铋基光热转换纳米纤维材料及其制备方法转让专利

申请号 : CN202210306727.7

文献号 : CN114560701B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 杨文秀冯卓张瀛宽范腾

申请人 : 河北科技大学

摘要 :

本发明公开了一种铋基光热转换纳米纤维材料及其制备,其以水热合成法制备的氧化石墨烯‑硫化铋纳米颗粒为光热介质主体,以聚乙烯吡咯烷酮为基体,通过静电纺丝技术制备(氧化石墨烯‑硫化铋)‑聚乙烯吡咯烷酮复合纳米纤维,然后将该复合纳米纤维煅烧处理得到氧化石墨烯‑硫化铋陶瓷纳米纤维,再使用多巴胺和聚乙烯亚胺通过浸渍法对氧化石墨烯‑硫化铋陶瓷纳米纤维进行改性,得到聚多巴胺‑聚乙烯亚胺@氧化石墨烯‑硫化铋复合纳米纤维,即为铋基光热转换纳米纤维材料。获得的铋基光热转换纳米纤维材料,在全波长范围内对太阳光均具有较高的吸收率、较高的蒸发速率,在海水淡化、废水处理、溶剂快速蒸发等领域将具有广泛应用价值。

权利要求 :

1.一种铋基光热转换纳米纤维材料,其特征在于:以水热合成法制备的氧化石墨烯‑硫化铋纳米颗粒为光热介质主体,以聚乙烯吡咯烷酮为基体,通过静电纺丝技术制备氧化石墨烯‑硫化铋‑聚乙烯吡咯烷酮复合纳米纤维,然后将该复合纳米纤维煅烧处理得到氧化石墨烯‑硫化铋陶瓷纳米纤维,再使用多巴胺和聚乙烯亚胺通过浸渍法对氧化石墨烯‑硫化铋陶瓷纳米纤维进行改性,得到聚多巴胺‑聚乙烯亚胺@氧化石墨烯‑硫化铋复合纳米纤维,即为铋基光热转换纳米纤维材料;

所述氧化石墨烯‑硫化铋‑聚乙烯吡咯烷酮复合纳米纤维的煅烧处理条件为:以升温速率1 4℃/min升温至450 650℃,煅烧2 6h。

~ ~ ~

2.根据权利要求1所述的铋基光热转换纳米纤维材料,其特征在于:所述氧化石墨烯‑硫化铋纳米颗粒的制备,以五水合硝酸铋‑聚乙烯吡咯烷酮的乙二醇溶液与氧化石墨烯的乙二醇溶液作为原料,混合均匀并超声处理后,再加入硫乙酰胺,在80 150℃反应得到;所~述氧化石墨烯‑硫化铋纳米颗粒中硫化铋的质量含量为10% 20%。

~

3.根据权利要求1所述的铋基光热转换纳米纤维材料,其特征在于:所述氧化石墨烯‑硫化铋‑聚乙烯吡咯烷酮复合纳米纤维的制备,以聚乙烯吡咯烷酮作为溶质,溶于溶剂无水乙醇中,再加入氧化石墨烯‑硫化铋纳米颗粒,在纺丝电压10 25 kV进行静电纺丝得到。

~

4.根据权利要求1所述的铋基光热转换纳米纤维材料,其特征在于:所述氧化石墨烯‑硫化铋陶瓷纳米纤维的改性制备,以多巴胺、聚乙烯亚胺和缓冲剂氨丁三醇的混合溶液作为浸渍液,室温搅拌条件下浸渍改性。

5.一种如权利要求1 4中任一项所述铋基光热转换纳米纤维材料的制备方法,其特征~在于,包括以下制备步骤:

a、氧化石墨烯‑硫化铋纳米颗粒的制备

将2.5g五水合硝酸铋、与五水合硝酸铋质量比1:(0.5 2)的聚乙烯吡咯烷酮均加入到~

10 30 mL乙二醇中,室温搅拌均匀至形成透明溶液,将50 200 mL浓度为0.02 g/mL的氧化~ ~石墨烯的乙二醇溶液加入到透明溶液中继续搅拌至均匀,然后室温超声处理5 20 min,再~将与五水合硝酸铋质量比为1:(5 10)的硫乙酰胺加入到溶液中,得到的混合溶液转移到高~温高压反应釜中,将反应釜放入烘箱中,恒温80 150℃,处理1 3 h,后自然冷却、分离、洗~ ~涤,得到目标产物氧化石墨烯‑硫化铋纳米颗粒;

b、氧化石墨烯‑硫化铋‑聚乙烯吡咯烷酮复合纳米纤维的制备将聚乙烯吡咯烷酮作为溶质,溶于无水乙醇,再将氧化石墨烯‑硫化铋纳米颗粒均匀分散于聚乙烯吡咯烷酮的乙醇溶液中,得到均匀的静电纺丝溶液,通过静电纺丝技术在纺丝电压10 25 kV条件下制备氧化石墨烯‑硫化铋‑聚乙烯吡咯烷酮复合纳米纤维;所述静电纺~丝溶液中聚乙烯吡咯烷酮的质量浓度为7 12%,氧化石墨烯‑硫化铋与聚乙烯吡咯烷酮的质~量比为(1 8):100;

~

c、氧化石墨烯‑硫化铋陶瓷纳米纤维的制备

将氧化石墨烯‑硫化铋‑聚乙烯吡咯烷酮复合纳米纤维进行煅烧处理得到氧化石墨烯‑硫化铋陶瓷纳米纤维,其中煅烧处理条件为以升温速率1 4℃/min升温至450 650℃,煅烧2~ ~

6h;

~

d、浸渍改性

以氨丁三醇作为缓冲剂,配制多巴胺和聚乙烯亚胺的浸渍液,将步骤c制备的氧化石墨烯‑硫化铋陶瓷纳米纤维完全浸入浸渍液中,在室温下搅拌浸渍20 36h,洗涤、干燥,得到聚~多巴胺‑聚乙烯亚胺@氧化石墨烯‑硫化铋复合纳米纤维,即为铋基光热转换纳米纤维材料。

6.根据权利要求5所述铋基光热转换纳米纤维材料的制备方法,其特征在于:步骤b静电纺丝的条件为喂液速率为0.2 2 mL/h,接收距离为15 30cm,温度为27±2℃,相对湿度为~ ~

30±2%,纺丝过程中所用的针均为20号针。

7.根据权利要求5所述铋基光热转换纳米纤维材料的制备方法,其特征在于:步骤d的浸渍液中多巴胺的质量浓度为1 4mg/mL、聚乙烯亚胺的质量浓度为4 8mg/mL、氨丁三醇的~ ~质量浓度为0.1 0.2mg/mL。

~

说明书 :

铋基光热转换纳米纤维材料及其制备方法

技术领域

[0001] 本发明涉及光热转换纳米材料领域,具体为一种可用于太阳能海水淡化、废水处理、溶剂快速蒸发等技术的铋基光热转换纳米纤维材料及其制备方法。

背景技术

[0002] 随着全球水资源需求量的急剧增加,淡水资源日益稀缺,供需矛盾日渐突出。海水约占地球表面积的71%,海水淡化是开发新水源、解决淡水资源紧缺的重要途径,因此发展海水淡化技术对缓解当代水资源短缺、供需矛盾日趋突出和环境污染日益严重等系列重大问题具有深远的战略意义。海水淡化技术在20世纪30年代主要采用多效蒸发法,之后多级闪蒸法(MSF)、电渗析法(ED)、反渗透法(RO)、低温多效蒸发法(LT‑MED)、碳酸铵离子交换法等逐步发展起来。利用光热转化原理进行海水淡化,是一种低成本、高效率的海水淡化技术,可以在不产生污染的前提下提高海水淡化效率,增加淡水总量,符合可持续发展的要求。
[0003] 光热海水淡化材料是利用材料的吸光转热性质,将太阳光能转化为热量,实现对局部少量水或有机溶剂的快速蒸发,提高整体蒸发效率。由于光热材料自身的物理化学性质,造成其在海水的高盐雾、高温度、高湿度以及高腐蚀等极端环境下存在应用局限,比如高盐海水(10wt%)、苦咸水、强极性有机溶剂、油水乳液等多介质的分离及纯化等;故开发一种在极端环境下仍旧可以保持优异的光吸收与光热转化性能、使用寿命长且不易受环境损害的海水淡化材料,对于促进海水淡化技术的发展具有显著的应用价值。

发明内容

[0004] 为解决现有技术存在的不足,本发明提供了一种铋基光热转换纳米纤维材料,是基于纳米纤维改性的一种光热转化材料,作为海水淡化膜材料,具有良好的耐腐蚀性、优异的光吸收性能和光热转换性能。
[0005] 为实现上述目的,本发明提供的铋基光热转换纳米纤维材料,以水热合成法制备的氧化石墨烯‑硫化铋纳米颗粒为光热介质主体,以聚乙烯吡咯烷酮为基体,通过静电纺丝技术制备(氧化石墨烯‑硫化铋)‑聚乙烯吡咯烷酮复合纳米纤维,然后将该复合纳米纤维煅烧处理得到氧化石墨烯‑硫化铋陶瓷纳米纤维,再使用多巴胺和聚乙烯亚胺通过浸渍法对氧化石墨烯‑硫化铋陶瓷纳米纤维进行改性,得到聚多巴胺‑聚乙烯亚胺@氧化石墨烯‑硫化铋复合纳米纤维,即为铋基光热转换纳米纤维材料。
[0006] 本发明的光热转换纳米纤维材料,使用氧化石墨烯‑硫化铋纳米颗粒(GO‑Bi2S3 NPs)作为光热介质材料主体。氧化石墨烯(GO)具有与石墨烯相同的二维骨架结构,且在氧化石墨烯边界连有含氧官能团,使得氧化物性质更加活泼,对可见光和近红外光具有良好的光吸收性能,同时氧化石墨烯纳米颗粒具有高比表面积,能够负载各种功能性微粒,表现出更为优异的机械性能以及光热转换性能等。硫化铋(Bi2S3)纳米粒子具有优异的生物相容性和较高的近红外吸收系数,表现出对近红外和可见光的高吸收能力。在可见光或近红外光的作用下,硫化铋结合氧化石墨烯可以被激发产生热量,发生协同作用,使光吸收范围更广,光吸收强度更大,进而使纳米纤维材料的光热转化能力更强,发挥很高的光热转换效率。再引入聚多巴胺,利用聚多巴胺(PDA)的粘合性、生物相容性及亲水性等特点,进行改性,使得纳米纤维材料的吸水性能增强、速率加快,从而加快海水的蒸发,提升海水淡化能力;同时引入聚乙烯亚胺(PEI),通过聚多巴胺与聚乙烯亚胺的稳定交联结合,显著提高纳米纤维膜材料的抗腐蚀性。另外,将氧化石墨烯‑硫化铋纳米颗粒通过静电纺丝技术有效分散,解决纳米颗粒的团聚问题。同时,在聚多巴胺改性过程采用多巴胺的原位聚合法,进一步解决改性剂的分散,从而保证纤维材料中介质主体的均匀分散性,以确保光热介质材料优势的发挥。最终合成的呈纳米三层膜结构的光热转换纤维材料,在吸光度、温度变化和抗腐蚀性上明显改善。
[0007] 作为对上述技术方案的限定,所述氧化石墨烯‑硫化铋纳米颗粒的制备,以五水合硝酸铋‑聚乙烯吡咯烷酮的乙二醇溶液与氧化石墨烯的乙二醇溶液作为原料,混合均匀并超声处理后,再加入硫乙酰胺,在80~150℃反应得到;所述氧化石墨烯‑硫化铋纳米颗粒中硫化铋的质量含量为10%~20%。
[0008] 作为对上述技术方案的限定,所述(氧化石墨烯‑硫化铋)‑聚乙烯吡咯烷酮复合纳米纤维的制备,以聚乙烯吡咯烷酮作为溶质,溶于溶剂无水乙醇中,再加入氧化石墨烯‑硫化铋纳米颗粒,在纺丝电压10~25kV进行静电纺丝得到。
[0009] 作为对上述技术方案的限定,所述(氧化石墨烯‑硫化铋)‑聚乙烯吡咯烷酮复合纳米纤维的煅烧处理条件为:以升温速率1~4℃/min升温至450~650℃,煅烧2~6h。
[0010] 作为对上述技术方案的限定,所述氧化石墨烯‑硫化铋陶瓷纳米纤维的改性制备,以多巴胺、聚乙烯亚胺和缓冲剂氨丁三醇的混合溶液作为浸渍液,室温搅拌条件下浸渍改性。
[0011] 进一步限定氧化石墨烯‑硫化铋纳米颗粒、(氧化石墨烯‑硫化铋)‑聚乙烯吡咯烷酮复合纳米纤维膜材料的制备方式,以及复合纳米纤维膜材料的煅烧处理、氧化石墨烯‑硫化铋陶瓷纳米材料的改性处理方式,优化本发明光热转换材料的性能,利于发挥材料在海水淡化应用的效果。
[0012] 同时,本发明还提供了如上所述铋基光热转换纳米纤维材料的制备方法,包括以下制备步骤:
[0013] a、氧化石墨烯‑硫化铋纳米颗粒的制备
[0014] 将2.5g五水合硝酸铋、与五水合硝酸铋质量比1:(0.5~2)的聚乙烯吡咯烷酮均加入到10~30mL乙二醇中,室温搅拌均匀至形成透明溶液,将50~200mL浓度为0.02g/mL的氧化石墨烯的乙二醇溶液加入到透明溶液中继续搅拌至均匀,然后室温超声处理5~20min,再将与五水合硝酸铋质量比为1:(5~10)的硫乙酰胺加入到溶液中,得到的混合溶液转移到高温高压反应釜中,将反应釜放入烘箱中,恒温80~150℃,处理1~3h,后自然冷却、分离、洗涤,得到目标产物氧化石墨烯‑硫化铋纳米颗粒;
[0015] b、(氧化石墨烯‑硫化铋)‑聚乙烯吡咯烷酮复合纳米纤维的制备[0016] 将聚乙烯吡咯烷酮作为溶质,溶于无水乙醇,再将氧化石墨烯‑硫化铋纳米颗粒均匀分散于聚乙烯吡咯烷酮的乙醇溶液中,得到均匀的静电纺丝溶液,通过静电纺丝技术在纺丝电压10~25kV条件下制备(氧化石墨烯‑硫化铋)‑聚乙烯吡咯烷酮复合纳米纤维;所述静电纺丝溶液中聚乙烯吡咯烷酮的质量浓度为7~12%,氧化石墨烯‑硫化铋与聚乙烯吡咯烷酮的质量比为(1~8):100;
[0017] c、氧化石墨烯‑硫化铋陶瓷纳米纤维的制备
[0018] 将(氧化石墨烯‑硫化铋)‑聚乙烯吡咯烷酮复合纳米纤维进行煅烧处理得到氧化石墨烯‑硫化铋陶瓷纳米纤维,其中煅烧处理条件为以升温速率1~4℃/min升温至450~650℃,煅烧2~6h;
[0019] d、浸渍改性
[0020] 以氨丁三醇作为缓冲剂,配制多巴胺和聚乙烯亚胺的浸渍液,将步骤c制备的氧化石墨烯‑硫化铋陶瓷纳米纤维完全浸入浸渍液中,在室温下搅拌浸渍20~36h,洗涤、干燥,得到聚多巴胺‑聚乙烯亚胺@氧化石墨烯‑硫化铋复合纳米纤维,即为铋基光热转换纳米纤维材料。
[0021] 本发明铋基光热转换纳米纤维材料的制备,原料易得且成本低廉,制备操作简便,具备可规模化、可循环使用等优势,获得的材料光热转换性能及防腐性能稳定且卓越,在海水淡化、废水处理、溶剂快速蒸发等领域将具有广泛应用价值。
[0022] 作为对上述技术方案的限定,步骤b静电纺丝的条件为喂液速率为0.2~2mL/h,接收距离为15~30cm,温度为27±2℃,相对湿度为30±2%,纺丝过程中所用的针均为20号针。
[0023] 作为对上述技术方案的限定,步骤d的浸渍液中多巴胺的质量浓度为1~4mg/mL、聚乙烯亚胺的质量浓度为4~8mg/mL、氨丁三醇的质量浓度为0.1~0.2mg/mL。
[0024] 细化制备步骤的条件参数,为进一步优化光热转换材料性能提供完善的制备方法。
[0025] 本发明的铋基光热转换纳米纤维材料,在全波长范围内对太阳光均具有较高的吸2
收率,一个太阳光照强度下的光热蒸汽产生速度可达3.15kg/m/h,约是海水自然蒸发速率
2
的7倍以上,相当于1000m的该材料处理1吨海水仅需0.32h;在海水淡化、废水处理、溶剂快速蒸发等领域将具有广泛应用价值。同时本发明材料的制备,原料易得且价格低廉,操作简单便捷,具备可规模化、可循环使用的显著优势。

附图说明

[0026] 图1、GO‑Bi2S3纳米颗粒的TEM及EDS图像,其中a为原始彩色图,b为黑白灰图;
[0027] 图2、纳米纤维形貌(a)浸渍前SEM图像,(b)浸渍后SEM图像,(c)浸渍后TEM图像;
[0028] 图3、聚多巴胺‑聚乙烯亚胺@氧化石墨烯‑硫化铋复合纳米纤维在全波段范围内的透射率、反射率和吸收率;
[0029] 图4、聚多巴胺‑聚乙烯亚胺@氧化石墨烯‑硫化铋复合纳米纤维辐照下的升温速率曲线及红外图像,其中a为原始彩色图,b为黑白灰图;
[0030] 图5、不同纳米纤维平均直径及CV值(a)不同乙醇用量,(b)不同硫化铋含量,(c)聚合物种类;
[0031] 图6、不同纳米纤维照射300s后最高温度及对应蒸发速率(a)不同乙醇用量,(b)不同硫化铋含量,(c)聚合物种类,(d)煅烧不同升温速率,(e)不同煅烧温度;
[0032] 图7、表3各实施例的形貌图片。

具体实施方式

[0033] 下面将结合实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0034] 下述实施例与对比例涉及的化学品原料均为市场购买的典型产品。
[0035] 实施例一
[0036] 本实施例涉及铋基光热转换纳米纤维材料的制备及材料性能评价。
[0037] a、氧化石墨烯‑硫化铋纳米颗粒的制备
[0038] 将2.5g五水合硝酸铋和2.5g聚乙烯吡咯烷酮加入到15mL乙二醇中,室温搅拌30min至形成透明溶液,将100mL浓度为0.02g/mL的氧化石墨烯的乙二醇溶液加入到上述透明溶液中继续搅拌30min,然后室温超声处理10min,再将0.414g硫乙酰胺与上述溶液混合,得到的混合溶液转移到高温高压反应釜中,将反应釜放置于烘箱中,恒温120℃处理2h,后自然冷却、离心分离、乙醇洗涤至少3次,得到目标产物氧化石墨烯‑硫化铋纳米颗粒,其形貌如图1所示;
[0039] b、(氧化石墨烯‑硫化铋)‑聚乙烯吡咯烷酮复合纳米纤维的制备[0040] 将2g聚乙烯吡咯烷酮作为溶质,溶于20mL量的无水乙醇,再将氧化石墨烯‑硫化铋纳米颗粒(含0.0066g硫化铋)加入到聚乙烯吡咯烷酮的乙醇溶液中得到均匀的静电纺丝溶液,在纺丝电压为18kV,喂液速率为1.0mL/h,接收距离为25cm,温度27±2℃,相对湿度30±2%环境下进行静电纺丝,纺丝过程所用针均为20号针,制备(氧化石墨烯‑硫化铋)‑聚乙烯吡咯烷酮复合纳米纤维,其形貌如图2(a)所示;
[0041] c、氧化石墨烯‑硫化铋陶瓷纳米纤维的制备
[0042] 将(氧化石墨烯‑硫化铋)‑聚乙烯吡咯烷酮复合纳米纤维进行煅烧处理,以升温速率2℃/min升温至550℃,煅烧2h,得到氧化石墨烯‑硫化铋陶瓷纳米纤维;
[0043] d、浸渍改性
[0044] 以氨丁三醇作为缓冲剂,配制多巴胺和聚乙烯亚胺的浸渍液,其中多巴胺2mg/mL、聚乙烯亚胺6mg/mL、氨丁三醇0.16mg/mL,将步骤c制备的氧化石墨烯‑硫化铋纳米纤维完全浸入浸渍液中,在室温下搅拌浸渍24h,用去离子水洗涤6次、常温干燥24h,得到聚多巴胺‑聚乙烯亚胺@氧化石墨烯‑硫化铋复合纳米纤维,即为铋基光热转换纳米纤维材料,浸渍后SEM及TEM图像如图2(b)和(c)所示,并通过测量纤维直径,计算纤维直径平均值和CV值。
[0045] 光热性能测试:通过测试其透射率(T)反射率(R),按照下式计算试样全波段对太阳光吸收率(A),试样在全波长范围内的透射率、反射率及吸收率,结果如图3所示,[0046] A=1‑T‑R
[0047] 将上述制备的铋基光热转换纳米纤维材料试样裁成直径为4.6cm的圆形,使用辐照氙灯在温度为27℃,相对湿度为35%条件下照射试样300s。用红外热像仪测试试样照射前后温度变化并拍摄试样红外图像。为了保证温度测试的准确性,对每个样品中心的表面温度进行了测量,其红外图像及升温速率曲线如图4所示。
[0048] 蒸发速率测试:将上述制备的铋基光热转换纳米纤维材料试样裁成直径为4.6cm的圆形覆盖在50mL装满水的烧杯上,利用聚多巴胺的亲水性和材料的毛细作用吸收、输送水分。用精度为0.0001的电子秤测量氙灯照射5min前后烧杯质量变化。蒸发速率(Ve)计算方式如下:
[0049]
[0050] 式中Δm(kg)表示氙灯照射5min前后烧杯质量变化;S(m2)表示铋基纳米纤维材料试样的面积;t(h)表示照射时间。测定照射300s后的最高温度计蒸发速率。
[0051] 结果显示:本发明的铋基光热转换纳米纤维材料的平均直径为394nm,纤维直径的变异系数为23%。在全波长范围内,聚多巴胺‑聚乙烯亚胺@氧化石墨烯‑硫化铋复合纳米纤维的光吸收率均高于90%。经300s太阳辐照后,该复合膜的温度最高可达81.9℃,一个太阳2
光照强度下的蒸发速率可达3.15kg/m/h。
[0052] 实施例二
[0053] 本实施例涉及铋基光热转换纳米纤维材料制备过程硫化铋纳米颗粒含量的改变对最终材料的性能影响。通过控制五水合硝酸铋和硫乙酰胺的量改变制备过程硫化铋纳米颗粒含量值,其余制备步骤及条件参数均与实施例一相同,测试材料性能,结果见下表1。
[0054]
[0055] 实施例三
[0056] 本实施例涉及铋基光热转换纳米纤维材料制备过程静电纺丝溶液中无水乙醇用量对最终材料的性能影响。改变制备过程步骤b中无水乙醇使用量,其余制备步骤及条件参数均与实施例一相同,测试材料性能,结果见下表2。
[0057]
[0058] 实施例四
[0059] 本实施例涉及铋基光热转换纳米纤维材料制备过程静电纺丝条件对最终材料的性能影响。改变制备过程静电纺丝溶液的溶质、溶剂,其余制备步骤及条件参数均与实施例一相同,测试材料性能,结果见下表3。
[0060]
[0061]
[0062] 实施例五
[0063] 本实施例涉及铋基光热转换纳米纤维材料制备过程煅烧条件对最终材料的性能影响。改变制备过程煅烧条件,其余制备步骤及条件参数均与实施例一相同,测试材料性能,结果见下表4。
[0064]
[0065] 各实施例,纤维直径平均值和CV值结果如图5所示,照射300s后的最高温度及蒸发速率如图6所示。由实施例结果可见,本发明的铋基光热转换纳米纤维材料,其制备过程的各环节都会直接影响最终材料的性能,故各环节因素间是相互关联,相辅相成的。
[0066] 综上所述,本发明的铋基光热转换纳米纤维材料,通过各制备环节的协同作用,实现在吸光度、温度变化和抗腐蚀性上明显改善,在全波长范围内对太阳光均具有较高的吸收率,在海水淡化、废水处理、溶剂快速蒸发等领域将具有广泛应用价值。