一种半导体耐压层结构转让专利

申请号 : CN202210197937.7

文献号 : CN114695516B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 黄海猛童星豪

申请人 : 电子科技大学

摘要 :

一种半导体耐压层结构,属于半导体器件技术领域。包括第二导电类型重掺杂漏区,位于第二导电类型重掺杂漏区之上的第二导电类型掺杂区,位于第二导电类型重掺杂漏区之上、第二导电类型掺杂区右侧的第一导电类型掺杂区,位于第二导电类型掺杂区和第一导电类型掺杂区之上的第一导电类型重掺杂源区,位于第二导电类型掺杂区之内、靠近第一导电类型重掺杂源区一侧的N个第一氧化层,位于第一导电类型掺杂区之内、靠近第二导电类型重掺杂漏区一侧的K个第二氧化层。本发明通过在第二导电类型掺杂区和第一导电类型掺杂区中分别设置氧化层,阻隔电场线,进而降低器件的电离积分,实现提升击穿电压、降低器件比导通电阻的目的。

权利要求 :

1.一种半导体耐压层结构,其特征在于,包括第二导电类型重掺杂漏区(2),位于第二导电类型重掺杂漏区(2)之上的第二导电类型掺杂区(3),位于第二导电类型重掺杂漏区(2)之上、第二导电类型掺杂区(3)右侧的第一导电类型掺杂区(4),位于第二导电类型掺杂区(3)和第一导电类型掺杂区(4)之上的第一导电类型重掺杂源区(1),位于第二导电类型掺杂区(3)之内、靠近第一导电类型重掺杂源区(1)一侧的N个第一氧化层,位于第一导电类型掺杂区(4)之内、靠近第二导电类型重掺杂漏区(2)一侧的K个第二氧化层,其中,N和K为大于1的正整数。

2.根据权利要求1所述的半导体耐压层结构,其特征在于,所述第二导电类型掺杂区和第一导电类型掺杂区的交界处有倾斜角。

3.根据权利要求1所述的半导体耐压层结构,其特征在于,所述第二导电类型掺杂区和第一导电类型掺杂区之间设置氧化隔离层(5)。

4.根据权利要求1所述的半导体耐压层结构,其特征在于,所述第二导电类型掺杂区和第一导电类型掺杂区之间设置带倾斜角的氧化隔离层。

5.根据权利要求1或3所述的半导体耐压层结构,其特征在于,所述第二导电类型掺杂区和第一导电类型掺杂区为纵向变掺杂结构。

6.根据权利要求1或3所述的半导体耐压层结构,其特征在于,所述第二导电类型重掺杂漏区与第二导电类型掺杂区和第一导电类型掺杂区之间设置第二导电类型缓冲层。

7.根据权利要求6所述的半导体耐压层结构,其特征在于,所述第二导电类型缓冲层的一侧设置多个第三氧化层、另一侧设置多个第四氧化层。

8.根据权利要求1或3所述的半导体耐压层结构,其特征在于,所述第一氧化层与第二导电类型掺杂区的边界不相接,所述第二氧化层与第一导电类型掺杂区的边界不相接。

9.根据权利要求1所述的半导体耐压层结构,其特征在于,所述第一氧化层和第二氧化层的厚度为0.1~1μm。

10.一种超结结构,其特征在于,所述超结结构是权利要求1‑9任一项所述耐压层结构经叉指条方式扩展、六角方式扩展或正方形扩展得到的。

说明书 :

一种半导体耐压层结构

技术领域

[0001] 本发明属于半导体器件技术领域,具体涉及一种半导体耐压层结构。

背景技术

[0002] 半导体技术行业中,其功率电子器件,特别是高压器件,为了提高表面击穿电压,同时降低开启时的比导通电阻,需要通过结构的创新,降低器件内部的电场,从而降低器件的电离积分。
[0003] 在文献(X.Chen,“Semiconductor power devices with alternating conductivity type high‑voltage breakdown regions,”U.S.Patent 5 216 275,Jun.1,1993.)中提出了Superjunction概念,即为常规的超结结构(conventional superjunction,C‑SJ),其结构如图1所示。通过超结结构中交替的n柱和p柱的横向电荷补偿,不仅因器件内部电场分布更加平缓而提高器件的击穿电压,而且因器件可拥有更高漂移区掺杂浓度而降低器件的导通电阻。为了更进一步提高超结器件的性能,文献(W.Saito,“Comparison of Theoretical Limits between Superjunction and Field Plate Structures,”Proc.Int.Symp.Power Semicond.Devices ICs,pp.241–244,May2013)通过在n柱和p柱之间插入一个隔离层,得到带隔离层的超结结构(insulator superjunction,I‑SJ),如图2所示。该带隔离层的超结结构降低n柱导通区电场强度,同时阻隔通过p柱与n柱边界的电离积分路径,从而降低了器件的最大电离积分,提高器件的击穿电压。然而,由于插入的隔离层只能够大幅度降低过p柱与n柱边界的电离积分值,对于附图中AA’的电离积分影响较小,而器件的最大电离积分通常是在AA’处取得的,因此该隔离层对击穿电压的影响较小。为了更有效地降低AA’的电离积分,大幅提高器件的击穿电压,可以改变n柱与p柱的掺杂浓度,通过电荷非平衡的补偿从而降低A处的电场。但是这样的方式同时也增大了B’处的电场,使得器件的击穿点从A点转移到B’点。然而由于在电荷平衡时,AA’与B’B电离积分的差异仅由电子和空穴的差异所引起的,故二者电离积分差值较小,对击穿电压的改善是有限的,并且在大部分的情况下,反而会使得击穿电压降低。

发明内容

[0004] 本发明的目的在于,针对背景技术存在的缺陷,提出一种半导体耐压层结构。本发明通过改变电场线的路径,进而改变电离积分的路径,有效地降低电离积分,从而实现更小的比导通电阻与更大的击穿电压。
[0005] 为实现上述目的,本发明采用的技术方案如下:
[0006] 一种半导体耐压层结构,如图13所示,包括第二导电类型重掺杂漏区2,位于第二导电类型重掺杂漏区2之上的第二导电类型掺杂区3,位于第二导电类型重掺杂漏区2之上、第二导电类型掺杂区3右侧的第一导电类型掺杂区4,位于第二导电类型掺杂区3和第一导电类型掺杂区4之上的第一导电类型重掺杂源区1,位于第二导电类型掺杂区3之内、靠近第一导电类型重掺杂源区1一侧的N个第一氧化层(601,602,...,60N),位于第一导电类型掺杂区4之内、靠近第二导电类型重掺杂漏区2一侧的K个第二氧化层(701,702,...,70K),其中,N和K为大于1的正整数。
[0007] 进一步的,所述第二导电类型掺杂区3和第一导电类型掺杂区4的交界处有倾斜角,即倾斜角超结(Tapered Superjunction,T‑SJ),如图14所示。
[0008] 进一步的,所述第二导电类型掺杂区3和第一导电类型掺杂区4之间还可以设置氧化隔离层5,如图6所示。
[0009] 进一步的,所述第二导电类型掺杂区3和第一导电类型掺杂区4之间还可以设置带倾斜角的氧化隔离层,如图15所示。
[0010] 进一步的,所述第二导电类型掺杂区3和第一导电类型掺杂区4为纵向变掺杂结构,如图16所示。
[0011] 进一步的,所述第二导电类型重掺杂漏区2与第二导电类型掺杂区3和第一导电类型掺杂区4之间还可以设置第二导电类型缓冲层,如图18所示。
[0012] 进一步的,所述第二导电类型缓冲层的一侧设置多个第三氧化层(901,902,…)、另一侧设置多个第四氧化层(1001,1002,…),如图19所示。
[0013] 进一步的,所述第一氧化层的宽度逐渐增大的同时第二氧化层的宽度逐渐减小,如图7所示。
[0014] 进一步的,所述第一氧化层的宽度逐渐减小的同时第二氧化层的宽度逐渐增大,如图8所示。
[0015] 进一步的,所述第一氧化层与第二导电类型掺杂区3的边界不相接,所述第二氧化层与第一导电类型掺杂区4的边界不相接,如图9所示。
[0016] 进一步的,所述第一导电类型重掺杂源区1、第二导电类型重掺杂漏区2、第二导电类型掺杂区3和第一导电类型掺杂区4的掺杂剂量可以根据耐压、深宽比等进行调整;所述氧化隔离层5的宽度可以根据耐压、深宽比等进行调整;所述第一氧化层和第二氧化层的宽度和厚度可以根据耐压、深宽比等进行调整。
[0017] 进一步的,所述第一氧化层和第二氧化层的厚度为0.1~1μm。
[0018] 一种超结结构,其特征在于,所述超结结构是上述耐压层结构经叉指条方式扩展(如图10所示)、六角方式扩展(如图11所示)或正方形扩展(如图12所示)得到的。
[0019] 本发明提供的一种半导体耐压层结构,其工作原理为:
[0020] 如图4所示,为本发明提供的半导体耐压层结构的电场线示意图;设置的第一氧化层601可有效隔绝过AM线上各点及其附近的电离积分,第二氧化层701可有效隔绝过B’M’线上各点及其附近的电离积分,这样大幅缩短了积分路径,降低了器件最大电离积分。当最大电离积分降低时,由击穿时最大电离积分等于1这一条件,在维持掺杂浓度不变的情况下,能够继续提高反向击穿电压,使得有效电离积分中电场增大,电离积分达到等于1的条件,进而器件的反向击穿电压增大。
[0021] 在器件的反向击穿电压增大后,通过提高第一导电类型掺杂区4和第二导电类型掺杂区3的掺杂浓度,能够使得反向击穿电压降低回原本的需求值,并且同时使得有效电离积分中电场增大,电离积分达到等于1的条件,进而大幅降低器件的比导通电阻。这样,在具有相同的反向击穿电压的情况下,本发明能够使得器件的比导通电阻大幅降低,大幅提高器件性能。
[0022] 与现有技术相比,本发明的有益效果为:
[0023] 本发明提供的一种半导体耐压层结构,通过在第二导电类型掺杂区3和第一导电类型掺杂区4中分别设置氧化层,阻隔电场线,进而降低器件的电离积分,实现提升击穿电压、降低器件比导通电阻的目的。

附图说明

[0024] 图1为背景技术提到的常规的超结结构的示意图;
[0025] 图2为背景技术提到的带隔离层的超结结构的示意图;
[0026] 图3为本发明实施例1提供的一种半导体耐压层结构的结构示意图;
[0027] 图4为本发明实施例1提供的一种半导体耐压层结构的电场线示意图;
[0028] 图5为本发明实施例1提供的半导体耐压层结构与图2所示超结结构的电离积分对比图;其中,I‑SJ代表实施例1提供的半导体耐压层结构,C‑SJ代表图2所示超结结构;
[0029] 图6为本发明实施例2提供的一种半导体耐压层结构的结构示意图;
[0030] 图7为本发明实施例3提供的一种半导体耐压层结构的结构示意图;
[0031] 图8为本发明实施例4提供的一种半导体耐压层结构的结构示意图;
[0032] 图9为本发明实施例5提供的一种半导体耐压层结构的结构示意图;
[0033] 图10为本发明提供的叉指条方式扩展的超结结构的示意图;
[0034] 图11为本发明提供的六角方式扩展的超结结构的示意图;
[0035] 图12为本发明提供的正方形方式扩展的超结结构的示意图;
[0036] 图13为本发明实施例6提供的一种半导体耐压层结构的结构示意图;
[0037] 图14为本发明实施例7提供的一种半导体耐压层结构的结构示意图;
[0038] 图15为本发明实施例8提供的一种半导体耐压层结构的结构示意图;
[0039] 图16为本发明实施例9提供的一种半导体耐压层结构的结构示意图;
[0040] 图17为本发明实施例10提供的一种半导体耐压层结构的结构示意图;
[0041] 图18为本发明实施例11提供的一种半导体耐压层结构的结构示意图;
[0042] 图19为本发明实施例12提供的一种半导体耐压层结构的结构示意图。

具体实施方式

[0043] 下面结合附图和实施例,详述本发明的技术方案。
[0044] 实施例1
[0045] 如图3所示,为本发明实施例1提供的一种半导体耐压层结构,包括N型重掺杂漏区2,位于N型重掺杂漏区2之上的N型掺杂区3,位于N型重掺杂漏区2之上、N型掺杂区3右侧的P掺杂区4,位于N型掺杂区3和P型掺杂区4之上的P型重掺杂源区1,位于N型掺杂区3和P型掺杂区4之间的氧化隔离层5,位于N型掺杂区3之内、靠近P型重掺杂源区1一侧的第一氧化层
601,位于P型掺杂区4之内、靠近N型重掺杂漏区2一侧的第二氧化层701。其中,该耐压层结
15 ‑3
构的深度为64μm、深宽比AR=8;N型掺杂区3和P型掺杂区4的掺杂浓度均为3.26×10 cm ;
第一氧化层601与A点之间的距离为10μm,第一氧化层的宽度为2μm、厚度为0.4μm;第二氧化层701与B’点之间的距离为10μm,第二氧化层的宽度为2μm、厚度为0.4μm。
[0046] 图4为本发明实施例1提供的一种半导体耐压层结构的电场线示意图;当耐压层结构反向关断时,外加反向偏压,电场线分布如图4所示。设置的第一氧化层601和第二氧化层701有效的隔绝了电离积分的路径,使得器件的最大电离积分减小,从而有效提高了器件整体的击穿电压,具有更强的反向耐压能力。当耐压层结构处于正向开启时,通过提高P型掺杂区4和N型掺杂区3的掺杂浓度,使得增加的反向耐压降低为原本的需求值,同时也使得器件的比导通电阻降低,导通电流提高,具有更强的正向导通能力。
[0047] 图5为本发明实施例1提供的半导体耐压层结构与图2所示超结结构的电离积分对比图;由图5可知,与背景技术提到的带隔离层的超结结构相比,本发明半导体耐压层结构有较大的改进,AM线上及其附近各点的电离积分值有明显的下降,进而使得最大电离积分值降低,从而大幅提高击穿电压。进一步,再通过提高P型掺杂区4和N型掺杂区3的掺杂浓度,使得增加的反向耐压降低为原本的需求值,同时也使得器件的比导通电阻降低,器件性能大幅改善。
[0048] 实施例2
[0049] 本实施例与实施例1相比,区别在于:在N型掺杂区3之内、靠近P型重掺杂源区1一侧等间距设置多个宽度与厚度均相同的第一氧化层,在P型掺杂区4之内、靠近N型重掺杂漏区2一侧等间距设置多个宽度与厚度均相同的第二氧化层,如图6所示。通过设置多个第一氧化层和第二氧化层,可以使得电离积分的路径进一步被分割,降低最大电离积分值,从而提高器件击穿电压,降低比导通电阻。
[0050] 实施例3
[0051] 本实施例与实施例2相比,区别在于:第一氧化层的宽度在P型重掺杂源区1指向N型重掺杂漏区2的方向上逐渐增大,第二氧化层的宽度在P型重掺杂源区1指向N型重掺杂漏区2的方向上逐渐减小,如图7所示。
[0052] 实施例4
[0053] 本实施例与实施例2相比,区别在于:第一氧化层的宽度在P型重掺杂源区1指向N型重掺杂漏区2的方向上逐渐减小,第二氧化层的宽度在P型重掺杂源区1指向N型重掺杂漏区2的方向上逐渐增大,如图8所示。
[0054] 实施例5
[0055] 本实施例与实施例2相比,区别在于:所述第一氧化层(602,604,606,…)与N型掺杂区3左侧的边界不相接,所述第二氧化层与P掺杂区4右侧的边界不相接,如图9所示。
[0056] 实施例6
[0057] 本实施例与实施例2相比,区别在于:去掉位于N型掺杂区3和P型掺杂区4之间的氧化隔离层5,如图13所示。
[0058] 实施例7
[0059] 本实施例与实施例6相比,区别在于:所述N型掺杂区3和P型掺杂区4的交界处有倾斜角,即倾斜角超结,如图14所示
[0060] 实施例8
[0061] 本实施例与实施例6相比,区别在于:所述N型掺杂区3和P型掺杂区4之间设置带倾斜角的氧化隔离层,如图15所示。
[0062] 实施例9
[0063] 本实施例与实施例6相比,区别在于:所述N型掺杂区3和P型掺杂区4设置为纵向变掺杂分布,如图16所示。
[0064] 实施例10
[0065] 本实施例与实施例9相比,区别在于:在所述N型掺杂区3和P型掺杂区4之间设置氧化隔离层5,如图17所示。
[0066] 实施例11
[0067] 本实施例与实施例2相比,区别在于:所述N型重掺杂漏区2与N型掺杂区3和P型掺杂区4之间设置N型缓冲层8,如图18所示。
[0068] 实施例12
[0069] 本实施例与实施例11相比,区别在于:所述N型缓冲层8的一侧设置多个第三氧化层(901,902,…)、另一侧设置多个第四氧化层(1001,1002,…),如图19所示。
[0070] 上述实施例只是本发明的较佳实施例,并不是对本发明技术方案的限制,只要是不经过创造性劳动即可在上述实施例的基础上实现的技术方案,均应视为落入本发明专利的权利保护范围内。