一种纳米粉体改性碳化硅-碳化硼复相陶瓷及其制备方法转让专利

申请号 : CN202210336523.8

文献号 : CN114591086B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 孙孟勇杨双燕张武高晓菊李国斌尹飞曲俊峰童鹤郭敏栾承华

申请人 : 中国兵器工业第五二研究所烟台分所有限责任公司

摘要 :

本发明公开了一种纳米粉体改性碳化硅‑碳化硼复相陶瓷,按照质量百分比计,包括:碳化硅粉体与碳化硼粉体90wt%~98wt%,碳粉1wt%~5wt%,氧化锆粉体1wt%~5wt%,纳米石墨烯粉体1wt%~5wt%;其中,碳化硅粉体与碳化硼粉体的质量比为1:4~4:1;碳化硅粉体包括纳米碳化硅粉体与微米碳化硅粉体,纳米碳化硅粉体质量为5wt%~20wt%,碳化硼粉体包括纳米碳化硼粉体与微米碳化硼粉体,纳米碳化硼粉体粉体质量为5wt%~20wt%。本发明还提供了上述复相陶瓷的制备方法,包括步骤:(1)一次纳米粉体混合;(2)二次粉体混合;(3)喷雾造粒;(4)压力成型;(5)预烧结;(6)终烧结。本发明能够制备得到硬度、强度均得到提高的SiC‑B4C复相陶瓷,提高复相陶瓷性能的均匀性,且烧结温度低,制备效率提高。

权利要求 :

1.一种纳米粉体改性碳化硅‑碳化硼复相陶瓷,其特征在于,按照质量百分比计,所述复相陶瓷包括:其中,所述碳化硅粉体与碳化硼粉体的质量比为1:4~4:1;

所述碳化硅粉体包括纳米碳化硅粉体与微米碳化硅粉体,所述纳米碳化硅粉体质量为

5wt%~20wt%,所述碳化硼粉体包括纳米碳化硼粉体与微米碳化硼粉体,所述纳米碳化硼粉体质量为5wt%~20wt%;

所述纳米粉体改性碳化硅‑碳化硼复相陶瓷的制备方法,包括以下步骤:

(1)一次纳米粉体混合:根据质量百分比,将所述纳米碳化硅粉体、纳米碳化硼粉体、碳粉、纳米石墨烯粉体与去离子水、分散剂进行一次球磨混合,得到预浆料;

(2)二次粉体混合:根据质量百分比,向步骤(1)所得预浆料中添加所述氧化锆粉体、微米碳化硅粉体与微米碳化硼粉体,并添加有机粘结剂,按照设计的球料比、液料比补充混合介质后进行二次球磨混合,制得陶瓷浆料;

(3)喷雾造粒:将步骤(2)制得的陶瓷浆料进行喷雾造粒,控制喷雾压力、进风温度、出风温度,制备得到造粒粉;

(4)压力成型:将步骤(3)得到的造粒粉进行压力成型制得陶瓷素坯;

(5)预烧结:将步骤(4)得到的陶瓷素坯放入高温真空/气氛烧结炉中进行预烧结,然后随炉冷却至500℃‑900℃;

(6)终烧结:将所述陶瓷素坯由500℃‑900℃快速升温至终烧温度,保温一定时间后随炉冷却至室温,得到所述纳米粉体改性碳化硅‑碳化硼复相陶瓷。

2.如权利要求1所述的纳米粉体改性碳化硅‑碳化硼复相陶瓷,其特征在于,所述纳米碳化硅粉体与的粒度为50nm~100nm,所述微米碳化硅粉体的粒度为0.5~1.0μm。

3.如权利要求1所述的纳米粉体改性碳化硅‑碳化硼复相陶瓷,其特征在于,所述纳米碳化硼粉体的粒度为50nm~100nm,所述微米碳化硼粉体的粒度为0.5~1.0μm。

4.如权利要求1所述的纳米粉体改性碳化硅‑碳化硼复相陶瓷,其特征在于,所述氧化锆粉体的粒度为0.5μm~0.8μm,所述碳粉的粒度为20nm~100nm。

5.如权利要求1所述的纳米粉体改性碳化硅‑碳化硼复相陶瓷,其特征在于,所述纳米石墨烯粉体的纯度均≥99%,所述石墨烯为多层石墨烯,所述石墨烯的厚度为30nm~80nm。

6.一种权利要求1‑5中任一项所述的纳米粉体改性碳化硅‑碳化硼复相陶瓷的制备方法,其特征在于,包括以下步骤:(1)一次纳米粉体混合:根据质量百分比,将所述纳米碳化硅粉体、纳米碳化硼粉体、碳粉、纳米石墨烯粉体与去离子水、分散剂进行一次球磨混合,得到预浆料;

(2)二次粉体混合:根据质量百分比,向步骤(1)所得预浆料中添加所述氧化锆粉体、微米碳化硅粉体与微米碳化硼粉体,并添加有机粘结剂,按照设计的球料比、液料比补充混合介质后进行二次球磨混合,制得陶瓷浆料;

(3)喷雾造粒:将步骤(2)制得的陶瓷浆料进行喷雾造粒,控制喷雾压力、进风温度、出风温度,制备得到造粒粉;

(4)压力成型:将步骤(3)得到的造粒粉进行压力成型制得陶瓷素坯;

(5)预烧结:将步骤(4)得到的陶瓷素坯放入高温真空/气氛烧结炉中进行预烧结,然后随炉冷却至500℃‑900℃;

(6)终烧结:将所述陶瓷素坯由500℃‑900℃快速升温至终烧温度,保温一定时间后随炉冷却至室温,得到所述纳米粉体改性碳化硅‑碳化硼复相陶瓷。

7.如权利要求6所述的纳米粉体改性碳化硅‑碳化硼复相陶瓷的制备方法,其特征在于,步骤(1)中,所述一次球磨混合的时间为6‑10h,所述分散剂为聚丙烯酸胺,按照质量百分比,所述聚丙烯酸胺的添加量为0.1‑0.8%;

步骤(2)中,所述二次球磨混合的时间为10‑20h,所述有机粘结剂为水性酚醛树脂溶液,按照质量百分比,所述水性酚醛树脂溶液的添加量为1‑3%。

8.如权利要求6所述的纳米粉体改性碳化硅‑碳化硼复相陶瓷的制备方法,其特征在于,步骤(1)与步骤(2)中,所述一次球磨混合与二次球磨混合的球磨速度为400r/min‑

500r/min,球料比为3:1‑5:1,液料比为1:1‑3:1。

9.如权利要求6所述的纳米粉体改性碳化硅‑碳化硼复相陶瓷的制备方法,其特征在于,步骤(5)中,首先以8‑15℃/min的升温速度缓慢升温至800‑1000℃,保温30‑60min,再以

10‑15℃/min的升温速度升温至1700‑1900℃,保温1‑2h,随炉冷却至500℃‑900℃。

10.如权利要求6所述的纳米粉体改性碳化硅‑碳化硼复相陶瓷的制备方法,其特征在于,步骤(6)中,以15℃‑25℃/min的升温速度快速升温至2000℃‑2100℃,保温1‑2h,随炉冷却至室温。

说明书 :

一种纳米粉体改性碳化硅‑碳化硼复相陶瓷及其制备方法

技术领域

[0001] 本发明涉及抗弹陶瓷材料技术领域,特别涉及一种纳米粉体改性碳化硅‑碳化硼复相陶瓷及其制备方法。

背景技术

[0002] 随着装甲防护领域对防护性能需求的不断提高,抗弹陶瓷材料的种类也越来越多,目前已经应用的有氧化锆增韧氧化铝陶瓷(ZTA)、碳化硅陶瓷(SiC)、碳化硅硼陶瓷(B4C),应用装备主要包括装甲车辆、直升机、人体防护等。
[0003] 目前,装备轻量化的需求使得ZTA陶瓷逐渐被SiC陶瓷替代,又由于B4C较高的价格,使得B4C陶瓷仅应用于直升机防护、人体防护领域,对于需求量最大的装甲车辆防护应用较少,这严重制约了高性能陶瓷在装甲防护领域的应用。因此,提出了SiC‑B4C复相陶瓷,降低密度的同时提高其力学性能。但目前的抗弹陶瓷材料均不能实现抗多发弹的要求,且陶瓷产品性能均一性较差。
[0004] 如中国发明专利申请(申请号200910098949.9,申请日2009.05.22)公开了一种SiC复相陶瓷密封材料及其制备方法,将碳化硅粉、外掺0.1~1wt%的碳粉、0.1~1wt%的碳化硼粉、0.1~3wt%的PVA粘结剂、0.5~1.5wt%的分散剂加入到去离子水中,经球磨混合后对料浆进行喷雾干燥,对得到的粒粉采用140MPa干压和200MPa冷等静压成型,成型后素坯在2000℃~2100℃高温烧结,保温1~1.5小时,烧结得到碳化硅复相陶瓷。
[0005] 如中国发明专利申请(申请号201810528452.5,申请日2018.05.29)公开了一种SiC‑B4C复相陶瓷的制备方法,将5~30wt%碳化硅粉(0.3~0.8μm)、56~90wt%碳化硼粉(0.5~1.0μm)、0.5~5wt%碳粉、0~5wt%硼化锆粉等其他烧结助剂加入分散剂、粘结剂、溶剂等球磨混合后喷雾造粒;将造粒粉干压成型后高温烧结(2050~2250℃),保温30min~1/2
2h,制得SiC‑B4C复相陶瓷,抗弯强度400MPa,断裂韧性5.0MPa·m ,维氏硬度26GPa,其终烧结温度较高,能耗大,效率低,对成本影响较大,且力学性能一般。
[0006] 如中国发明专利申请(申请号200310107765.7,申请日2003.12.19)公开了碳化物复相陶瓷防弹板材料及其陶瓷防弹板的制造方法,碳化硅和碳化硼的质量比为1:20~20:1,这两种粉体占总粉体质量的70%~92%,Al‑Y系添加剂占5.5%~25%,CeO2或La2O3占
0.5%~3%,所述碳化硅‑碳化硼复相陶瓷防弹板的制造方法为:将所有粉体按照比例添加后球磨混合,造粒,成型,最后在氩气气氛烧结炉中进行高温烧结,终烧温度为1750℃~
2050℃,保温4h~8h。
[0007] 上述现有技术中制备得到的SiC‑B4C复相陶瓷的性能并未有较大幅度的提升,硬度低于B4C陶瓷,强度低于SiC陶瓷,且烧结温度高,效率低,抗弹能力的可靠性较低。

发明内容

[0008] 本发明的目的在于解决上述现有技术中存在的技术问题。本发明提供了一种纳米粉体改性碳化硅‑碳化硼复相陶瓷及其制备方法,通过对纳米粉体的选取及各组分含量的调控,得到一种密度可控的纳米改性的高性能复相陶瓷,硬度、强度均得到提高,满足当前装甲防护对材料轻量化、高防护的迫切需求,且烧结温度低,制备效率提高。
[0009] 为解决上述技术问题,本发明的实施方式公开了一种纳米粉体改性碳化硅‑碳化硼复相陶瓷,按照质量百分比计,所述复相陶瓷包括:
[0010]
[0011] 其中,所述碳化硅粉体与碳化硼粉体的质量比为1:4~4:1;
[0012] 所述碳化硅粉体包括纳米碳化硅粉体与微米碳化硅粉体,所述纳米碳化硅粉体质量为5wt%~20wt%,所述碳化硼粉体包括纳米碳化硼粉体与微米碳化硼粉体,所述纳米碳化硼粉体粉体质量为5wt%~20wt%。
[0013] 进一步,所述纳米碳化硅粉体与的粒度为50nm~100nm,所述微米碳化硅粉体的粒度为0.5~1.0μm。
[0014] 进一步,所述纳米碳化硼粉体的粒度为50nm~100nm,所述微米碳化硼粉体的粒度为0.5~1.0μm。
[0015] 进一步,所述氧化锆粉体的粒度为0.5μm~0.8μm,所述碳粉的粒度为20nm~100nm。
[0016] 进一步,所述纳米石墨烯粉体的纯度均≥99%,所述石墨烯为多层石墨烯,所述石墨烯的厚度为30nm~80nm。
[0017] 本发明的实施方式还公开了上述纳米粉体改性碳化硅‑碳化硼复相陶瓷的制备方法,包括以下步骤:
[0018] (1)一次纳米粉体混合:根据质量百分比,将所述纳米碳化硅粉体、纳米碳化硼粉体、碳粉、纳米石墨烯粉体与去离子水、分散剂进行一次球磨混合,得到预浆料;
[0019] 其中,分散剂选择有机铵盐;
[0020] (2)二次粉体混合:根据质量百分比,向步骤(1)所得预浆料中添加所述氧化锆粉体、微米碳化硅粉体与微米碳化硼粉体,并添加有机粘结剂,按照设计的球料比、液料比补充混合介质后进行二次球磨混合,制得陶瓷浆料;
[0021] 其中,有机粘结剂可以选择PVA溶液、水性酚醛树脂溶液、PVB溶液;
[0022] (3)喷雾造粒:将步骤(2)制得的陶瓷浆料进行喷雾造粒,控制喷雾压力为0.1~0.3MPa、进风温度为130℃~160℃、出风温度为70℃~120℃,制备得到粒径为80μm~250μm的造粒粉;
[0023] (4)压力成型:将步骤(3)得到的造粒粉进行压力成型制得陶瓷素坯,根据造粒粉体的流动性与松装密度确定成型压力为150MPa~180MPa,保压时间为10s~20s,脱模后可制得陶瓷素坯;
[0024] (5)预烧结:将步骤(4)得到的陶瓷素坯放入高温真空/气氛烧结炉中进行预烧结,然后随炉冷却至500℃‑900℃;
[0025] (6)终烧结:将所述陶瓷素坯由500℃‑900℃快速升温至终烧温度,保温一定时间后随炉冷却至室温,得到所述纳米粉体改性碳化硅‑碳化硼复相陶瓷。
[0026] 进一步,步骤(1)中,所述一次球磨混合的时间为6‑10h,所述分散剂为聚丙烯酸胺,按照质量百分比,所述聚丙烯酸胺的添加量为0.1‑0.8%;
[0027] 步骤(2)中,所述二次球磨混合的时间为10‑20h,所述有机粘结剂为水性酚醛树脂溶液,按照质量百分比,所述水性酚醛树脂溶液的添加量为1‑3%。
[0028] 进一步,步骤(1)与步骤(2)中,所述一次球磨混合与二次球磨混合的球磨速度为400r/min‑500r/min,球料比为3:1‑5:1,液料比为1:1‑3:1。
[0029] 进一步,步骤(5)中,首先以8‑15℃/min的升温速度缓慢升温至800‑1000℃,保温30‑60min,再以10‑15℃/min的升温速度升温至1700‑1900℃,保温1‑2h,随炉冷却至500℃‑
900℃。
[0030] 进一步,步骤(6)中,在预烧结降温至500℃‑900℃的基础上,以15℃‑25℃/min的升温速度快速升温至2000℃‑2100℃,保温1‑2h,随炉冷却至室温。
[0031] 与现有技术相比,本发明具有如下技术效果:
[0032] (1)纳米粉体颗粒的强韧化效应:纳米颗粒引入陶瓷基体后产生大量的次界面以及可以诱导主裂纹偏转的微裂纹,增加了裂纹扩展路径,吸收更多的弹性应变能,从而提高材料的断裂韧性与强度;
[0033] (2)两步法球磨混料的均匀化效应:纳米粉体的预混合作用可以充分的对纳米颗粒进行分散,使各组分充分混合均匀,进而使得纳米颗粒可以更均匀的弥散在基体相中,使材料性能均一性更好;
[0034] (3)两步法烧结的高性能、低成本效应:陶瓷素坯经预烧结后,可以保持晶粒基本无生长,再进行快速的二次烧结可以防止晶粒过度生长,制备的陶瓷晶粒较小,对应产品的力学性能较好,且极大的减少了高温阶段的保温时间,可节约能耗与时间;
[0035] (4)本发明制备的纳米粉体改性SiC‑B4C复相陶瓷具有轻量化与优异的防弹性能。

具体实施方式

[0036] 以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。虽然本发明的描述将结合较佳实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本发明的权利要求而有可能延伸出的其它选择或改造。为了提供对本发明的深度了解,以下描述中将包含许多具体的细节。本发明也可以不使用这些细节实施。此外,为了避免混乱或模糊本发明的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
[0037] 实施例1
[0038] 一种纳米改性SiC‑B4C复相陶瓷,按照质量百分比计算所述原料的组成及各组分的质量分数:碳化硅粉体与碳化硼粉体的质量比为4:1,两种粉体占总质量的98wt%,粒径20nm的碳粉质量为1wt%,氧化锆粉体质量为1wt%,其中,纳米SiC的粒径为50nm,占SiC粉体的20wt%,微米SiC粒径为0.58μm,微米B4C粒径为0.58μm;
[0039] 制备方法为:
[0040] 第一步、纳米粉体混合球磨:将纳米SiC、纳米碳粉装入球磨罐,添加去离子水、分散剂球磨6h,球磨速度400r/min,其中球料比为3:1,液料比为1:1;其中,分散剂为聚丙烯酸胺,比例为0.25%;
[0041] 第二步、所有粉体混合球磨:在第一步预浆料的基础上,继续添加微米SiC粉与微米碳化硼粉、氧化锆粉,水性酚醛树脂溶液,去离子水,分散剂,按照设计的球料比、液料比补充介质后继续混料12h,可制得最终陶瓷浆料,其中,水性酚醛树脂溶液含量为1%。
[0042] 第三步、陶瓷浆料喷雾造粒:控制喷雾压力为0.1MPa,进风温度为130℃,出风温度为70℃,最终可制备80μm的造粒粉。
[0043] 第四步、陶瓷造粒粉体压力成型:使用成型压力150MPa、保压时间为10s压制陶瓷素坯,脱模后可制得陶瓷素坯。
[0044] 第五步、预烧结:首先以8℃/min升温至800℃,保温30min,再以10℃/min升温至1700℃,保温1h,随炉冷却至500℃;
[0045] 第六步、高温终烧结:在预烧结降温至500℃的基础上,再以15℃/min升温至2000℃,保温1h,随炉冷却至室温,得到纳米粉体改性SiC‑B4C复相陶瓷。
[0046] 经测试,本实施案例制备的纳米粉体改性SiC‑B4C复相陶瓷密度为3.05g/cm3,维氏1/2
硬度为26GPa,弯曲强度为420MPa,断裂韧性为5.0MPa·m 。
[0047] 实施例2
[0048] 一种纳米改性SiC‑B4C复相陶瓷,按照质量百分比计算所述原料的组成及各组分的质量分数:碳化硅粉与碳化硼粉的质量比为1:1,两种粉体占总质量的96wt%,粒径50nm的碳粉质量为2wt%,氧化锆质量为2wt%,其中,纳米B4C的粒度为50nm,占B4C粉体的20wt%,微米B4C粒径为0.8μm,微米SiC粒径为0.8μm;
[0049] 制备方法为:
[0050] 第一步、纳米粉体混合球磨:将纳米B4C、纳米碳粉装入球磨罐,添加去离子水、分散剂球磨8h,球磨速度450r/min,其中球料比为3.5:1,液料比为2:1;其中,分散剂为聚丙烯酸胺,比例为0.5%;
[0051] 第二步、所有粉体混合球磨:在第一步预浆料的基础上,继续添加微米SiC粉与微米碳化硼粉,氧化锆粉,水性酚醛树脂溶液,去离子水,分散剂,按照设计的球料比、液料比补充介质后继续混料15h,可制得最终陶瓷浆料,其中,粘结剂含量为2%;
[0052] 第三步、陶瓷浆料喷雾造粒:控制喷雾压力为0.2MPa,进风温度为150℃,出风温度为110℃,最终可制备150μm的造粒粉;
[0053] 第四步、陶瓷造粒粉体压力成型:使用成型压力165MPa,保压时间为15s压制陶瓷素坯,脱模后可制得陶瓷素坯;
[0054] 第五步、预烧结:首先以10℃/min升温至900℃,保温50min,再以13℃/min升温至1800℃,保温1.5h,随炉冷却至700℃。
[0055] 第六步、高温终烧结:在预烧结降温至700℃基础上,再以20℃/min升温至2050℃,保温1.5h,随炉冷却至室温,得到纳米粉体改性SiC‑B4C复相陶瓷。
[0056] 经测试,本实施案例制备的纳米粉体改性SiC‑B4C复相陶瓷密度为2.8g/cm3,维氏1/2
硬度为28GPa,弯曲强度为480MPa,断裂韧性为5.5MPa·m 。
[0057] 实施例3
[0058] 一种纳米改性SiC‑B4C复相陶瓷,按照质量百分比计算所述原料的组成及各组分的质量分数:碳化硅粉与碳化硼粉的质量比为1:4,两种粉体占总质量的93wt%,粒径50nm的碳粉质量为2wt%,氧化锆质量为2wt%,厚度50nm的石墨烯含量为3wt%;其中,纳米B4C的粒度为70nm,占B4C粉体的20wt%;纳米SiC的粒度为70nm,占SiC粉体的10wt%;微米B4C粒径为1.0μm,微米SiC粒径为1.0μm;
[0059] 制备方法为:
[0060] 第一步、纳米粉体混合球磨:将纳米B4C、纳米碳粉、纳米SiC与纳米石墨烯粉体装入球磨罐,添加去离子水、分散剂球磨10h,球磨速度500r/min,其中球料比为4:1,液料比为2.5:1;其中,分散剂为聚丙烯酸胺,比例为0.8%;
[0061] 第二步、所有粉体混合球磨:在第一步预浆料的基础上,继续添加微米SiC粉与微米碳化硼粉,氧化锆粉,水性酚醛树脂溶液,去离子水,分散剂,按照设计的球料比、液料比补充介质后继续混料18h,可制得最终陶瓷浆料,其中,粘结剂含量为3%;
[0062] 第三步、陶瓷浆料喷雾造粒:控制喷雾压力为0.3MPa,进风温度为160℃,出风温度为130℃,最终可制备100μm的造粒粉;
[0063] 第四步、陶瓷造粒粉体压力成型:使用成型压力180MPa,保压时间为20s压制陶瓷素坯,脱模后可制得陶瓷素坯;
[0064] 第五步、预烧结:首先以12℃/min升温至1000℃,保温60min,再以15℃/min升温至1800℃,保温2h,随炉冷却至900℃;
[0065] 第六步、高温终烧结:在预烧结降温至900℃基础上,再以25℃/min升温至2100℃,保温2h,随炉冷却至室温,得到纳米粉体改性SiC‑B4C复相陶瓷。
[0066] 经测试,本实施案例制备的纳米粉体改性SiC‑B4C复相陶瓷密度为2.64g/cm3,维氏1/2
硬度为29GPa,弯曲强度为500MPa,断裂韧性为6.5MPa·m 。
[0067] 本发明中通过对纳米粉体的选取及各组分含量的调控,可以制备得到密度可控的、且兼顾强度与硬度以及断裂韧性的纳米粉体改性SiC‑B4C复相陶瓷,满足当前装甲防护对材料轻量化、高防护的迫切需求;且本发明复相陶瓷的制备方法采用两步法混料工艺与两步法烧结工艺相结合,通过对纳米粉体的分散、纳米粉体浆料预混合、二次浆料混合、喷雾造粒、模压成型、经慢速中温烧结后,再进行快速高温烧结的工艺,可制备纳米颗粒改性的高性能碳化硅‑碳化硼复相陶瓷,实现纳米颗粒的强韧化效应,提高陶瓷制品的抗弹能力,满足不同装甲防护领域的应用需求;与传统方法相比,本发明的制备方法能够极大地提高复相陶瓷性能的均匀性,提高产品的可靠性,具有抗多发弹的能力,降低成本,适合工业化生产。
[0068] 虽然通过参照本发明的某些优选实施方式,已经对本发明进行了描述,但本领域的普通技术人员应该明白,以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。本领域技术人员可以在形式上和细节上对其作各种改变,包括做出若干简单推演或替换,而不偏离本发明的精神和范围。