一种航天发射场快速增压系统转让专利

申请号 : CN202210377171.0

文献号 : CN114673929B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王磊上官石厉彦忠谢福寿

申请人 : 西安交通大学

摘要 :

一种航天发射场快速增压系统,包括地面储罐,地面储罐的低温液体出口和进液管的入口连接,进液管的出口通过流量调节阀与空浴式汽化器的入口连接;空浴式汽化器的出口与回流管的入口连接,回流管的出口和位于地面储罐的顶部气枕区的消能器连接;地面储罐的低温液体加注口和加注管路连接,加注管路上安装有调节阀;空浴式汽化器的换热管段采用外部光管或外部星型管结构,换热管段内部采用内微肋管;或换热管段前半部分采用内微肋管、后半部分采用直管的组合方式;空浴式汽化器布置于竖直上升管的最底部,或布置在底部水平管;本发明采用微肋,缩短两相流管段,减少竖直上升管的平均流体密度,实现快速产生增压气体,简化自增压系统布置与操作流程。

权利要求 :

1.一种航天发射场快速增压系统,包括地面储罐(1),其特征在于:地面储罐(1)的低温液体出口和进液管(4)的入口连接,进液管(4)的出口通过流量调节阀(5)与空浴式汽化器(6)的入口连接;空浴式汽化器(6)的出口与回流管(7)的入口连接,回流管(7)的出口和位于地面储罐(1)的顶部气枕区(2)的消能器(8)连接;地面储罐(1)的低温液体加注口和加注管路(9)连接,加注管路(9)上安装有调节阀(10);

所述的空浴式汽化器(6)的换热管段采用外部光管或外部星型管结构,换热管段内部采用内微肋管(11);或换热管段前半部分采用内微肋管(11)、后半部分采用直管(13)的组合方式;

所述的空浴式汽化器(6)布置于竖直上升管的最底部,或布置在底部水平管;

所述的内微肋管(11)内设有的微肋(12)采用液压成型或滚动轧机机械加工成型;微肋(12)采用环状肋结构,肋高及肋宽在mm级、肋间距大于50mm;微肋(12)截面形状为矩形或锯齿形。

2.根据权利要求1所述的航天发射场快速增压系统 ,其特征在于:所述的地面储罐(1)内的低温推进剂(3)包括液氢、液氧或液甲烷;当存储液氢时,其两相换热区较短,不易形成反环状流态,因此空浴式汽化器(6)的换热管段微肋(12)间距大,或缩短内微肋管(11)长度,延长直管(13)的长度,从而降低管路流动阻力;当储存液氧、液甲烷时,其两相换热区较长,易于形成反环状流态,因此空浴式汽化器(6)的换热管段微肋(12)间距减小,或延长内微肋管(11)长度,缩短直管(13)的长度,从而强化换热。

3.根据权利要求1所述的航天发射场快速增压系统 ,其特征在于:所述的空浴式汽化器(6)外表面无绝热,材质为铝合金或不锈钢。

4.根据权利要求1所述的航天发射场快速增压系统 ,其特征在于:所述的进液管(4)采用真空绝热管或发泡绝热管结构,管路材质为不锈钢。

5.根据权利要求1所述的航天发射场快速增压系统 ,其特征在于:所述的回流管(7)材质为不锈钢光管,无绝热包裹。

说明书 :

一种航天发射场快速增压系统

技术领域

[0001] 本发明涉及航天发射场低温推进剂加注技术领域,具体涉及一种航天发射场快速增压系统。

背景技术

[0002] 低温推进剂具有高比冲、大推力、无毒、无污染等性能优势,已成为航天运载与空间飞行的首选推进剂。运载火箭发射前,必须通过地面加注系统实现低温推进剂自地面储罐至箭上贮箱的转注。低温推进剂加注过程中,通常是对地面储罐进行增压,在地面储罐与箭上贮箱之间建立压差,在该压差驱动下,实现低温推进剂的挤压式传输。实现对地面储罐的快速增压、稳定增压则是保证低温推进剂可靠加注的关键。
[0003] 地面储罐的增压目标通常是采用自增压系统来实现,自增压系统包括地面储罐、液体输送管、空浴式汽化器、回流管及相关的控制阀件等组成;其中液体输送管通常为绝热管路,用于向空浴式汽化器供给低温推进剂;空浴式汽化器用于实现低温推进剂的完全气化与复温,产生大量的增压气体;回流管用于增压气体注入地面储罐的顶部提供自增压效果。自增压系统中,流体在由液体输送管、空浴式汽化器、回流管所组成的管道内的传输主要利用两竖直管段的流体密度差,其中,下降管内为纯液流动,流体的平均密度偏大,上升管中发生气液两相流与纯气相流动,流体的平均密度偏小,在该流体密度差驱动下,低温推进剂能顺利通过,且在流动过程中还必须克服流动阻力。
[0004] 为了确保自增压系统在任何液位高度下均能正常工作,要求空浴式汽化器的安装位置与低温储罐间必须满足一定的高度差,从而保证即使当低温储罐处于最低液位时,低温推进剂也能顺利通过自增压管道。该高度差的限制给自增压系统的布置方式提供了更高的要求。
[0005] 空浴式汽化器内部管路通常为光管结构,工作时,管内发生从纯液经两相换热到纯气的演化过程;对于低温流体而言,管内流型依次为纯液相、泡状流、反环状流、弥散流、纯气相等,对应换热机制为单相液体对流、核态沸腾、膜态沸腾、单相气体对流等。其中,由于低温推进剂与环境间存在较大温差,低温推进剂传输过程中,大温差导致靠近壁面处形成环状气膜,而核心区仍为液体区,即呈现气包液的反环状流分布。由于低温液体无法接触过热壁面,导致所对应的换热系数远低于过渡沸腾与核态沸腾,进而造成空浴式汽化器内需要更多的换热管长发生反环状流膜态沸腾;一方面,造成空浴式汽化器的换热能力偏弱,另一方面,不充分的换热也会导致自增压系统中竖直上升管段的流体平均密度偏高,驱动压差减小,自增压建立过程滞后或增压能力不足。
[0006] 若能提高空浴式汽化器内部的换热能力,破坏或者抑制反环状流型的发生,则有利于自增压系统的竖直上升管内流体平均密度减小,更易满足自增压系统工作所需的驱动力。在该技术领域,尚未见相关的应用报道。

发明内容

[0007] 为了克服上述现有技术的缺点,本发明的目的在于提供了一种航天发射场快速增压系统,通过在地面储罐自增压系统的空浴式汽化器内采用微肋,缩短两相流管段,减少上升管的平均流体密度,从而实现快速产生增压气体,简化自增压系统布置与操作流程。
[0008] 为了达到上述目的,本发明通过如下技术方案予以实现:
[0009] 一种航天发射场快速增压系统,包括地面储罐1,地面储罐1的低温液体出口和进液管4的入口连接,进液管4的出口通过流量调节阀5与空浴式汽化器6的入口连接;空浴式汽化器6的出口与回流管7的入口连接,回流管7的出口和位于地面储罐1的顶部气枕区2的消能器8连接;地面储罐1的低温液体加注口和加注管路9连接,加注管路9上安装有调节阀10;
[0010] 所述的空浴式汽化器6的换热管段采用外部光管或外部星型管结构,换热管段内部采用内微肋管11;或换热管段前半部分采用内微肋管11、后半部分采用直管13的组合方式;
[0011] 所述的空浴式汽化器6布置于竖直上升管的最底部,或布置在底部水平管。
[0012] 所述的内微肋管11内设有的微肋12采用液压成型或滚动轧机机械加工成型;微肋12采用环状肋结构,肋高及肋宽在mm级、肋间距大于50mm;微肋12截面形状为矩形或锯齿形。
[0013] 所述的地面储罐1内的低温推进剂3包括液氢、液氧或液甲烷;当存储液氢时,其两相换热区较短,不易形成反环状流态,因此空浴式汽化器6的换热管段微肋12间距大,或缩短内微肋管11长度,延长直管13的长度,从而降低管路流动阻力;当储存液氧、液甲烷时,其两相换热区较长,易于形成反环状流态,因此空浴式汽化器6的换热管段微肋12间距减小,或延长内微肋管11长度,缩短直管13的长度,从而强化换热。
[0014] 所述的空浴式汽化器6外表面无绝热,材质为铝合金或不锈钢。
[0015] 所述的进液管4采用采用真空绝热管或发泡绝热管结构,管路材质为不锈钢。
[0016] 所述的回流管7材质为不锈钢光管,无绝热包裹。
[0017] 本发明的有益效果为:
[0018] 考虑到低温推进剂从全液流态渐变为全气相的过程中,由于流体与管壁的大温差,会形成环状气膜包括液柱的反环状流分布,采用微肋破坏反环状流的稳定性,内微肋管11内不发生反环状流或者反环状流段较短,从而显著降低竖直上升管的流体平均密度,则竖直上升管与下降管之间的流体密度差增大,流体能够以更高的流速通过自增压管路系统,产生增压气体,实现快速增压与大气量增压,有利于快速增压与稳定增压;
[0019] 竖直上升管内所发生的换热包括气液相变换热与气体升温过程,采用内微肋管11后,气液相变可在较短管长内完成,更多的管段用于气体升温,即地面储罐顶部的增压气体温度升高,有利于更高效的增压。
[0020] 采用微肋后,竖直上升管与下降管的平均流体密度增大,更容易实现流体循环流动,相较于原有光管结构,空浴式汽化器与地面储罐液位间的高度差的可适度减少,有利于更方便的布置空浴式汽化器的位置;在空浴式汽化器位置固定时,地面储罐可在更低的液位下提供增压效果,能够实现更大的液体转注量。
[0021] 低温推进剂自地面储罐向火箭贮箱加注后,火箭经历较长时间的停放,在火箭起飞前需要对火箭贮箱补加低温推进剂。停放期间,地面储罐需要泄压,保证内部推进剂的温度品质;而在发射前的过冷加注阶段,需要对地面储罐快速增压以满足挤压加注的压力水平,补加阶段对地面储罐的增压速率要求较高;采用本发明可实现增压气体的快速产生与大流量产生,故有利于补加阶段的操作,简化操作流程。
[0022] 所采用的内微肋管11是根据低温两相换热的特殊流型分布而提出,微肋12强化换热作用与常规方式不同,其机理在于干扰反环状流气液界面的稳定性,促进液体更早更快地接触热的壁面,从而达到在较短的管段完成相变的目标。微肋12尺度仅有mm级,且肋间距较大,克服了传统内螺纹管阻力大的缺陷,在实现低温两相换热强化的同时,尽可能实现了阻力的减小。

附图说明

[0023] 图1为本发明的结构示意图。
[0024] 图2为本发明空浴式汽化器6的内微肋管11结构示意图。
[0025] 图3为本发明空浴式汽化器6的内微肋管11/直管13布置形式图。

具体实施方式

[0026] 下面结合实施例和附图对本发明作进一步详细描述。
[0027] 如图1所示,一种航天发射场快速增压系统,包括地面储罐1,地面储罐1的低温液体出口和进液管4的入口连接,进液管4的出口通过流量调节阀5与空浴式汽化器6的入口连接;空浴式汽化器6的出口与回流管7的入口连接,回流管7的出口和位于地面储罐1的顶部气枕区2的消能器8连接;地面储罐1的低温液体加注口和加注管路9连接,加注管路9上安装有调节阀10;
[0028] 如图2、图3所示,所述的空浴式汽化器6外表面无绝热,材质为铝合金或不锈钢;其换热管段采用外部光管或外部星型管结构,换热管段内部采用内微肋管11,如图2所示;或换热管段前半部分采用内微肋管11、后半部分采用直管13的组合方式,如图3所示;
[0029] 所述的空浴式汽化器6布置于竖直上升管的最底部,或布置在底部水平管。
[0030] 如图2所示,所述的内微肋管11内设有的微肋12采用液压成型、滚动轧机机械加工成型等;微肋12采用环状肋结构,肋高及肋宽在mm级、肋间距大于50mm;微肋12截面形状为矩形或锯齿形。
[0031] 所述的地面储罐1内的低温推进剂3包括液氢、液氧、液甲烷等;当存储液氢时,其两相换热区较短,不易形成反环状流态,因此空浴式汽化器6的换热管段微肋12间距较大,或缩短内微肋管11长度,延长直管13的长度,从而降低管路流动阻力;当储存液氧、液甲烷时,其两相换热区较长,易于形成反环状流态,因此空浴式汽化器6的换热管段微肋12间距减小,或延长内微肋管11长度,缩短直管13的长度,从而强化换热。
[0032] 所述的进液管4采用采用真空绝热管或发泡绝热管结构,管路材质为不锈钢。
[0033] 所述的回流管7材质为不锈钢光管,无绝热包裹。
[0034] 本发明的工作原理是:
[0035] 低温推进剂3加注时,需要对地面储罐1进行增压,增压效果由地面储罐1的自增压系统提供;自增压过程中,地面储罐1内的低温推进剂3在重力作用下进入空浴式汽化器6,低温推进剂3与空气换热,产生液体相变与气体温升,气化后的推进剂蒸气通过回流管7、消能器8注入地面储罐1顶部气枕区2,从而实现地面储罐1增压;
[0036] 当低温推进剂3通过空浴式汽化器6时,由于低温推进剂3与空浴式汽化器6的管壁间存在较大温差,造成靠近壁面区生成气膜层,管道中心维持纯液相,即形成气包液的反环状流分布特征。由于气膜层将液柱包裹,造成液体无法接触热壁面,因此,空浴式汽化器6的整体换热效率偏低,空浴式汽化器6内需要更长的管段发生气液两相换热,其出口的气体温度偏低,管道内部的平均流体密度偏高。
[0037] 针对空浴式汽化器6内部存在的反环状流分布特征,通过引入内微肋管11,可破坏反环状流的稳定性,促使液体更快与壁面接触,从而提高空浴式汽化器6的整体换热能力,且其间的流体平均密度降低,自增压系统中增压气体可以更快、更稳定的产生。内微肋管11的微肋12的作用机制为:在反环状流区气、液两相分别以轴向速度流动的基础上,微肋12产生气膜层径向流速冲击,该径向分速度对气液相界面的稳定性产生影响,引起相界面波动,液体波峰可更早接触金属壁、或液体自液柱撕裂而与壁面接触,则反环状流膜态沸腾更早进入换热效率更高的过渡沸腾与核态沸腾,因此,空浴式换热器6的换热效率得到强化,更多的低温液体在较短的管段内被汽化,从而增大两竖直管的密度差,驱动低温液体快速流动,有利于快速产生增压气体,缩短低温推进剂自增压过程所需时长。微肋为环状肋,间距50mm以上,肋高与肋宽均为mm级,在破坏反环状气膜层的同时,有利于减少阻力损失。
[0038] 采用内微肋管11与直管13相结合的布置方式时,内微肋管11主要起破坏反环状流态作用,后半段换热为弥散流换热及气体换热,此时内微肋管11作用较弱,因此,后半段采用直管13可在保证换热的同时,有效降低整个低温传输管路的流动阻力。