一种赛隆-氮化硅生物陶瓷及其制备方法转让专利

申请号 : CN202210358714.4

文献号 : CN114573352B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 高金星李小凯张丽果穆菁华王璐璐李丽亚常光磊徐玲玲徐恩霞曾宽

申请人 : 郑州大学

摘要 :

本发明提供了一种赛隆‑氮化硅生物陶瓷及其制备方法,属于陶瓷制品技术领域。一种赛隆‑氮化硅生物陶瓷,包括如下重量份的原料:α‑Si3N4 40~85份,β‑Si3N4 40~85份,Si 1~30份,AlN 1~20份,α‑Al2O3 1~15份,烧结助剂1~12份。本发明以α‑Si3N4、β‑Si3N4、Si、AlN、α‑Al2O3和烧结助剂为基本原料,通过科学配比,并探索合适的制备方法,从而获得强度高、生物相容性好以及能够促进细胞生长的赛隆‑氮化硅生物陶瓷。

权利要求 :

1.一种赛隆‑氮化硅生物陶瓷,其特征在于:包括如下重量份的原料:α‑Si3N4 40~85份,β‑Si3N4 40~85份,Si 1~30份,AlN 1~20份,α‑Al2O3 1~15份,烧结助剂 1~12份;

其制备方法,包括以下步骤:

(1)按比例分别称取α‑Si3N4、β‑ Si3N4、Si、AlN、α‑Al2O3和烧结助剂,在乙醇溶液中进行超声辅助搅拌,使混合均匀,得到浆料;

(2)将所述浆料烘干,加入粘结剂,然后模压成型,干燥,得到坯体;

(3)将所述坯体置于0.04‑0.06MPa氮气气氛下,以5 15℃/min的升温速率升温到600~ ~

800℃,然后以5 10℃/min的升温速率升温到1000 1200℃并保温1 3h,然后以3 8℃/min的~ ~ ~ ~升温速度升温到1200 1400℃并保温1 3h,最后以1 5℃/min的升温速度升温到1500 1800~ ~ ~ ~℃保温6 8h,将烧结后的坯体随炉冷却,得产品;

~

所述乙醇溶液的体积浓度为70% 90%;

~

所述超声的频率为10 30KHz,时间为10 60min;

~ ~

所述粘结剂为聚乙烯醇、聚乙烯醇缩丁醛、聚乙二醇和聚乙烯吡咯烷酮中的一种或两种以上;

所述粘结剂的使用量为所述浆料的1wt% 10wt%。

~

2.如权利要求1所述的一种赛隆‑氮化硅生物陶瓷,其特征在于:所述烧结助剂为Y2O3、Yb2O3、Nd2O3、Eu2O3、La2O3、Sm2O3、CeO、Al2O3和MgO中的一种或两种以上。

3. 如权利要求2所述的一种赛隆‑氮化硅生物陶瓷,其特征在于:所述α‑ Si3N4的粒径为150μm以下,纯度≥99.9%;β‑ Si3N4的粒径为150μm以下,纯度≥99.9%;所述α‑ Al2O3粒径为15μm以下,纯度≥99.5%;所述Si的粒径为15μm以下,纯度≥99.9%;所述AlN的粒径为10μm以下,纯度≥99.5%。

4.如权利要求1所述的一种赛隆‑氮化硅生物陶瓷,其特征在于:所述模压成型的压力为50‑300MPa。

说明书 :

一种赛隆‑氮化硅生物陶瓷及其制备方法

技术领域

[0001] 本发明属于陶瓷制品技术领域,具体涉及一种赛隆‑氮化硅生物陶瓷及其制备方法。

背景技术

[0002] β‑Si3N4具有高强度、低磨损性能和生物相容性等性能,其活性表面化学成分可以保护、刺激并促进组织愈合。此外根据多位学者报道的在使用β‑Si3N4作为脊柱垫片进行关节融合术治疗,发现β‑Si3N4有良好的促进成骨细胞生长的性能。而β‑赛隆是β‑Si3N4的固溶体,具有比氮化硅更高的韧性、耐化学性和抗氧化性。因此,将两者优势结合,制备出能在医学领域推行的骨替代多孔塞隆‑氮化硅生物陶瓷是我们追求的目标。
[0003] 氮化硅陶瓷制备方式有限,目前反应烧结法、凝胶注模成型、挤出成型法等制备的产品孔隙率低,孔径大小不一。将赛隆与多孔氮化硅陶瓷结合,利用两者的纤维柱状晶相相互搭接得到有均匀孔隙率的复合结构,同时氮化硅特有的生物相容性和促进成骨细胞生长的特性可以作为骨组织替代材料而使用。
[0004] 然而,上述方法存在许多问题,例如:采用烧结工艺不同会使赛隆晶粒生长状况产生差异,同时氮化硅的表面结构和两者的结合情况也受很大影响,工艺条件复杂难以控制;无法完成复杂形状的制备。

发明内容

[0005] 本发明所要解决的技术问题是,针对现有技术的不足,提供一种赛隆‑氮化硅生物陶瓷。
[0006] 为解决上述技术问题,本发明所采用的技术方案是:
[0007] 一种赛隆‑氮化硅生物陶瓷,包括如下重量份的原料:α‑Si3N4 40~85份,β‑Si3N4 40~85份,Si 1~30份,AlN 1~20份,α‑Al2O3 1~15份,烧结助剂1~12份。
[0008] 优选地,所述烧结助剂为Y2O3、Yb2O3、Nd2O3、Eu2O3、La2O3、Sm2O3、CeO、Al2O3和MgO中的一种或两种以上。例如,所述烧结助剂可以为Y2O3和Yb2O3的组合物、Y2O3和Nd2O3的组合物、Y2O3和Al2O3的组合物、Yb2O3和MgO的组合物、Eu2O3和CeO的组合物、La2O3和Al2O3的组合物、Sm2O3和CeO的组合物等,上述两种组合物的比例可以取(0.01%‑99.99%):(0.01%‑99.99%)的任一值。所述烧结助剂还可以为Y2O3、Yb2O3和Al2O3的组合物,Yb2O3、Eu2O3和Al2O3的组合物、Yb2O3、CeO和MgO的组合物、Y2O3、La2O3和MgO的组合物等,上述三种组合物的比例可以取(0.01%‑99.99%):(0.01%‑99.99%):(0.01%‑99.99%)的任一值。
[0009] 优选地,所述α‑Si3N4的粒径为150μm以下,纯度≥99.9%;β‑Si3N4的粒径为150μm以下,纯度≥99.9%;所述α‑Al2O3粒径为15μm以下,纯度≥99.5%;所述Si的粒径为15μm以下,纯度≥99.9%;所述AlN的粒径为10μm以下,纯度≥99.5%。
[0010] 本发明还提供了上述赛隆‑氮化硅生物陶瓷的制备方法,包括以下步骤:
[0011] (1)按比例分别称取α‑Si3N4、β‑Si3N4、Si、AlN、α‑Al2O3和烧结助剂,在乙醇溶液中进行超声辅助搅拌,使混合均匀,得到浆料;
[0012] (2)将所述浆料烘干,加入粘结剂,然后模压成型,干燥,得到坯体;
[0013] (3)将所述坯体置于0.04‑0.06MPa氮气气氛下,以5~15℃/min的升温速率升温到600~800℃,然后以5~10℃/min的升温速率升温到1000~1200℃并保温1~3h,然后以3~
8℃/min的升温速度升温到1200~1400℃并保温1~3h,最后以1~5℃/min的升温速度升温到1500~1800℃保温6~8h,将烧结后的坯体随炉冷却,得产品。
[0014] 优选地,所述乙醇溶液的体积浓度为70%~100%,可以采用该范围内的任一值。
[0015] 优选地,所述超声的频率为10~30KHz,时间为10~60min。
[0016] 优选地,所述粘结剂为聚乙烯醇、聚乙烯醇缩丁醛、聚乙二醇和聚乙烯吡咯烷酮中的一种或两种以上。
[0017] 优选地,所述粘结剂的使用量为所述浆料的1wt%~10wt%。
[0018] 优选地,所述模压成型的压力为50‑300MPa。
[0019] 与现有技术相比,本发明的有益效果如下:
[0020] 首先,本发明以α‑Si3N4、β‑Si3N4、Si、AlN、α‑Al2O3和烧结助剂为基本原料,通过科学配比,并探索合适的制备方法,从而获得强度高、生物相容性好以及能够促进细胞生长的赛隆‑氮化硅生物陶瓷。
[0021] 其次,本发明将各原料在乙醇溶液中超声搅拌,从而提高了各原料的分散度和混合均匀性,为后续的成型及烧结提供了良好的基础;在成型步骤中,本发明使用聚乙烯醇、聚乙烯醇缩丁醛、聚乙二醇和聚乙烯吡咯烷酮中的一种或两种以上作为粘结剂以辅助成型,接着通过烧结工艺烧结成型。具体的,烧结工艺的前段对坯体进行预加热处理,1200~
1400℃烧结生成β‑SiAlON相,1500~1800℃烧结生成β‑Si3N4相,通过分步烧结实现全部原料的完全反应;坯体在1500℃以上时,β‑SiAlON相促进了α‑Si3N4相向β‑Si3N4相的相变,并使两类晶相彼此联结,形成β‑SiAlON‑Si3N4复合陶瓷。本发明所得赛隆‑氮化硅复合陶瓷的
3
体积密度可达3.0g/cm 以上;耐压强度可达100~1200Mpa,完全达到了应用于骨替代生物材料的强度要求(30~50Mpa)。
[0022] 另外,本发明通过成骨细胞生长实验发现,成骨细胞数量随培养时间延长而增加,说明陶瓷具有促进成骨细胞生长的能力。
[0023] 再次,通过对成骨分化标志性因子及矿化结节的检测,发现成骨分化标志性因子的表达及矿化结节随培养时间延长而增加,说明陶瓷具有促进成骨分化和骨骼形成能力。

附图说明

[0024] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
[0025] 图1:MC3T3‑E1细胞生长状况图;
[0026] 图2:成骨分化标志性因子Ⅰ型胶原(COL‑Ⅰ)mRNA表达状况图;
[0027] 图3:成骨分化标志性因子Runt相关转录因子2(Runx2)mRNA表达状况图;
[0028] 图4:成骨分化标志性因子碱性磷酸酶(ALP)mRNA表达状况图;
[0029] 图5:MC3T3‑E1细胞矿化结节生成状况图。

具体实施方式

[0030] 为了更好地理解本发明,下面结合实施例进一步清楚阐述本发明的内容,但本发明的保护内容不仅仅局限于下面的实施例。在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员来说显而易见的是,本发明可以无需一个或多个这些细节而得以实施。
[0031] 在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
[0032] 下述实施例所用α‑Si3N4、β‑Si3N4、Si、AlN、α‑Al2O3、Y2O3、Yb2O3、Nd2O3、Eu2O3、La2O3、Sm2O3、CeO、Al2O3、MgO、聚乙烯醇、聚乙烯醇缩丁醛、聚乙二醇、聚乙烯吡咯烷酮均为市售获得。
[0033] 其中,所述α‑Si3N4的粒径为150μm以下,纯度≥99.9%;β‑Si3N4的粒径为150μm以下,纯度≥99.9%;所述α‑Al2O3粒径为15μm以下,纯度≥99.5%;所述Si的粒径为15μm以下,纯度≥99.9%;所述AlN的粒径为10μm以下,纯度≥99.5%。
[0034] 实施例1
[0035] 一种赛隆‑氮化硅生物陶瓷的制备方法,包括以下步骤:
[0036] (1)提供如下重量份的原料:α‑Si3N4 80份,β‑Si3N4 50份,Si 4份,AlN 15份,α‑Al2O3 3份,Y2O3 3份,在体积浓度为70%的乙醇溶液中进行超声辅助搅拌,超声的频率为25KHz,时间为20min,使混合均匀,得到浆料;
[0037] (2)将所述浆料烘干,加入聚乙烯醇缩丁醛,聚乙烯醇缩丁醛的质量百分数为5%,然后120MPa压力下模压成型,干燥,得到坯体;
[0038] (3)将所述坯体置于0.05MPa氮气气氛下,以9℃/min的升温速率升温到600℃,然后以5℃/min的升温速率升温到1000℃并保温1h,然后以3℃/min的升温速度升温到1200℃并保温2.5h,最后以1℃/min的升温速度升温到1500℃保温8h,将烧结后的坯体随炉冷却,得产品。
[0039] 实施例2
[0040] 一种赛隆‑氮化硅生物陶瓷的制备方法,包括以下步骤:
[0041] (1)提供如下重量份的原料:α‑Si3N4 85份,β‑Si3N4 40份,Si 8份,AlN 12份,α‑Al2O3 5份,Yb2O3 5份,在体积浓度为80%的乙醇溶液中进行超声辅助搅拌,超声的频率为30KHz,时间为10min,使混合均匀,得到浆料;
[0042] (2)将所述浆料烘干,加入聚乙烯醇缩丁醛,聚乙烯醇缩丁醛的质量百分数为7%,然后250MPa压力下模压成型,干燥,得到坯体;
[0043] (3)将所述坯体置于0.04MPa氮气气氛下,以8℃/min的升温速率升温到650℃,然后以6℃/min的升温速率升温到1050℃并保温1.5h,然后以4/min的升温速度升温到1250℃并保温1h,最后以2℃/min的升温速度升温到1550℃保温6.5h,将烧结后的坯体随炉冷却,得产品。
[0044] 实施例3
[0045] 一种赛隆‑氮化硅生物陶瓷的制备方法,包括以下步骤:
[0046] (1)提供如下重量份的原料:α‑Si3N4 65份,β‑Si3N4 70份,Si 1份,AlN 5份,α‑Al2O3 8份,烧结助剂7份,所述烧结助剂为Y2O3和Nd2O3的组合物,二者的重量比为2:1,在体积浓度为90%的乙醇溶液中进行超声辅助搅拌,超声的频率为20KHz,时间为30min,使混合均匀,得到浆料;
[0047] (2)将所述浆料烘干,加入聚乙烯吡咯烷酮,聚乙烯吡咯烷酮的质量百分数为9%,然后180MPa压力下模压成型,干燥,得到坯体;
[0048] (3)将所述坯体置于0.06MPa氮气气氛下,以10℃/min的升温速率升温到700℃,然后以7℃/min的升温速率升温到1100℃并保温2h,然后以5℃/min的升温速度升温到1300℃并保温2h,最后以3℃/min的升温速度升温到1600℃保温7h,将烧结后的坯体随炉冷却,得产品。
[0049] 实施例4
[0050] 一种赛隆‑氮化硅生物陶瓷的制备方法,包括以下步骤:
[0051] (1)提供如下重量份的原料:α‑Si3N4 70份,β‑Si3N4 60份,Si 13份,AlN 9份,α‑Al2O3 10份,烧结助剂1份,所述烧结助剂为Yb2O3、Eu2O3和Al2O3的组合物,三者的重量比为1:1:1,在体积浓度为90%的乙醇溶液中进行超声辅助搅拌,超声的频率为15KHz,时间为
45min,使混合均匀,得到浆料;
[0052] (2)将所述浆料烘干,加入聚乙烯醇,聚乙烯醇的质量百分数为10%,然后280MPa压力下模压成型,干燥,得到坯体;
[0053] (3)将所述坯体置于0.05MPa氮气气氛下,以12℃/min的升温速率升温到750℃,然后以8℃/min的升温速率升温到1150℃并保温2.5h,然后以6℃/min的升温速度升温到1350℃并保温2.3h,最后以4℃/min的升温速度升温到1650℃保温7.5h,将烧结后的坯体随炉冷却,得产品。
[0054] 实施例5
[0055] 一种赛隆‑氮化硅生物陶瓷的制备方法,包括以下步骤:
[0056] (1)提供如下重量份的原料:α‑Si3N4 50份,β‑Si3N4 80份,Si 21份,AlN 1份,α‑Al2O3 15份,烧结助剂9份,所述烧结助剂为Y2O3、La2O3和MgO的组合物,三者的重量比为2:1:1,在体积浓度为100%的乙醇溶液中进行超声辅助搅拌,超声的频率为12KHz,时间为
50min,使混合均匀,得到浆料;
[0057] (2)将所述浆料烘干,加入聚乙二醇,聚乙二醇的质量百分数为1%,然后60MPa压力下模压成型,干燥,得到坯体;
[0058] (3)将所述坯体置于0.05MPa氮气气氛下,以15℃/min的升温速率升温到800℃,然后以10℃/min的升温速率升温到1200℃并保温3h,然后以8℃/min的升温速度升温到1400℃并保温1.5h,最后以5℃/min的升温速度升温到1800℃保温6h,将烧结后的坯体随炉冷却,得产品。
[0059] 实施例6
[0060] 一种赛隆‑氮化硅生物陶瓷的制备方法,包括以下步骤:
[0061] (1)提供如下重量份的原料:α‑Si3N4 40份,β‑Si3N4 75份,Si 30份,AlN 20份,α‑Al2O3 1份,烧结助剂12份,所述烧结助剂为Y2O3、Sm2O3、CeO的组合物,三者的重量比为3:2:1,在体积浓度为75%的乙醇溶液中进行超声辅助搅拌,超声的频率为10KHz,时间为60min,使混合均匀,得到浆料;
[0062] (2)将所述浆料烘干,加入聚乙烯醇缩丁醛,聚乙烯醇缩丁醛的质量百分数为3%,然后300MPa压力下模压成型,干燥,得到坯体;
[0063] (3)将所述坯体置于0.05MPa氮气气氛下,以5℃/min的升温速率升温到720℃,然后以9.5℃/min的升温速率升温到1105℃并保温1.2h,然后以7℃/min的升温速度升温到1320℃并保温2.3h,最后以4.2℃/min的升温速度升温到1750℃保温6.2h,将烧结后的坯体随炉冷却,得产品。
[0064] 对比例1
[0065] 本对比例与实施例1不同的是,提供如下重量份的原料:α‑Si3N4 70份,β‑Si3N4 90份,Si 8份,AlN 3份,α‑Al2O3 17份,Y2O3 5份。
[0066] 对比例2
[0067] 本对比例与实施例1不同的是:
[0068] 步骤(3)替换为:将所述坯体置于0.05MPa氮气气氛下,以5℃/min的升温速率升温到900℃并保温1h,然后以3℃/min的升温速度升温到1100℃并保温4h,最后以1℃/min的升温速度升温到1400℃保温8h,将烧结后的坯体随炉冷却,得产品.
[0069] 效果评价:
[0070] 1、对实施例1‑6和对比例1‑2所得产品的体积密度和耐压强度进行测定,并记录在表1中,其中:
[0071] (1)体积密度:采用液体静力称量法测定。
[0072] (2)耐压强度:采用微机控制压力试验机测定。
[0073] (3)测试结果:
[0074] 表1体积密度和耐压强度的测试结果
[0075] 组别/性能 体积密度/g·cm‑3 耐压强度/MPa实施例1 2.1 274
实施例2 2.5 797
实施例3 2.3 485
实施例4 2.8 970
实施例5 1.8 201
实施例6 2.9 1173
对比例1 1.9 182
对比例2 1.1 157
[0076] 由表1数据可知,本发明所得赛隆‑氮化硅复合陶瓷的体积密度可达3.0g/cm3;耐压强度可达1200Mpa。对比例1的数据表明,改变陶瓷的原料组成,对其产品的耐压强度有明显影响。对比例2的数据表明,不同的烧结工艺对产品的体积密度和耐压强度均具有明显影响。
[0077] 2、成骨细胞生长实验
[0078] 将实施例1、3和5以及对比例2制得的产品制作成陶瓷薄片样品,进行成骨细胞观察实验。
[0079] 2.1细胞培养
[0080] 将小鼠胚胎成骨前体细胞MC3T3‑E1接种于完全培养基中,在37℃,5%CO2细胞培养箱中培养,隔天换液,待细胞长满至80%左右,胰酶消化,进行传代,选取状态良好的第3代细胞用于后续实验。其中,完全培养基包含89%的最低必需培养基α(α‑MEM)、10%胎牛血清和1%青霉素/链霉素。
[0081] 2.2含陶瓷薄片样品提取物的培养液的制备
[0082] 将干燥、灭菌的陶瓷薄片样品浸泡在10mlα‑MEM培养基中24小时,采用0.22μm滤膜过滤,得到含陶瓷薄片样品提取物的培养液,4℃条件下保存备用。
[0083] 2.3MC3T3‑E1细胞在陶瓷薄片样品上的生长状况观察
[0084] 将灭菌后的陶瓷薄片样品铺满24孔板的底部,将第3代MC3T3‑E1细胞(2×104个/孔)接种于陶瓷薄片样品表面,放入37℃,5%CO2细胞培养箱中培养。分别在培养的24h和
48h时,每孔加入1mLCCK‑8溶液,在37℃培养箱中孵育2h。每孔取100μL溶液置于96孔板中,用488nm蓝色激光激发上述陶瓷薄片样品中的MC3T3‑E1细胞。观察细胞整体生长状况并拍照,得到MC3T3‑E1细胞生长状况图。
[0085] 2.4MC3T3‑E1细胞分化过程中ALP、Runx2和COL‑I的表达检测
[0086] 将第3代MC3T3‑E1细胞(2×104个/孔)接种于6孔板中,待细胞贴壁后,加入20%含陶瓷薄片样品提取物的培养液,放入37℃,5%CO2细胞培养箱中培养。培养24h后,每72h更新一次培养液。分别在培养的第4天和第7天,弃去培养液,使用细胞刮刮取细胞,用磷酸盐缓冲液冲洗两次,用1mLTRIZOL试剂(总RNA提取试剂)分离MC3T3‑E1的核糖核酸,采用实时荧光定量检测系统检测成骨基因碱性磷酸酶(ALP)、Runt相关转录因子2(Runx2)和I型胶原(COL‑I)三类成骨分化标志性因子表达,检测并统计得到成骨分化标志性因子表达相对时间的变化图。
[0087] 2.5MC3T3‑E1细胞矿化结节生成观察
[0088] 将第3代MC3T3‑E1细胞(2×104个/孔)接种于6孔板中,待细胞贴壁后,加入20%含陶瓷薄片样品提取物的培养液进行培养,放入37℃,5%CO2细胞培养箱中培养。培养24h后,每72h更新一次培养液。分别在培养的第4天和第7天,弃去培养液,用磷酸盐缓冲液冲洗3次;使用4%多聚甲醛固定细胞30分钟;接着加入500μL、1%的茜素红染色液染色,并用磷酸缓冲盐溶液清洗至浮色洗去,风干后置于光学显微镜下观察,得到样品表面矿化结节生成状况图。
[0089] 2.5结果分析
[0090] 图1为MC3T3‑E1细胞生长状况图,可知MC3T3‑E1细胞在实施例1、3和5所得陶瓷表面的生长活性明显较好。MC3T3‑E1细胞在对比例2陶瓷表面的生长较差,周边几乎没有生长活性,原因在于烧结工艺的差异导致对比例2生成的β‑Si3N4相较少,陶瓷结晶度差,使陶瓷培养基中细胞生长状况不明显。
[0091] 图2‑图4为成骨分化标志性因子COL‑1、Runx2和ALP相对表达状况图,可知,随着培养时间的延长,MC3T3‑E1细胞在含实施例1、3和5所得陶瓷薄片样品提取物的培养液中的COL‑1、Runx2和ALP相对表达增加更显著,对比例2无明显增加,说明本发明所得陶瓷具有更显著的生物相容性和促进成骨细胞分化的能力。
[0092] 图5为MC3T3‑E1细胞矿化结节生成状况图,可知,随着培养时间的延长,MC3T3‑E1细胞在含实施例1、3和5所得陶瓷薄片样品提取物的培养液中的产生的矿化结节数量明显增多(圆圈部分为显色区域),说明本发明所得陶瓷具有促进成骨分化的能力。
[0093] 最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。