一种波浪发电装置的限幅保护方法、装置及电子设备转让专利

申请号 : CN202210231821.0

文献号 : CN114576075B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 肖曦黄宣睿林泽川

申请人 : 清华大学

摘要 :

本发明提供了一种波浪发电装置的限幅保护方法、装置及电子设备,其中,该方法包括:获取功率控制器当前确定的初始推力,以及波浪发电装置的当前运行状态;在基于当前运行状态确定需要限位保护的情况下,基于当前运行状态确定符合限位要求的中间推力;在不需要限位保护的情况下,将初始推力作为中间推力;基于中间推力确定符合限功率要求以及限推力要求的实际推力。通过本发明实施例提供的波浪发电装置的限幅保护方法、装置及电子设备,不需要复杂的运算,不需要精确的波浪发电装置系统模型,也不需要预先了解未来一定时间的波浪信息,能够简单快速地实现限幅保护,限幅保护有效性也较高;且其能够适用于现有的多种控制波浪发电装置的方法,应用范围广。

权利要求 :

1.一种波浪发电装置的限幅保护方法,其特征在于,包括:

获取功率控制器当前确定的初始推力,以及波浪发电装置的当前运行状态,所述当前运行状态包括当前位置和当前速度;

在基于所述当前运行状态确定需要限位保护的情况下,基于所述当前运行状态确定符合限位要求的中间推力;在基于所述当前运行状态确定不需要限位保护的情况下,将所述初始推力作为中间推力;

基于所述中间推力确定符合限功率要求以及限推力要求的实际推力;在所述中间推力超出限功率要求和/或限推力要求的情况下,所述实际推力为不超过所述中间推力,且符合所述限功率要求以及限推力要求的力;在所述中间推力符合限功率要求以及限推力要求的情况下,所述实际推力为所述中间推力。

2.根据权利要求1所述的方法,其特征在于,还包括:

在所述波浪发电装置具有靠近最大位置的趋势、且所述当前位置与所述最大位置之间的间距小于第一预设距离的情况下,确定需要限位保护。

3.根据权利要求2所述的方法,其特征在于,还包括:

在所述波浪发电装置不具有靠近最大位置的趋势、或者所述当前位置与最大位置之间的间距大于第一预设距离的情况下,确定不需要限位保护。

4.根据权利要求2所述的方法,其特征在于,还包括:

在确定是否需要限位保护之前确定当前的系统状态,所述系统状态包括正常状态和触发限位保护状态,且所述系统状态的初始值为所述正常状态;

在所述当前的系统状态为所述正常状态的情况下,确定是否需要限位保护,并在确定需要限位保护的情况下,将所述当前的系统状态更新为所述触发限位保护状态;

在所述当前的系统状态为所述触发限位保护状态的情况下,若所述波浪发电装置具有靠近最大位置的趋势,确定需要限位保护;若所述波浪发电装置不具有靠近最大位置的趋势,确定不需要限位保护,并将所述当前的系统状态更新为所述正常状态。

5.根据权利要求4所述的方法,其特征在于,所述若所述波浪发电装置不具有靠近最大位置的趋势,确定不需要限位保护,并将所述当前的系统状态更新为所述正常状态,包括:在所述当前的系统状态为所述触发限位保护状态的情况下,若所述波浪发电装置不具有靠近最大位置的趋势、且所述当前位置与最大位置之间的间距大于第二预设距离,确定不需要限位保护,并将所述当前的系统状态更新为所述正常状态;所述第二预设距离大于所述第一预设距离;

在所述当前的系统状态为所述触发限位保护状态的情况下,若所述波浪发电装置不具有靠近最大位置的趋势、且所述当前位置与最大位置之间的间距小于第二预设距离,基于所述当前速度确定用于减小所述当前速度的大小的中间推力。

6.根据权利要求4所述的方法,其特征在于,所述触发限位保护状态包括触发限位保护、且未实现限位保护的状态和触发限位保护、且已实现限位保护的状态;

在所述当前的系统状态为所述触发限位保护状态的情况下,若所述波浪发电装置具有靠近最大位置的趋势,确定需要限位保护;若所述波浪发电装置不具有靠近最大位置的趋势,确定不需要限位保护,并将所述当前的系统状态更新为所述正常状态,包括:在所述当前的系统状态为所述触发限位保护、且未实现限位保护状态的情况下,若所述波浪发电装置具有靠近最大位置的趋势,确定需要限位保护;若所述波浪发电装置不具有靠近最大位置的趋势、且所述当前位置与最大位置之间的间距大于第二预设距离,确定不需要限位保护,并将所述当前的系统状态更新为所述正常状态;所述第二预设距离大于所述第一预设距离;

在所述当前的系统状态为所述触发限位保护、且已实现限位保护状态的情况下,若所述当前位置与最大位置之间的间距大于第二预设距离,确定不需要限位保护,并将所述当前的系统状态更新为所述正常状态;若所述当前位置与最大位置之间的间距小于第二预设距离,基于所述当前速度确定用于减小所述当前速度的大小的中间推力。

7.根据权利要求1‑6任意一项所述的方法,其特征在于,基于所述当前运行状态确定符合限位要求的中间推力,包括:确定所述当前位置与预设的最大位置之间的间距,基于所述间距和所述当前速度确定用于增大所述间距的中间推力;所述中间推力的大小与所述间距的大小之间为负相关关系,与所述当前速度的大小之间为正相关关系。

8.根据权利要求7所述的方法,其特征在于,基于所述间距和所述当前速度确定用于增大所述间距的中间推力,包括:确定当前的速度差,且所述速度差e满足:

e=K×(Zm‑|z|)×sign(z)‑v;

基于所述速度差,以累加的方式对累积差进行更新,且更新后的累积差Buffer满足:Buffer=ki×e×Ts+Buffer';

确定用于增大所述间距的中间推力,且所述中间推力fmid满足:

fmid=kp×e+Buffer;

其中,K为预设的调整参数,Zm为所述最大位置,z为所述当前位置,v为所述当前速度,sign()表示符号函数;ki为预设的历史误差权重系数,Ts为控制器的离散控制周期,Buffer'为上轮确定的累积差;kp为预设的瞬时误差权重系数。

9.根据权利要求1‑6任意一项所述的方法,其特征在于,基于所述中间推力确定符合限功率要求以及限推力要求的实际推力,包括:将所述中间推力、不超过最大功率的推力、预设的最大推力三者中具有最小绝对值的推力作为与所述中间推力同向的实际推力;

所述不超过最大功率的推力符合所述限功率要求,所述最大推力符合所述限推力要求。

10.一种波浪发电装置的限幅保护装置,其特征在于,包括:

获取模块,用于获取功率控制器当前确定的初始推力,以及波浪发电装置的当前运行状态,所述当前运行状态包括当前位置和当前速度;

限位保护模块,用于在基于所述当前运行状态确定需要限位保护的情况下,基于所述当前运行状态确定符合限位要求的中间推力;在基于所述当前运行状态确定不需要限位保护的情况下,将所述初始推力作为中间推力;

限功率推力保护模块,用于基于所述中间推力确定符合限功率要求以及限推力要求的实际推力;在所述中间推力超出限功率要求和/或限推力要求的情况下,所述实际推力为不超过所述中间推力,且符合所述限功率要求以及限推力要求的力;在所述中间推力符合限功率要求以及限推力要求的情况下,所述实际推力为所述中间推力。

11.一种电子设备,包括总线、收发器、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述收发器、所述存储器和所述处理器通过所述总线相连,其特征在于,所述计算机程序被所述处理器执行时实现如权利要求1至9中任一项所述的波浪发电装置的限幅保护方法中的步骤。

12.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至9中任一项所述的波浪发电装置的限幅保护方法中的步骤。

说明书 :

一种波浪发电装置的限幅保护方法、装置及电子设备

技术领域

[0001] 本发明涉及波浪发电装置技术领域,具体而言,涉及一种波浪发电装置的限幅保护方法、装置、电子设备及计算机可读存储介质。

背景技术

[0002] 由于波浪具有很强的随机性,在波浪发电装置的运行过程中,会有概率出现短暂的大浪,在常规波浪发电控制算法下,波浪发电装置会面临浮体运行位置超限、发电机推力超限、装置输出功率超限等情形,浮体运行位置超限会对装置机械结构造成冲击,严重会损坏装置机械部件;发电机推力超限会导致发电机烧毁;装置输出功率超限会导致变流器内部元器件损坏,这三种超限状况均可能对装置产生不可逆损坏,因此有必要设计具有限幅保护功能的波浪发电装置控制算法。
[0003] 常规的控制方法一般不考虑限幅保护,如闭锁控制、阻尼控制、双自由度控制等,且这几种方法从原理上难以加入限幅保护功能,不适用于控制波浪发电装置的场景。
[0004] 目前存在考虑限幅的波浪发电装置模型预测控制方法,该方法将浮体位置限幅、推力限幅、功率限幅作为约束条件,以最大化装置输出功率目标为目标,通过求解最优化问题来给出发电机的运行指令。该方法求解运算复杂,需要准确的系统模型,且需要了解未来一定时间的波浪信息,难以应用到实际系统中。

发明内容

[0005] 为解决现有存在的技术问题,本发明实施例提供一种波浪发电装置的限幅保护方法、装置、电子设备及计算机可读存储介质。
[0006] 第一方面,本发明实施例提供了一种波浪发电装置的限幅保护方法,包括:
[0007] 获取功率控制器当前确定的初始推力,以及波浪发电装置的当前运行状态,所述当前运行状态包括当前位置和当前速度;
[0008] 在基于所述当前运行状态确定需要限位保护的情况下,基于所述当前运行状态确定符合限位要求的中间推力;在基于所述当前运行状态确定不需要限位保护的情况下,将所述初始推力作为中间推力;
[0009] 基于所述中间推力确定符合限功率要求以及限推力要求的实际推力;在所述中间推力超出限功率要求和/或限推力要求的情况下,所述实际推力为不超过所述中间推力,且符合所述符合限功率要求以及限推力要求的力;在所述中间推力符合限功率要求以及限推力要求的情况下,所述实际推力为所述中间推力。
[0010] 第二方面,本发明实施例还提供了一种波浪发电装置的限幅保护装置,包括:
[0011] 获取模块,用于获取功率控制器当前确定的初始推力,以及波浪发电装置的当前运行状态,所述当前运行状态包括当前位置和当前速度;
[0012] 限位保护模块,用于在基于所述当前运行状态确定需要限位保护的情况下,基于所述当前运行状态确定符合限位要求的中间推力;在基于所述当前运行状态确定不需要限位保护的情况下,将所述初始推力作为中间推力;
[0013] 限功率推力保护模块,用于基于所述中间推力确定符合限功率要求以及限推力要求的实际推力;在所述中间推力超出限功率要求和/或限推力要求的情况下,所述实际推力为不超过所述中间推力,且符合所述符合限功率要求以及限推力要求的力;在所述中间推力符合限功率要求以及限推力要求的情况下,所述实际推力为所述中间推力。
[0014] 第三方面,本发明实施例提供了一种电子设备,包括总线、收发器、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述收发器、所述存储器和所述处理器通过所述总线相连,所述计算机程序被所述处理器执行时实现上述任意一项所述的波浪发电装置的限幅保护方法中的步骤。
[0015] 第四方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任意一项所述的波浪发电装置的限幅保护方法中的步骤。
[0016] 本发明实施例提供的波浪发电装置的限幅保护方法、装置、电子设备及计算机可读存储介质,在功率控制器所输出的初始推力的基础上,确定符合限位要求的中间推力,进而能够确定符合限位要求、限功率要求以及限推力要求的实际推力,基于该实际推力控制波浪发电装置,能够实现对波浪发电装置的限位保护。该方法不需要复杂的运算,不需要精确的波浪发电装置系统模型,也不需要预先了解未来一定时间的波浪信息,能够简单快速地实现限幅保护,限幅保护有效性也较高;且其能够适用于现有的多种控制波浪发电装置的方法,应用范围广。

附图说明

[0017] 为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
[0018] 图1示出了本发明实施例所提供的一种波浪发电装置的限幅保护方法的流程图;
[0019] 图2示出了波浪发电装置的现有控制逻辑示意图;
[0020] 图3示出了本发明实施例提供的波浪发电装置的控制逻辑示意图;
[0021] 图4示出了本发明实施例所提供的波浪发电装置的限幅保护方法的第一流程图;
[0022] 图5示出了本发明实施例所提供的波浪发电装置的限幅保护方法的第二流程图;
[0023] 图6示出了本发明实施例所提供的波浪发电装置的限幅保护方法的第三流程图;
[0024] 图7示出了本发明实施例所提供的波浪发电装置的限幅保护方法的第四流程图;
[0025] 图8示出了本发明实施例所提供的波浪发电装置的限幅保护方法的第五流程图;
[0026] 图9示出了本发明实施例所提供的一种波浪发电装置的限幅保护装置的结构示意图;
[0027] 图10示出了本发明实施例所提供的一种用于执行波浪发电装置的限幅保护方法的电子设备的结构示意图。

具体实施方式

[0028] 下面结合本发明实施例中的附图对本发明实施例进行描述。
[0029] 图1示出了本发明实施例所提供的一种波浪发电装置的限幅保护方法的流程图,该限幅保护包括限位置幅值保护、限功率幅值保护、限推力幅值保护。如图1所示,该方法包括:
[0030] 步骤200:获取功率控制器当前确定的初始推力,以及波浪发电装置的当前运行状态,该当前运行状态包括当前位置和当前速度。
[0031] 本发明实施例中,利用现有能够确定推力大小的功率控制器的输出,通过对该输出施加限幅保护,实现对波浪发电装置的限幅保护。波浪发电装置的传统控制逻辑参见图2所示,为了提高波浪发电装置的发电效率等,一般可以基于功率控制器和电机控制器确定该波浪发电装置的推力。具体地,功率控制器根据波浪发电装置中发电机的运行状态(位置和速度)和波浪状态给出发电机的推力指令,该推力指令用于指示电机控制器向波浪发电装置施加多大的推力;电机控制器根据发电机运行状态和功率控制器给出的推力指令,控制发电机执行,从而完成波浪发电装置的控制。
[0032] 本发明实施例中,参见图3所示,对功率控制器所确定的推力,即初始推力,进行限幅保护,以修正该初始推力,将修正后的初始推力作为所确定的实际推力,基于该实际推力完成波浪发电装置的控制。如图3所示,将该实际推力发送至电机控制器,使得电机控制器能够完成对波浪发电装置的控制。其中,在进行限幅保护的过程中,需要借助波浪发电装置的运行状态,即发电机的运行状态,其包括发电机的位置和速度。由于功率控制器等需要实时控制波浪发电装置,本实施例提供的方法也能够应用到实时的场景,即本实施例提供的限幅保护方法能够多轮执行,每一轮的过程用于实现对波浪发电装置的一次控制;对于当前轮的过程,本实施例将当前确定的运行状态称为当前运行状态,发电机的此时的位置和速度也相应称为当前位置和当前速度。
[0033] 步骤400:在基于当前运行状态确定需要限位保护的情况下,基于当前运行状态确定符合限位要求的中间推力;在基于当前运行状态确定不需要限位保护的情况下,将初始推力作为中间推力。
[0034] 本发明实施例中,基于当前运行状态判断当前是否需要限位保护,若当前不需要限位保护,则可以继续使用该功率控制器所输出的初始推力,即可以将初始推力作为中间推力。若当前需要限位保护,则说明若继续使用该功率控制器所输出的初始推力,可能造成发电机位置超限的情况,此时需要重新生成中间推力,以使得所生成的中间推力符合限位要求,尽量避免出现位置超限。例如,该中间推力的初始值为该初始推力,在需要限位保护的情况下,需要调整该中间推力,使得调整后的中间推力符合限位要求;在不需要限位保护的情况下,不需要调整该中间推力,该中间推力与初始推力相同。
[0035] 本发明实施例中,波浪发电装置运行过程中具有最大位置,波浪发电装置当前具有超出该最大位置的可能性或已经超出该最大位置,则可认为当前需要限位保护。例如,波浪发电装置距离预设的最大位置较近,则可认为当前需要限位保护;或者,波浪发电装置距离预设的最大位置较近、并且波浪发电装置当前仍然在靠近该最大位置,此时认为当前需要限位保护。
[0036] 为了避免波浪发电装置的运行位置超限,即超过最大位置,需要中间推力符合限位要求。中间推力符合限位要求,指的是该中间推力能够使得波浪发电装置能够远离该最大位置,靠近波浪发电装置的平衡位置;例如,符合限位要求指的是能够增大当前位置与最大位置之间的间距,以使得波浪发电装置向平衡位置靠近。其中,该平衡位置指的是波浪发电装置静止时的所在位置;波浪发电装置在运动过程中,会往复经过该平衡位置,并到达位置最高点和位置最低点;波浪发电装置位于该平衡位置时,其位置为零。并且,波浪发电装置的位置分正负向,其最大位置也分为正向的最大位置和负向的最大位置。
[0037] 步骤600:基于中间推力确定符合限功率要求以及限推力要求的实际推力;在中间推力超出限功率要求和/或限推力要求的情况下,实际推力为不超过中间推力,且符合符合限功率要求以及限推力要求的力;在中间推力符合限功率要求以及限推力要求的情况下,实际推力为中间推力。
[0038] 本发明实施例中,波浪发电装置除了运行位置不能超限之外,其输出功率和推力也不能超限,即不能超过最大功率和最大推力;相应的,所需的推力应当符合限功率要求以及限推力要求。本实施例将符合限位要求、符合限功率要求以及限推力要求的推力称为实际推力,基于该实际推力实现对波浪发电装置的控制;例如,可以生成向波浪发电装置施加该实际推力的指令。其中,中间推力越大,越可能超出限功率要求和限推力要求,其越不可能符合限功率要求和限推力要求;即符合限功率要求和限推力要求的实际推力不会大于该中间推力,该实际推力小于或等于该中间推力。
[0039] 其中,中间推力是符合限位要求的力(不需要限位保护的情况下,初始推力即符合限位要求),若该中间推力符合限功率要求以及限推力要求,则说明该中间推力符合限位要求、符合限功率要求、限推力要求三种要求,该中间推力即可实现限幅保护,即可以将该中间推力作为所需的实际推力。若该中间推力不满足限功率要求、限推力要求中的任一个,或者都不满足,即中间推力超出限功率要求和/或限推力要求,此时需要重新确定不超过中间推力(即符合限位保护),且符合限功率要求以及限推力要求的力,将该力作为所需的实际推力。
[0040] 可选地,上述步骤“基于中间推力确定符合限功率要求以及限推力要求的实际推力”包括:
[0041] 步骤A1:将中间推力、不超过最大功率的推力、预设的最大推力三者中具有最小绝对值的推力作为与中间推力同向的实际推力。该不超过最大功率的推力符合限功率要求,该最大推力符合限推力要求。
[0042] 本发明实施例中,中间推力是符合限位要求的力,不超过最大功率的推力是符合限功率要求的力,预设的最大推力是符合限推力要求的力。由于力越大,越不可能符合限位要求、限功率要求、限推力要求,故三者中最小的推力可以同时符合限位要求、限功率要求和限推力要求;又由于推力分不同的方向,不同方向用正负区分表示,故本实施例将三者中绝对值最小的推力作为实际推力,并限定该实际推力与该中间推力同向;即若中间推力为正,则该实际推力也为正,若该中间推力为负,则该实际推力也为负。
[0043] 本发明实施例中,最大推力为避免推力超限所预设的力,其大小可预先确定;最大功率为避免功率超限所预设的功率,其大小也可预先确定,基于预设的最大功率可以确定该不超过最大功率的推力;例如,波浪发电装置的推力fgr乘以当前速度v等于波浪发电装置的功率,若最大功率为Pm,则该不超过最大功率的推力可以为Pm/v。因此,可以确定中间推力、不超过最大功率的推力和预设的最大推力,比较三者的绝对值,将绝对值最小的推力作为实际推力。或者,在确定中间推力后,可以判断该中间推力对应的功率是否超过该最大功率,以及该中间推力是否超过该最大推力,以此来确定实际推力,所确定的实际推力也是三者中绝对值最小的推力。本实施例对确定三者中具有最小绝对值的推力的过程不做限定。
[0044] 本发明实施例提供的一种波浪发电装置的限幅保护方法,在功率控制器所输出的初始推力的基础上,确定符合限位要求的中间推力,进而能够确定符合限位要求、限功率要求以及限推力要求的实际推力,基于该实际推力控制波浪发电装置,能够实现对波浪发电装置的限位保护。该方法不需要复杂的运算,不需要精确的波浪发电装置系统模型,也不需要预先了解未来一定时间的波浪信息,能够简单快速地实现限位保护,限位保护有效性也较高;且其能够适用于现有的多种控制波浪发电装置的方法,应用范围广。
[0045] 可选地,上述步骤400“基于当前运行状态确定符合限位要求的中间推力”包括:
[0046] 步骤B1:确定当前位置与预设的最大位置之间的间距,基于间距和当前速度确定用于增大间距的中间推力;中间推力的大小与间距的大小之间为负相关关系,与当前速度的大小之间为正相关关系。
[0047] 本发明实施例中,在确定需要限位保护的情况下,不能直接将初始推力作为中间推力,而是需要对推力增加限位保护,以得到中间推力。其中,该中间推力的作用主要用于增大当前位置与最大位置之间的间距;具体地,在确定需要限位保护的情况下,若当前速度的大小越大,说明当前越可能更快地到达最大位置,此时需要更大的推力来快速降速,故当前速度的大小与中间推力的大小为正相关关系。该间距越小,说明波浪发电装置越接近最大位置,越应该以更大的推力快速实现限位保护,故该间距的大小与中间推力的大小之间为负相关关系。本实施例中,由于位置、速度、推力都是具有方向的,能够增大间距的中间推力应当是与当前位置或当前速度反向的。
[0048] 需要说明的是,该中间推力用于增大间距,指的是中间推力的主要目的在于增大间距,而由于当前速度可能并不为零,即使存在中间推力,也不能使得真实的间距增大,该中间推力可以是能够起到增大间距可能性的作用。
[0049] 可选地,上述步骤B1“基于间距和当前速度确定用于增大间距的中间推力”包括步骤B11‑B13:
[0050] 步骤B11:确定当前的速度差,且速度差e满足:
[0051] e=K×(Zm‑|z|)×sign(z)‑v
[0052] 步骤B12:基于速度差,以累加的方式对累积差进行更新,且更新后的累积差Buffer满足:
[0053] Buffer=ki×e×Ts+Buffer'
[0054] 步骤B13:确定用于增大间距的中间推力,且中间推力fmid满足:
[0055] fmid=kp×e+Buffer
[0056] 其中,K为预设的调整参数,Zm为最大位置,z为当前位置,v为当前速度,sign()表示符号函数;ki为预设的历史误差权重系数,Ts为控制器的离散控制周期(一般情况下,功率控制器和电机控制器的离散控制周期相同,此处可以为功率控制器的离散控制周期),Buffer'为上轮确定的累积差;kp为预设的瞬时误差权重系数。其中,累积差的初始值为零,且在不需要限位保护的情况下,该累积差归零。
[0057] 本发明实施例中,设当前速度为v,当前位置为z,波浪发电装置所允许的最大位置为Zm。预设调整参数K,以该参数K确定所期望的速度,当前所期望的速度为K×(Zm‑|z|)×sign(z)。其中,sign()表示符号函数,即当x>0时,sign(x)=1,当x<0时,sign(x)=‑1;当前位置z越靠近最大位置Zm,所期望的速度越小。该所期望的速度与当前实际的速度v之差即为上述步骤B11所确定的速度差e。
[0058] 本发明实施例中,由于一轮的限位保护可能并不能完全实现所需的限位保护功能,例如经过一轮的限位保护后,波浪发电装置仍然具有靠近最大位置的趋势,此时还需要进一轮的限位保护。本发明实施例设置累积差Buffer,基于该累积差Buffer表示当前限位保护时所需的历史信息,结合历史信息来更加准确的确定当前轮的中间推力fmid。
[0059] 具体地,为方便区分不同轮次的累积差,本实施例以Buffer'表示上一轮所确定的累积差。通过速度差确定当前轮的累积差Buffer,即Buffer=ki×e+Buffer',进而利用当前轮的累积差Buffer确定当前轮的中间推力fmid,即fmid=kp×e+Buffer。其中,ki、kp均为预设的权重系数。本实施例通过累积差确定中间推力,可以有效地结合历史信息来准确地确定当前所需的、符合限位要求的中间推力;且利用累积差可以尽快增大中间推力,避免限位保护的轮次过多,可以提高实现限位保护的效率。
[0060] 可选地,在上述步骤400之前,该方法还包括确定是否需要限位保护的过程,参见图4所示,该过程包括步骤302:
[0061] 步骤302:在波浪发电装置具有靠近最大位置的趋势、且当前位置与最大位置之间的间距小于第一预设距离的情况下,确定需要限位保护。
[0062] 本发明实施例中,基于波浪发电装置当前是否仍然靠近最大位置(即是否具有靠近最大位置的趋势)以及当前位置与最大位置之间的间距来判断当前是否具有位置超限的风险,以确定是否需要限位保护。具体地,若当前位置与最大位置之间的间距小于一个较小的第一预设距离,说明当前位置距离最大位置已经很近;同时,若该波浪发电装置仍然具有靠近该最大位置的趋势,则说明该间距还会进一步缩小,波浪发电装置的位置更有可能超过最大位置,导致位置超限的现象,故此时需要进行限位保护。
[0063] 其中,设当前位置为z,最大距离为Zm,该第一预设距离可以为预先设置的值th1,若Zm‑|z|0.95Zm,也可确定该当前位置与最大位置之间的间距小于第一预设距离,本实施例对确定间距是否小于该第一预设距离的具体形式不做限定。并且,若该间距等于该第一预设距离,可以认为其仍然可能需要限位保护,或者也可认为其一定不需要限位保护,本实施例对间距等于第一预设距离时的具体处理方式不做限定。
[0064] 此外,可以根据当前位置和当前速度来判断波浪发电装置是否具有靠近最大位置的趋势。具体地,波浪发电装置的当前位置和当前速度的正负号能够表示位置和速度的方向;若当前速度也为正,则说明波浪发电装置的位置具有正向增大的趋势,若该当前位置也为正,则该波浪发电装置正在靠近正向的最大位置,即其具有靠近最大位置的趋势;相反地,若若当前速度也为负,则说明波浪发电装置的位置具有负向增大的趋势,若该当前位置也为负,则该波浪发电装置正在靠近负向的最大位置,波浪发电装置也具有靠近最大位置的趋势。因此,在当前位置与当前速度同向的情况下,确定波浪发电装置具有远离平衡位置的趋势。例如,设当前位置为z,当前速度为v;若z×v>0,则可认为波浪发电装置具有靠近最大位置的趋势。若z×v<0,则说明波浪发电装置正在靠近平衡位置(远离最大位置),其不具有靠近最大位置的趋势。可选地,在当前位置与当前速度同向、且当前速度足够大(例如当前速度的绝对值大于预设阈值eps等)的情况下,确定波浪发电装置具有远离平衡位置的趋势。
[0065] 若波浪发电装置静止,例如当前速度v为零,此时可以认为波浪发电装置具有靠近最大位置的趋势,也可认为不具有靠近最大位置的趋势,本实施例对此不做限定。例如,当前速度v为零,则认为波浪发电装置不具有靠近最大位置的趋势。可选地,为了避免波浪发电装置的振荡造成误判,本实施例将当前速度小于某个较小值eps时,均认为波浪发电装置静止。例如,若|v|
[0066] 可选地,参见图4所示,确定是否需要限位保护的过程还可以包括:
[0067] 步骤303:在波浪发电装置不具有靠近最大位置的趋势、或者当前位置与最大位置之间的间距大于第一预设距离的情况下,确定不需要限位保护。
[0068] 本发明实施例中,与上述步骤302相反,若波浪发电装置不具有靠近最大位置的趋势,或者,当前位置与最大位置之间的间距大于第一预设距离,则说明波浪发电装置当前不存在位置超限的风险,此时可以确定不需要限位保护。其中,该确定是否需要限位保护的过程可以包括如下的判断步骤,即步骤301,基于该判断步骤的判断结果来确定是否需要限位保护,进而执行上述步骤400。
[0069] 步骤301:判断波浪发电装置是否具有靠近最大位置的趋势、且当前位置与最大位置之间的间距是否小于第一预设距离。
[0070] 本发明实施例中,利用波浪发电装置的当前位置和当前速度,可以简单快速地确定波浪发电装置是否具有靠近最大位置的趋势,以及当前位置与最大位置之间的间距是否小于第一预设距离,从而可以简单快速地确定是否需要限位保护。
[0071] 可选地,本发明实施例所提供的方法还设有系统状态,基于不同的系统状态来确定是否需要限位保护。参见图5所示,该方法还包括:
[0072] 步骤300:在确定是否需要限位保护之前,确定当前的系统状态,系统状态包括正常状态和触发限位保护状态,且系统状态的初始值为正常状态。
[0073] 本发明实施例中,在控制波浪发电装置实现限幅保护的过程中,设置用于表示之前是否执行限幅保护的系统状态,该系统状态包括正常状态和触发限位保护状态;本实施例提供的限幅保护方法可以一轮轮执行,即实时确定实际推力的大小,实现实时地限幅保护。在当前轮需要确定是否需要限位保护时,首先确定当前的系统状态,该当前的系统状态为上一轮执行结束后的系统状态。若当前的系统状态为正常状态,说明在上一轮执行结束后,认为不需要限位保护;若当前的系统状态为触发限位保护状态,说明在上一轮执行过程中触发了限位保护的过程,例如触发了类似上述步骤302。在执行当前轮的过程中,该当前的系统状态实际为一种历史信息,结合该历史信息进一步判断是否需要限位保护。其中,该系统状态主要分为几种,可以用标识符表示,例如,用0表示正常状态,用于1表示触发限位保护状态等。
[0074] 步骤304:在当前的系统状态为正常状态的情况下,确定是否需要限位保护,并在确定需要限位保护的情况下,将当前的系统状态更新为触发限位保护状态。
[0075] 本发明实施例中,若当前的系统状态为正常状态,说明上一轮未执行限位保护的过程,或者上一轮虽然执行了限位保护的过程,但已经实现了限位保护。在当前为正常状态时,确定是否需要限位保护。例如,该“确定是否需要限位保护”可以包括上述步骤301‑303等,即基于浪发电装置是否具有靠近最大位置的趋势、且当前位置与最大位置之间的间距是否小于第一预设距离,来确定是否需要限位保护。
[0076] 若此时需要限位保护,本实施例除了执行上述步骤400中确定中间推力的过程之外,还需要将当前的系统状态从正常状态更新为触发限位保护状态,以能够在下一轮的处理过程中确定上一轮(即此时的当前轮)触发了限位保护的过程。相应地,若不需要限位保护,则可以不更新当前的系统状态,即系统状态仍然为正常状态。
[0077] 本领域技术人员可以理解,上述步骤400中确定中间推力的过程与该步骤304中更新系统状态的过程可以不分先后,二者可以一先一后执行,也可以同时执行,本实施例对此不做限定。
[0078] 步骤305:在当前的系统状态为触发限位保护状态的情况下,若波浪发电装置具有靠近最大位置的趋势,确定需要限位保护。
[0079] 步骤306:在当前的系统状态为触发限位保护状态的情况下,若波浪发电装置不具有靠近最大位置的趋势,确定不需要限位保护,并将当前的系统状态更新为正常状态。
[0080] 本发明实施例中,若当前的系统状态为触发限位保护状态,说明在上一轮触发了限位保护,例如在上一轮的处理过程中,浪发电装置具有靠近最大位置的趋势、且当前位置与最大位置之间的间距小于第一预设距离。在当前的系统状态为触发限位保护状态的情况下,本实施例仍然需要确定是否需要限位保护;此时,也可以基于上述步骤301‑303的过程来确定是否需要限位保护;更简单地,由于在上一轮中,浪发电装置的当前位置与最大位置之间的间距小于第一预设距离,若在当前轮中,波浪发电装置仍然具有靠近最大位置的趋势,则说明当前轮的间距(当前位置与最大位置之间的间距)一定比上一轮所确定的间距更小,该当前轮的间距一定小于第一预设距离,故此时可以只判断波浪发电装置是否具有靠近最大位置的趋势。
[0081] 若波浪发电装置仍然具有靠近最大位置的趋势,在当前的系统状态为触发限位保护状态的情况下,说明当前位置与最大位置之间的间距一定小于第一预设距离,此时需要限位保护,即执行步骤305。与上述步骤304不同的是,由于当前的系统状态已经是触发限位保护状态,此时不需要更新系统状态。相反地,若波浪发电装置不具有靠近最大位置的趋势,说明此时波浪发电装置正在靠近平衡位置,其不存在位置超限的风险,故此时不需要限位保护,即执行步骤306。并且,此时可以将当前的系统状态从触发限位保护状态更新为正常状态。
[0082] 可选地,本发明实施例中,若当前的系统状态为触发限位保护状态、且波浪发电装置不具有靠近最大位置,说明波浪发电装置在之前存在位置超限的风险,而在当前轮该波浪发电装置已经不存在位置超限的风险;在这种情况下,若波浪发电装置的当前位置距离最大位置仍然较近,例如当前位置与最大位置之间的间距小于第一预设距离,此时若直接使用功率控制器所确定的初始推力作为中间推力,由于功率控制器的主要目的在于提高发电效率,存在使得波浪发电装置向振动幅度更大的趋势运动,而导致波浪发电装置又靠近最大位置的情况,导致之后又进入限位保护的过程。故本发明实施例引入判断间距是否小于第二预设距离的过程,以实现对波浪发电装置的平滑控制。
[0083] 参见图6所示,上述步骤306“若波浪发电装置不具有靠近最大位置的趋势,确定不需要限位保护,并将当前的系统状态更新为正常状态”,包括步骤3062和步骤3064:
[0084] 步骤3062:在当前的系统状态为触发限位保护状态的情况下,若波浪发电装置不具有靠近最大位置的趋势、且当前位置与最大位置之间的间距大于第二预设距离,确定不需要限位保护,并将当前的系统状态更新为正常状态;该第二预设距离大于第一预设距离。
[0085] 步骤3064:在当前的系统状态为触发限位保护状态的情况下,若波浪发电装置不具有靠近最大位置的趋势、且当前位置与最大位置之间的间距小于第二预设距离,基于当前速度确定用于减小当前速度的大小的中间推力。
[0086] 本发明实施例中,在当前的系统状态为触发限位保护状态的情况下,如图6所示,可以先判断波浪发电装置是否具有靠近最大位置的趋势,若其具有靠近最大位置的趋势,则可以执行上述的步骤305,确定需要限位保护。若波浪发电装置不具有靠近最大位置的趋势,则可以通过判断当前位置与最大位置之间的间距是否小于第二预设距离,来确定是否需要限位保护。例如,如图6所示,可以执行判断步骤3061,即判断当前位置与最大位置之间的间距是否小于第二预设距离。
[0087] 在当前位置与最大位置之间的间距小于第二预设距离的情况下,若此时直接将初始推力作为中间推力,则可能存在问题,故本实施例在这种情况下仍然重新生成中间推力。在该间距大于第二预设距离之后,此时即使切换为功率控制器实现控制(即执行步骤3063,将初始推力直接作为中间推力),由于第二预设距离大于第一预设距离,此时当前位置与最大位置之间的间距不会小于第一预设距离,从而可以稳定地切换至由功率控制器控制波浪发电装置。
[0088] 具体地,在当前位置与最大位置之间的间距小于第二预设距离的情况下,本发明实施例基于当前速度确定中间推力,且该中间推力的大小与该当前速度的大小之间为正相关关系。例如,可以预先设置控制参数R,此时确定的中间推力fgr与当前速度v满足:|fgr|=R×|v|。并且,该中间推力的作用是减小当前速度的大小,即该中间推力与当前速度的方向是相反地;例如,中间推力fgr与当前速度v满足:fgr=‑R×v。
[0089] 在波浪发电装置不再具有靠近最大位置的趋势时,说明波浪发电装置的当前位置到达了最高点或最低点,之后在重力或浮力的作用下,波浪发电装置的位置逐渐靠近平衡位置,且速度逐渐增大;若不基于当前速度修正中间推力,以减小该当前速度的大小,则在当前位置与最大位置之间的间距等于第二预设距离时会存在当前速度较大的情况,此时直接切换至功率控制器,容易出现较大的突变振荡。本发明实施基于当前速度确定中间推力是另一种形式的限位保护,通过减小该当前速度的大小,能够以较小的速度值通过间隔为第二预设距离的位置,从而能够比较平稳地过渡至由功率控制器控制波浪发电装置。
[0090] 本发明实施例中,若当前位置与最大位置之间的间距等于第二预设距离,此时可以确定不需要限位保护,也可以基于当前速度确定中间推力,本实施例对此不做限定。其中,该第二预设距离与上述第一预设距离相似,其可以为预设的固定值,也可以是与最大位置Zm相关的值。例如,第一预设距离为0.05Zm,第二预设距离可以为0.1Zm等。
[0091] 可选地,为了简化限位保护的过程,本发明实施例对上述的触发限位保护状态进行了细化,该触发限位保护状态包括“触发限位保护、且未实现限位保护的状态”和“触发限位保护、且已实现限位保护的状态”。本发明实施例以波浪发电装置不具有靠近最大位置的趋势来区分两种触发限位保护状态;具体地,若当前触发了限位保护,且波浪发电装置仍然具有靠近最大位置的趋势,则说明此时需要触发限位保护,且限位保护的作用还未完全达到,即暂时还未实现限位保护;相反地,若当前触发了限位保护,且波浪发电装置不具有靠近最大位置的趋势,说明限位保护已经起到了作用,此时可以认为已经实现了限位保护,此时可以确定不再需要限位保护(例如执行上述步骤400中将初始推力作为中间推力的过程),或者,也可以进行过渡控制,即执行步骤3064中基于当前速度确定用于减小当前速度的大小的中间推力的过程。
[0092] 具体地,参见图7所示,上述步骤305“在当前的系统状态为触发限位保护状态的情况下,若波浪发电装置具有靠近最大位置的趋势,确定需要限位保护”包括步骤3051‑3052,可选地,上述步骤305还可以包括步骤3053:
[0093] 步骤3051:在当前的系统状态为触发限位保护、且未实现限位保护状态的情况下,若波浪发电装置具有靠近最大位置的趋势,确定需要限位保护。
[0094] 本发明实施例中,在当前的系统状态为触发限位保护、且未实现限位保护状态的情况下,若波浪发电装置具有靠近最大位置的趋势,此时说明当前仍然未完全实现限位保护(因为波浪发电装置还在靠近最大位置),此时需要限位保护,即执行上述步骤3051,并通过执行步骤400中基于当前运行状态确定符合限位要求的中间推力的过程,尽力增大当前位置与最大位置的趋势,以使得波浪发电装置能够远离该最大位置。此时的系统状态不需要发生变化。
[0095] 步骤3052:若波浪发电装置不具有靠近最大位置的趋势、且当前位置与最大位置之间的间距大于第二预设距离,确定不需要限位保护,并将当前的系统状态更新为正常状态;该第二预设距离大于第一预设距离。
[0096] 步骤3053:若波浪发电装置不具有靠近最大位置的趋势、且当前位置与最大位置之间的间距小于第二预设距离,基于当前速度确定用于减小所述当前速度的大小的中间推力,并将当前的系统状态更新为触发限位保护、且已实现限位保护状态。
[0097] 本发明实施例中,在当前的系统状态为触发限位保护、且未实现限位保护状态的情况下,若波浪发电装置不具有靠近最大位置的趋势,说明限位保护已经起到了作用,此时通过判断间距是否小于第二预设距离来确定是否不需要限位保护。具体地,如步骤3052所示,若当前位置与最大位置之间的间距大于第二预设距离,说明此时限位保护已起作用,且之后不再需要限位保护,故此时不需要限位保护,其将系统状态更新为正常状态,以表示之后暂时不需要限位保护。
[0098] 相反地,若当前位置与最大位置之间的间距小于第二预设距离,说明此时虽然限位保护已经起作用,但仍然存在重新进入限位保护过程的风险,此时与上述步骤3064相似,基于当前速度确定用于减小当前速度的大小的中间推力;此外,还将当前的系统状态从“触发限位保护、且未实现限位保护状态”更新为“触发限位保护、且已实现限位保护状态”,以方便后续其他轮次进行处理。
[0099] 并且,上述步骤306“若波浪发电装置不具有靠近最大位置的趋势,确定不需要限位保护,并将当前的系统状态更新为正常状态”包括:
[0100] 步骤3066:在当前的系统状态为触发限位保护、且已实现限位保护状态的情况下,若当前位置与最大位置之间的间距小于第二预设距离,确定不需要限位保护,并将当前的系统状态更新为正常状态。
[0101] 步骤3068:若当前位置与最大位置之间的间距大于第二预设距离,基于当前速度确定用于减小所述当前速度的大小的中间推力。
[0102] 本发明实施例中,若当前的系统状态为触发限位保护、且已实现限位保护状态,可以认为波浪发电装置不具有靠近最大位置的趋势,即此时不需要判断波浪发电装置不需要判断是否具有靠近最大位置的趋势,可以直接判断当前位置与最大位置之间的间距是否小于第二预设距离,如图7所示直接执行步骤3061。若间距小于第二预设距离,则与上述步骤3064相似,基于当前速度确定用于减小所述当前速度的大小的中间推力,且此时不需要更新系统状态。若间距大于第二预设距离,则与上述步骤3052相似,也可以确定不需要限位保护,并将当前的系统状态更新为正常状态。
[0103] 本发明实施例通过将系统状态分为正常状态,触发限位保护、且未实现限位保护状态,触发限位保护、且已实现限位保护状态三种,可以在当前轮次快速确定是否需要限位保护,以及是否需要基于当前速度确定中间推力。
[0104] 下面通过一个实施例详细介绍该限幅保护方法。本发明实施例先确定符合限位要求的中间推力,之后通过判断该中间推力是否符合限功率要求以及限推力要求来得到所需的实际推力。参见图8所示,该方法包括:
[0105] 步骤801:预先设置最大位置Zm、最大功率Pm、最大推力Fm,设置位置临界系数a1、a2,设置控制参数R、K、ki、kp、eps、Ts,初始化系统状态S=0,初始化累积差buffer=0。
[0106] 本发明实施例中,预先设置限幅保护过程中所用到的参数。其中,位置临界系数a1、a2分别用于表示第一预设距离和第二预设距离。本实施例以不同的S值表示不同的系统状态:S=0表示正常状态(其也为初始值),S=1或2表示触发限位保护状态,且S=1表示触发限位保护、且未实现限位保护的状态,S=2表示触发限位保护、且已实现限位保护的状态。本实施例中的累积差用buffer表示,其初始值为0。
[0107] 步骤802:采集在当前时刻,功率控制器确定的初始推力fgr0,以及波浪发电装置的当前位置z和当前速度v;令实际推力fgr=fgr0。
[0108] 本发明实施例中,步骤802‑步骤818表示当前轮的限幅保护的过程,在当前轮中以fgr表示实际推力,且实际推力的初始值为fgr0。
[0109] 步骤803:确定当前的系统状态S。
[0110] 如上所述,用三个不同的值0、1、2表示三种不同的系统状态,并分别执行相应的处理过程。如图8所示,在S=0时(正常状态),执行步骤804,在S=1时(触发限位保护、且未实现限位保护的状态),执行步骤804,在S=2时(触发限位保护、且已实现限位保护的状态),执行步骤811。
[0111] 步骤804:判断是否:|z|>=a1×Zm,且z×v>0;若是,则执行步骤805,否则执行步骤807。
[0112] 本发明实施例以位置临界系数a1表示第一预设距离,该第一预设距离为(1‑a1)×Zm;例如,a1=0.95,则第一预设距离为0.05Zm。类似地,以位置临界系数a2表示第二预设距离;其中,由于第二预设距离大于第一预设距离,该位置临界系数a2小于位置临界系数a1。例如,a2=0.9。
[0113] 并且,以在当前位置z与当前速度v同向的情况下(即z×v>0),确定波浪发电装置具有远离平衡位置的趋势。若步骤804的判断结果为是,则说明需要限位保护,否则不需要限位保护。
[0114] 步骤805:令S=1。
[0115] 在需要限位保护的情况下,将系统状态更新为触发限位保护、且未实现限位保护的状态,即S=1。
[0116] 步骤806:基于间距和当前速度确定用于增大间距的中间推力fmid,并将实际推力更新为该中间推力,令fgr=fmid。即,e=K×(Zm‑|z|)×sign(z)‑v,buffer+=ki×e×Ts,fgr=kp×e+buffer。
[0117] 其中,可以基于上述步骤B11‑B13描述的方式确定中间推力e=K×(Zm‑|z|)×sign(z)‑v,buffer+=ki×e×Ts,fmid=kp×e+buffer,进而更新实际推力fgr=fmid。其中的“+=”表示累加运算。
[0118] 步骤807:令buffer=0。
[0119] 本实施例中,在基于步骤804确定不需要限位保护的情况下,即可认为初始推力fgr0符合限位要求,此时暂时确定的实际推力fgr(即中间推力)为该初始推力fgr0。并且,由于此时不需要限位保护,累积差可以归零,即buffer=0。其中,由于在正常状态(S=0)时,上一轮可以将该累积差buffer归零,故在当前轮可以不再次归零,即可以不执行该步骤807,具体可基于实际情况而定。
[0120] 步骤808:判断是否:v×z<0,或abs(v)
[0121] 本实施例以当前位置z与当前速度v是否同向,或者当前速度v是否足够小(即当前是否静止)来确定波浪发电装置是否不具有靠近最大位置的趋势。若步骤808的执行结果为是,则说明该波浪发电装置不再靠近最大位置,即限位保护生效,之后可以判断间距是否小于第二预设距离(即步骤811)。若步骤808的执行结果为否,则说明当然仍然需要限位保护,此时不需要更新系统状态,即不需要执行步骤805,故此时可以直接执行步骤806。
[0122] 步骤809:令S=2。
[0123] 步骤810:另buffer=0。
[0124] 本发明实施例中,若限位保护生效,则可以更新系统状态,即令S=2;并且还需要重置累积差,即令累积差buffer归零。其中,本实施对步骤809、810、811的执行顺序不做限定,例如,步骤809可以在步骤810与步骤811之间执行,也可以在步骤811与步骤812之间执行。
[0125] 步骤811:判断是否:|z|>a2×Zm;若是,则执行步骤812,否则执行步骤813。
[0126] 步骤812:fgr=‑R×v。
[0127] 步骤813:令S=0。
[0128] 本发明实施例中,若步骤811的判断结果为是,则说明当前位置与最大位置之间的间距小于第二预设距离,此时需要基于确定用于减小当前速度的大小的中间推力,即fmid=‑R×v;由于本实施例直接用实际推力fgr代指中间推力,即此时可以将实际推力fgr更新为fgr=‑R×v。若步骤811的判断结果为否,说明此时已不需要限位保护,即可以直接用功率控制器来控制波浪发电装置,可以初始化系统状态,即令S=0。
[0129] 并且,如图8所示,在当前的系统状态为触发限位保护、且已实现限位保护的状态,即S=2时,可以直接执行上述步骤811。
[0130] 步骤814:判断是否:|fgr×v|>Pm;若是,则执行步骤815,否则执行步骤818。
[0131] 步骤815:fgr=|Pm/v|×sign(fgr)。
[0132] 本发明实施例中,经上述步骤802‑813后,所确定的实际推力fgr为符合限位要求的推力。若该实际推力fgr满足:|fgr×v|>Pm,则说明该实际推力fgr会超过最大功率Pm,此时需要符合限功率要求的推力,即不超过最大功率的推力,故此时可以将该实际推力fgr更新为fgr=|Pm/v|×sign(fgr),更新后的实际推力fgr为不超过最大功率时所允许的最大的推力。
[0133] 步骤816:判断是否:|fgr|>Fm;若是,则执行步骤817,否则执行步骤818。
[0134] 步骤817:fgr=Fm×sign(fgr)。
[0135] 与上述步骤814‑815相似,若此时的实际推力fgr满足:|fgr|>Fm,则说明该实际推力fgr超出了最大推力Fm,故此时需要将实际推力fgr更新为最大推力Fm,即fgr=Fm×sign(fgr)。上述步骤815和步骤817中的符号函数sign(fgr)均用于保证最终确定的实际推力的方向正确。
[0136] 步骤818:将此时确定的fgr作为最终的实际推力。
[0137] 本发明实施例中,上述步骤802‑818为一轮的限位保护过程,该限位保护过程可以多轮重复执行。其中,步骤802‑813实现限位保护,步骤814‑815实现限功率保护,步骤816‑817实现限推力保护,使得最终确定的实际推力fgr符合限位要求、限功率要求以及限推力要求。其中,本实施例对限功率保护和限推力保护的执行顺序不做限定,即不限定步骤814‑
815与步骤816‑817的执行顺序。
[0138] 上文详细描述了本发明实施例提供的波浪发电装置的限幅保护方法,该方法也可以通过相应的装置实现,下面详细描述本发明实施例提供的波浪发电装置的限幅保护装置。
[0139] 图9示出了本发明实施例所提供的一种波浪发电装置的限幅保护装置的结构示意图。如图9所示,该波浪发电装置的限幅保护装置包括:
[0140] 获取模块91,用于获取功率控制器当前确定的初始推力,以及波浪发电装置的当前运行状态,所述当前运行状态包括当前位置和当前速度;
[0141] 限位保护模块92,用于在基于所述当前运行状态确定需要限位保护的情况下,基于所述当前运行状态确定符合限位要求的中间推力;在基于所述当前运行状态确定不需要限位保护的情况下,将所述初始推力作为中间推力;
[0142] 限功率推力保护模块93,用于基于所述中间推力确定符合限功率要求以及限推力要求的实际推力;在所述中间推力超出限功率要求和/或限推力要求的情况下,所述实际推力为不超过所述中间推力,且符合所述符合限功率要求以及限推力要求的力;在所述中间推力符合限功率要求以及限推力要求的情况下,所述实际推力为所述中间推力。
[0143] 可选地,该装置还包括:限位判断模块;
[0144] 所述限位判断模块用于,在所述波浪发电装置具有靠近最大位置的趋势、且所述当前位置与所述最大位置之间的间距小于第一预设距离的情况下,确定需要限位保护。
[0145] 可选地,所述限位判断模块还用于,在所述波浪发电装置不具有靠近最大位置的趋势、或者所述当前位置与最大位置之间的间距大于第一预设距离的情况下,确定不需要限位保护。
[0146] 可选地,所述限位判断模块还用于,在确定是否需要限位保护之前确定当前的系统状态,所述系统状态包括正常状态和触发限位保护状态,且所述系统状态的初始值为所述正常状态;
[0147] 在所述当前的系统状态为所述正常状态的情况下,确定是否需要限位保护,并在确定需要限位保护的情况下,将所述当前的系统状态更新为所述触发限位保护状态;
[0148] 在所述当前的系统状态为所述触发限位保护状态的情况下,若所述波浪发电装置具有靠近最大位置的趋势,确定需要限位保护;若所述波浪发电装置不具有靠近最大位置的趋势,确定不需要限位保护,并将所述当前的系统状态更新为所述正常状态。
[0149] 可选地,若所述波浪发电装置不具有靠近最大位置的趋势,所述限位判断模块确定不需要限位保护,并将所述当前的系统状态更新为所述正常状态,包括:
[0150] 在所述当前的系统状态为所述触发限位保护状态的情况下,若所述波浪发电装置不具有靠近最大位置的趋势、且所述当前位置与最大位置之间的间距大于第二预设距离,确定不需要限位保护,并将所述当前的系统状态更新为所述正常状态;所述第二预设距离大于所述第一预设距离;
[0151] 在所述当前的系统状态为所述触发限位保护状态的情况下,若所述波浪发电装置不具有靠近最大位置的趋势、且所述当前位置与最大位置之间的间距小于第二预设距离,基于所述当前速度确定用于减小所述当前速度的大小的中间推力。
[0152] 可选地,所述触发限位保护状态包括触发限位保护、且未实现限位保护的状态和触发限位保护、且已实现限位保护的状态;
[0153] 所述在所述当前的系统状态为所述触发限位保护状态的情况下,若所述波浪发电装置具有靠近最大位置的趋势,确定需要限位保护;若所述波浪发电装置不具有靠近最大位置的趋势,确定不需要限位保护,并将所述当前的系统状态更新为所述正常状态,包括:
[0154] 在所述当前的系统状态为所述触发限位保护、且未实现限位保护状态的情况下,若所述波浪发电装置具有靠近最大位置的趋势,确定需要限位保护;若所述波浪发电装置不具有靠近最大位置的趋势、且所述当前位置与最大位置之间的间距大于第二预设距离,确定不需要限位保护,并将所述当前的系统状态更新为所述正常状态;所述第二预设距离大于所述第一预设距离;
[0155] 在所述当前的系统状态为所述触发限位保护、且已实现限位保护状态的情况下,若所述当前位置与最大位置之间的间距大于第二预设距离,确定不需要限位保护,并将所述当前的系统状态更新为所述正常状态;若所述当前位置与最大位置之间的间距小于第二预设距离,基于所述当前速度确定用于减小所述当前速度的大小的中间推力。
[0156] 可选地,所述限位保护模块92基于所述当前运行状态确定符合限位要求的中间推力,包括:
[0157] 确定所述当前位置与预设的最大位置之间的间距,基于所述间距和所述当前速度确定用于增大所述间距的中间推力;所述中间推力的大小与所述间距的大小之间为负相关关系,与所述当前速度的大小之间为正相关关系。
[0158] 可选地,所述限位保护模块92基于所述间距和所述当前速度确定用于增大所述间距的中间推力,包括:
[0159] 确定当前的速度差,且所述速度差e满足:
[0160] e=K×(Zm‑|z|)×sign(z)‑v;
[0161] 基于所述速度差,以累加的方式对累积差进行更新,且更新后的累积差Buffer满足:
[0162] Buffer=ki×e×Ts+Buffer';
[0163] 确定用于增大所述间距的中间推力,且所述中间推力fmid满足:
[0164] fmid=kp×e+Buffer;
[0165] 其中,K为预设的调整参数,Zm为所述最大位置,z为所述当前位置,v为所述当前速度,sign()表示符号函数;ki为预设的历史误差权重系数,Ts为控制器的离散控制周期,Buffer'为上轮确定的累积差;kp为预设的瞬时误差权重系数。
[0166] 可选地,所述限功率推力保护模块93基于所述中间推力确定符合限功率要求以及限推力要求的实际推力,包括:
[0167] 将所述中间推力、不超过最大功率的推力、预设的最大推力三者中具有最小绝对值的推力作为与所述中间推力同向的实际推力;
[0168] 所述不超过最大功率的推力符合所述限功率要求,所述最大推力符合所述限推力要求。
[0169] 此外,本发明实施例还提供了一种电子设备,包括总线、收发器、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,该收发器、该存储器和处理器分别通过总线相连,计算机程序被处理器执行时实现上述波浪发电装置的限幅保护方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
[0170] 具体的,参见图10所示,本发明实施例还提供了一种电子设备,该电子设备包括总线1110、处理器1120、收发器1130、总线接口1140、存储器1150和用户接口1160。
[0171] 在本发明实施例中,该电子设备还包括:存储在存储器1150上并可在处理器1120上运行的计算机程序,计算机程序被处理器1120执行时实现上述波浪发电装置的限幅保护方法实施例的各个过程。
[0172] 收发器1130,用于在处理器1120的控制下接收和发送数据。
[0173] 本发明实施例中,总线架构(用总线1110来代表),总线1110可以包括任意数量互联的总线和桥,总线1110将包括由处理器1120代表的一个或多个处理器与存储器1150代表的存储器的各种电路连接在一起。
[0174] 总线1110表示若干类型的总线结构中的任何一种总线结构中的一个或多个,包括存储器总线以及存储器控制器、外围总线、加速图形端口(Accelerate Graphical Port,AGP)、处理器或使用各种总线体系结构中的任意总线结构的局域总线。作为示例而非限制,这样的体系结构包括:工业标准体系结构(Industry Standard Architecture,ISA)总线、微通道体系结构(Micro Channel Architecture,MCA)总线、扩展ISA(Enhanced ISA,EISA)总线、视频电子标准协会(Video Electronics Standards Association,VESA)、外围部件互连(Peripheral Component Interconnect,PCI)总线。
[0175] 处理器1120可以是一种集成电路芯片,具有信号处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中硬件的集成逻辑电路或软件形式的指令完成。上述的处理器包括:通用处理器、中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、可编程逻辑阵列(Programmable Logic Array,PLA)、微控制单元(Microcontroller Unit,MCU)或其他可编程逻辑器件、分立门、晶体管逻辑器件、分立硬件组件。可以实现或执行本发明实施例中公开的各方法、步骤及逻辑框图。例如,处理器可以是单核处理器或多核处理器,处理器可以集成于单颗芯片或位于多颗不同的芯片。
[0176] 处理器1120可以是微处理器或任何常规的处理器。结合本发明实施例所公开的方法步骤可以直接由硬件译码处理器执行完成,或者由译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(Random Access Memory,RAM)、闪存(Flash Memory)、只读存储器(Read‑Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、寄存器等本领域公知的可读存储介质中。所述可读存储介质位于存储器中,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
[0177] 总线1110还可以将,例如外围设备、稳压器或功率管理电路等各种其他电路连接在一起,总线接口1140在总线1110和收发器1130之间提供接口,这些都是本领域所公知的。因此,本发明实施例不再对其进行进一步描述。
[0178] 收发器1130可以是一个元件,也可以是多个元件,例如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。例如:收发器1130从其他设备接收外部数据,收发器1130用于将处理器1120处理后的数据发送给其他设备。取决于计算机系统的性质,还可以提供用户接口1160,例如:触摸屏、物理键盘、显示器、鼠标、扬声器、麦克风、轨迹球、操纵杆、触控笔。
[0179] 应理解,在本发明实施例中,存储器1150可进一步包括相对于处理器1120远程设置的存储器,这些远程设置的存储器可以通过网络连接至服务器。上述网络的一个或多个部分可以是自组织网络(ad hoc network)、内联网(intranet)、外联网(extranet)、虚拟专用网(VPN)、局域网(LAN)、无线局域网(WLAN)、广域网(WAN)、无线广域网(WWAN)、城域网(MAN)、互联网(Internet)、公共交换电话网(PSTN)、普通老式电话业务网(POTS)、蜂窝电话网、无线网络、无线保真(Wi‑Fi)网络以及两个或更多个上述网络的组合。例如,蜂窝电话网和无线网络可以是全球移动通信(GSM)系统、码分多址(CDMA)系统、全球微波互联接入(WiMAX)系统、通用分组无线业务(GPRS)系统、宽带码分多址(WCDMA)系统、长期演进(LTE)系统、LTE频分双工(FDD)系统、LTE时分双工(TDD)系统、先进长期演进(LTE‑A)系统、通用移动通信(UMTS)系统、增强移动宽带(Enhance Mobile Broadband,eMBB)系统、海量机器类通信(massive Machine Type of Communication,mMTC)系统、超可靠低时延通信(Ultra Reliable Low Latency Communications,uRLLC)系统等。
[0180] 应理解,本发明实施例中的存储器1150可以是易失性存储器或非易失性存储器,或可包括易失性存储器和非易失性存储器两者。其中,非易失性存储器包括:只读存储器(Read‑Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存(Flash Memory)。
[0181] 易失性存储器包括:随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如:静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本发明实施例描述的电子设备的存储器1150包括但不限于上述和任意其他适合类型的存储器。
[0182] 在本发明实施例中,存储器1150存储了操作系统1151和应用程序1152的如下元素:可执行模块、数据结构,或者其子集,或者其扩展集。
[0183] 具体而言,操作系统1151包含各种系统程序,例如:框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序1152包含各种应用程序,例如:媒体播放器(Media Player)、浏览器(Browser),用于实现各种应用业务。实现本发明实施例方法的程序可以包含在应用程序1152中。应用程序1152包括:小程序、对象、组件、逻辑、数据结构以及其他执行特定任务或实现特定抽象数据类型的计算机系统可执行指令。
[0184] 此外,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述波浪发电装置的限幅保护方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
[0185] 计算机可读存储介质包括:永久性和非永久性、可移动和非可移动媒体,是可以保留和存储供指令执行设备所使用指令的有形设备。计算机可读存储介质包括:电子存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备以及上述任意合适的组合。计算机可读存储介质包括:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、非易失性随机存取存储器(NVRAM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、光盘只读存储器(CD‑ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带存储、磁带磁盘存储或其他磁性存储设备、记忆棒、机械编码装置(例如在其上记录有指令的凹槽中的穿孔卡或凸起结构)或任何其他非传输介质、可用于存储可以被计算设备访问的信息。按照本发明实施例中的界定,计算机可读存储介质不包括暂时信号本身,例如无线电波或其他自由传播的电磁波、通过波导或其他传输介质传播的电磁波(例如穿过光纤电缆的光脉冲)或通过导线传输的电信号。
[0186] 在本申请所提供的几个实施例中,应该理解到,所披露的装置、电子设备和方法,可以通过其他的方式实现。例如,以上描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的、机械的或其他的形式连接。
[0187] 所述作为分离部件说明的单元可以是或也可以不是物理上分开的,作为单元显示的部件可以是或也可以不是物理单元,既可以位于一个位置,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或全部单元来解决本发明实施例方案要解决的问题。
[0188] 另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
[0189] 所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术作出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(包括:个人计算机、服务器、数据中心或其他网络设备)执行本发明各个实施例所述方法的全部或部分步骤。而上述存储介质包括如前述所列举的各种可以存储程序代码的介质。
[0190] 在本发明实施例的描述中,所属技术领域的技术人员应当知道,本发明实施例可以实现为方法、装置、电子设备及计算机可读存储介质。因此,本发明实施例可以具体实现为以下形式:完全的硬件、完全的软件(包括固件、驻留软件、微代码等)、硬件和软件结合的形式。此外,在一些实施例中,本发明实施例还可以实现为在一个或多个计算机可读存储介质中的计算机程序产品的形式,该计算机可读存储介质中包含计算机程序代码。
[0191] 上述计算机可读存储介质可以采用一个或多个计算机可读存储介质的任意组合。计算机可读存储介质包括:电、磁、光、电磁、红外或半导体的系统、装置或器件,或者以上任意的组合。计算机可读存储介质更具体的例子包括:便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、闪存(Flash Memory)、光纤、光盘只读存储器(CD‑ROM)、光存储器件、磁存储器件或以上任意组合。在本发明实施例中,计算机可读存储介质可以是任意包含或存储程序的有形介质,该程序可以被指令执行系统、装置、器件使用或与其结合使用。
[0192] 上述计算机可读存储介质包含的计算机程序代码可以用任意适当的介质传输,包括:无线、电线、光缆、射频(Radio Frequency,RF)或者以上任意合适的组合。
[0193] 可以以汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、集成电路配置数据或以一种或多种程序设计语言或其组合来编写用于执行本发明实施例操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,例如:Java、Smalltalk、C++,还包括常规的过程式程序设计语言,例如:C语言或类似的程序设计语言。计算机程序代码可以完全的在用户计算机上执行、部分的在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行以及完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括:局域网(LAN)或广域网(WAN),可以连接到用户计算机,也可以连接到外部计算机。
[0194] 本发明实施例通过流程图和/或方框图描述所提供的方法、装置、电子设备。
[0195] 应当理解,流程图和/或方框图的每个方框以及流程图和/或方框图中各方框的组合,都可以由计算机可读程序指令实现。这些计算机可读程序指令可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,从而生产出一种机器,这些计算机可读程序指令通过计算机或其他可编程数据处理装置执行,产生了实现流程图和/或方框图中的方框规定的功能/操作的装置。
[0196] 也可以将这些计算机可读程序指令存储在能使得计算机或其他可编程数据处理装置以特定方式工作的计算机可读存储介质中。这样,存储在计算机可读存储介质中的指令就产生出一个包括实现流程图和/或方框图中的方框规定的功能/操作的指令装置产品。
[0197] 也可以将计算机可读程序指令加载到计算机、其他可编程数据处理装置或其他设备上,使得在计算机、其他可编程数据处理装置或其他设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机或其他可编程数据处理装置上执行的指令能够提供实现流程图和/或方框图中的方框规定的功能/操作的过程。
[0198] 以上所述,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例披露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本发明实施例的保护范围应以权利要求的保护范围为准。