源304具体电路采用如图4所示的传统开环交叉耦合电荷泵,电荷泵通过三级增压输出3倍于电源电压VDD的电压。在1.8V的CMOS工艺中,该电荷泵可以使用5V厚栅氧器件设计。使用电荷泵驱动的原因在于电荷泵能提供更高的激励电压幅度,从而降低噪声。具体地:传感单元的共模电容量远远大于差分电容量(10‑100倍),因此最终电压控制比例读出的结果中是DCV电路的输出噪声占主导,而不是CMCV电路的输出噪声占主导。而DCV电路的噪声主要来源于寄生电容的电荷噪声 和放大器等效输入电压噪声 这两类噪声等效到传感电容中的噪声分别表示为:
[0050]
[0051] 由公式(5)可以看出,提升激励源电压VEXE的幅度能够有效的降低噪声,在信号强度不变的情况下,能使得信噪比SNR提升。图4所示电荷泵被设计为开环电荷泵以实现低功耗。由于是开环电荷泵,输出电压会显著的随着端口寄生电容的变化而变化:
[0052]
[0053] 其中,VZL表示开环电荷泵输出没有负载电容时候的理想电压,对于1.8V的VDD来说VZL的值为5.4V,CCP表示开环电荷泵中进行功率传输的电容,CL表示负载电容值,它主要取决于传感单元305中的差分传感电容和寄生电容总和。
[0054] 进一步地,本实施例外部连接的一传感单元305包括输入公共电极、电容CS1、电容CS2、第一输出差分电极、第二输出差分电极。
[0055] 具体而言,请参见图5,图5是本发明实施例提供的另一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路的结构示意图,本实施例传感单元305中输入公共电极R分别与电容CS1的一端、电容CS2的一端,电容CS1的另一端与第一输出差分电极INA连接,电容CS2的另一端与第二输出差分电极INB连接。相比于图3所示电路架构,本实施例仅仅需要一个传感单元305实现全差分架构,该传感单元305包括电容CS1和电容CS2两个差分传感电容。该架构通过传感单元305的公共电极R进行激励,然后通过传感单元305的第一差分电极INA和第二差分电极INB进行读出。
[0056] 进一步地,请再参见图5,本实施例共模电荷‑电压变换器301包括由电容CCM、共模放大器A1构建的共模电荷放大器,具体地:共模放大器A1的输出端与第一反相输入端之间跨接一电容CCM,共模放大器A1的第一反相输入端还与第一差分电极INA连接,共模放大器A1的输出端与第二反相输入端之间跨接一电容CCM,共模放大器A1的第二反相输入端还与第二差分电极INB连接,共模放大器A1的第一正相输入端与第二正相输入端均与偏置电压VA连接。在CMCV电路中,共模放大器A1检测到传感单元305的第一差分电极INA和第二差分电极INB上的共模信号变化,并通过共模反馈电容CCM反馈吸收来自传感单元305的共模电荷信号(CS1+CS2)VEXE,形成与共模电荷信号成比例的输出电压VOC,形成共模电荷‑电压变换器301的共模输出电压表示为:
[0057]
[0058] 进一步地,请再参见图5,本实施例差分电荷‑电压变换器包括302由电容CD、全差分放大器A2构建的差分电荷放大器,具体地:全差分放大器A2的反相输出端与正相输入端之间跨接一所述电容CD,所述全差分放大器A2的正相输入端还与所述第一差分电极INA连接,全差分放大器A2的正相输出端与反相输入端之间跨接一所述电容CD,所述全差分放大器A2的反相输入端还与所述第二差分电极INB连接。在DCV电路中,差分放大器A2检测到传感单元305的第一差分电极INA和第二差分电极INB上的差分信号变化后,通过差分反馈电容CD反馈吸收来自传感单元305的差分电荷信号(CS1‑CS2)VEXE,形成与差分电荷信号成比例的差分输出电压VOD,形成差分电荷‑电压变换器302的差分输出电压表示为:
[0059]
[0060] 进一步地,请参见图6,图6是本发明实施例提供的一种采用电压控制比例读出技术的MEMS电容型加速度计接口电路中CMCV、DCV、传感单元的电路结构示意图,本实施例共模电荷‑电压变换器301还包括电容CH1、电容CCAL1,由电容CCM、电容CH1、电容CCAL1、共模放大器A1构建共模电荷放大器,具体地:所述共模放大器A1的输出端与所述第一差分电极INA之间跨接一所述电容CCM,所述共模放大器A1的输出端与所述第二差分电极INB之间跨接一所述电容CCM,所述共模放大器A1的输出端还与一偏置电压VB连接,所述共模放大器A1的输出端与第一反相输入端之间跨接一所述电容CH1,所述共模放大器A1的输出端与第二反相输入端之间跨接一所述电容CH1,所述共模放大器A1的第一反相输入端与所述第一差分电极INA之间连接一所述电容CCAL1,所述共模放大器A1的第二反相输入端与所述第二差分电极INB之间连接一所述电容CCAL1,所述共模放大器A1的第一正相输入端与第二正相输入端均与偏置电压VA连接。该共模电荷‑电压变换器301具有上述公式(7)的输出电压VOC外,与共模放大器A1连接的电容CCAL1和电容CH1形成开关电容网络,是为了矫正共模放大器A1的增益误差、抵消Offset以及降低1/f噪声。
[0061] 进一步地,请再参见图6,本实施例差分电荷‑电压变换器302还包括电容CH2、电容CCAL2,由电容CD、电容CH2、电容CCAL2、全差分放大器A2构建差分电荷放大器,具体地:所述全差分放大器A2的反相输出端与所述第一差分电极INA之间跨接一所述电容CD,所述全差分放大器A2的正相输出端与所述第二差分电极INB之间跨接一所述电容CD,所述全差分放大器A2的反相输出端与正相输入端之间跨接一所述电容CH2,所述全差分放大器A2的正相输出端与反相输入端之间跨接一所述电容CH2,所述全差分放大器A2的正相输入端与所述第一差分电极INA之间连接一所述电容CCAL2,所述全差分放大器A2的反相输入端与所述第二差分电极INB之间连接一所述电容CCAL2。同样,该差分电荷‑电压变换器302除具有上述公式(8)的输出电压VOC外,与差分放大器A2连接的电容CCAL2和电容CH2形成开关电容网络,是为了矫正差分放大器A2的增益误差、抵消Offset以及降低1/f噪声。
[0062] 需要说明的是,本实施例图6所示306为外部时钟波形输出电路,图6所示开关Φ1、开关Φ2、开关Φ1n的开关先后次序通过时钟波形输出电路306实现,具体时钟波形输出的时序根据实际场景需要而设计。
[0063] 进一步地,本实施例模拟‑数字变换器303中将共模电压作为参考电压来转换差分电压,以实现电压控制比例读出。
[0064] 具体而言,请再参见图3,本实施例模拟‑数字变换303包括模数转换器(Analog‑to‑Digital Converter,简称ADC)和数模转换器(Digital‑to‑Analog Converter,简称DAC),其中,ADC是一种开关电容电路的ADC,可以是Sigma‑Delta架构或者SAR架构。在本实施例中ADC和DAC共同构成信号除法器,分子是DCV电路输出的差分电压VOD,分母是CMCV电路输出的共模电压VOC。本实施例由DCV电路和CMCV电路同时进行读出操作,分别吸收传感单元305的差分电荷部分和共模电荷部分,后级的模拟‑数字变换器303使用共模电压VOC作为参考电压,来转换差分电压VOD,所得到的模拟‑数字变换器303最终数字输出表示为:
[0065]
[0066] 其中,DOUT表示模拟‑数字变换器303的输出,VOC表示共模电荷‑电压变换器301的输出,VOD表示差分电荷‑电压变换器302的输出,CS1表示传感单元305中电容CS1,CS2表示传感单元305中电容CS2,CCM表示共模电荷‑电压变换器301中电容CCM,CD表示差分电荷‑电压变换器302中电容CD。由公式(9)可以看出,图3所提出的架构实现了电压控制比例读出,其读出增益可通过电容CCM和电容CD的比例来进行调节。虽然开环电荷泵的激励电压VEXE并不固定,但是由公式(9)可以看出,本实施例在电压控制比例读出的接口电路中,数字输出与激励电压VEXE无关,激励电压VEXE并不会影响整个电路的增益精度。
[0067] 综上所述,本实施例提出的采用电压控制比例读出技术的MEMS电容型加速度计接口电路,动态激励源304形成具有一定占空比的脉冲电压信号,在传感单元305的公共电极R同时激励两个电容CS1、电容CS2,从而在传感单元305的第一输出差分电极INA、第二输出差分电极INB输出电荷信号。CMCV电路将第一输出差分电极INA、第二输出差分电极INB传递过来的电荷信号中的共模分量吸收,并转换为相应的共模电压。DCV电路将第一输出差分电极INA、第二输出差分电极INB传递过来的电荷信号中的差分分量吸收,并转换为相应的差分电压。而后级的模拟‑数字变换器以CMCV电路输出的共模电压为参考电压,来转换DCV电路输出的差分电压,由于模拟‑数字变换器303中ADC+DAC结构具有除法器作用,ADC在输出端形成比例传递函数,从而抵消传统传感单元的反比例传递函数的非线性,从而提升动态范围。此外,本实施例在电压控制比例读出技术的接口电路中,传递函数的增益与激励电压VEXE幅度无关,激励电压VEXE从而可以使用幅度不受控制的、低精度的高压电压源(使用开环电荷泵实现)替代高精度的低压电压源(带隙基准加缓冲器组合)来提升接口电路整体能效和降低噪声,且仅需要一个MEMS传感单元305形成全差分结构,从而降低了制造成本。
[0068] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。