一种用于制备隔热防火材料的改性水玻璃转让专利

申请号 : CN202210542064.9

文献号 : CN114716167B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 薛永刚赵艳丽

申请人 : 石家庄易辰防火保温材料有限公司

摘要 :

一种用于制备隔热防火材料的改性水玻璃,其制备方法包括如下步骤:(1)制备初步改性水玻璃:将有机硅烷、酸组成的改性剂对水玻璃进行共混化学改性,(2)制备改性二氧化硅隔热填料:首先,选取纳米中空二氧化硅作为隔热填料,其次,利用乙烯基硅烷偶联剂和酸对其进行改性得到有机改性二氧化硅;(3)制备有机硅改性聚氨酯丙烯酸酯:在催化剂、溶剂和阻聚剂存在下,将异氰酸酯三聚体、含环氧官能团有机硅和羟基丙烯酸酯进行反应,(4)制备得到改性水玻璃:将步骤(1)‑(3)分别得到的初步改性水玻璃、有机硅改性聚氨酯丙烯酸酯和改性二氧化硅隔热填料进行有机无机自由基共聚反应。

权利要求 :

1.一种用于制备隔热防火材料的改性水玻璃,其特征在于,制备方法包括如下步骤:(1)制备初步改性水玻璃:将有机硅烷、酸组成的改性剂对水玻璃进行共混化学改性,其中,有机硅烷为乙烯基三甲氧基硅烷或乙烯基三乙氧基硅烷;酸为有机酸与磷酸的混合酸,其中,有机酸选自丙烯酸或马来酸;

将水玻璃、酸和有机硅烷按照质量比:100:(2‑6):(5‑10),在pH值4‑6的条件下进行搅拌共混;

(2)制备改性二氧化硅隔热填料:首先,选取纳米中空二氧化硅作为隔热填料,其次,利用乙烯基硅烷偶联剂和酸对其进行改性得到有机改性二氧化硅,纳米中空二氧化硅采用模板法制备得到纳米二氧化硅中空微球;

具体改性方法:将二氧化硅隔热填料、乙烯基硅烷偶联剂、水、混合酸按照质量比10:(0.5‑1):(20‑30):(1‑2)的比例在超声波下进行共混,共混时间为4‑6小时,最终得到改性二氧化硅隔热填料;混合酸为有机酸与磷酸的混合酸,其中,有机酸选自丙烯酸或马来酸;

(3)制备有机硅改性聚氨酯丙烯酸酯:

在催化剂、溶剂和阻聚剂存在下,将异氰酸酯三聚体、含环氧官能团有机硅和羟基丙烯酸酯进行反应,其中,所述含环氧官能团有机硅为γ‑缩水甘油醚氧丙基三甲氧基硅烷和/或3‑缩水甘油醚氧丙基甲基二乙氧基硅烷;

异氰酸酯三聚体、含环氧官能团有机硅和羟基丙烯酸酯的质量比为:(4‑6):(1‑1.5):(4‑6);

(4)制备得到改性水玻璃:将步骤(1)‑(3)分别得到的初步改性水玻璃、有机硅改性聚氨酯丙烯酸酯和改性二氧化硅隔热填料按照质量比10:(1‑2):(0.3‑0.5)在添加引发剂的条件下进行有机无机自由基共聚反应。

2.根据权利要求1所述的改性水玻璃,其特征在于,步骤(2)中的,纳米中空二氧化硅的粒径为50‑300纳米。

3.根据权利要求2所述的改性水玻璃,其特征在于,纳米中空二氧化硅的粒径为100‑

200纳米。

4.根据权利要求1所述的改性水玻璃,其特征在于,所述羟基丙烯酸酯由甲基丙烯酸羟乙酯、甲基丙烯酸羟丙酯或甲基丙烯酸羟丁酯中的一种或多种组成。

5.根据权利要求1所述的改性水玻璃,其特征在于,其中,所述的异氰酸酯三聚体选自异佛尔酮二异氰酸酯三聚体、二环己基甲烷二异氰酸酯三聚体、六氢甲苯二异氰酸酯三聚体中的一种或几种。

6.根据权利要求1所述的改性水玻璃,其特征在于,所述步骤(3)反应温度为70‑85℃,反应时间为2‑3小时。

7.根据权利要求1所述的改性水玻璃,其特征在于,所述步骤(1)中的有机酸与磷酸的摩尔比为(6‑4):(4‑6)。

8.根据权利要求1所述的改性水玻璃,其特征在于,所述步骤(2)中的有机酸与磷酸的摩尔比为(6‑4):(4‑6)。

9.根据权利要求1所述的改性水玻璃,其特征在于,所述步骤(1)中共混时,搅拌速度为

600‑1500r/min,时间为4‑8小时。

10.根据权利要求1所述的改性水玻璃,其特征在于,所述步骤(4)中,引发剂为过硫酸钠或过硫酸铵。

说明书 :

一种用于制备隔热防火材料的改性水玻璃

技术领域

[0001] 本发明涉及一种用于制备隔热防火材料的改性水玻璃,具体公开了采用聚氨酯丙烯酸酯和隔热填料对水玻璃进行改性,以改善防水性和隔热性。

背景技术

[0002] 随着钢结构应用技术的发展以及钢结构的防火保护技术日臻成熟,钢结构作为高层建筑结构的一种形式以其强度高、塑性、韧性好、自重轻、有良好的延伸性、抗震性和施工周期短等优点,在建筑业中得到了广泛的应用。虽然钢材属于不燃性材料,但是耐火性能却很差。到目前为止,人们对钢结构保护主要采取四种措施:即直接包覆保护法、屏蔽保护法、水喷淋和冲水冷却保护法。四种措施中直接包覆法由于其简便易行、防护性能良好和造价经济在工程中最为常用。直接包覆法是指在钢结构构件面或外围直接施用防火材料如砌筑粘土砖、浇注混凝土、抹灭、喷涂防火涂料和包封防火板材等将裸露的钢构件包封或覆盖起来,从而达到提高钢结构耐火能力的目的。当前钢结构防火保护采用最多的应属防火涂料和防火板材。用防火板材保护钢结构,具有施工方便、装饰性好、成本低、损耗小、无环境污染、不受季节和气候影响、干法施工、施工周期短与钢结构防火涂料喷涂施工相比,所用工时仅为喷涂施工的即可完成相同面积的防火施工和耐久耐火性能年基本不变等优点,推广前景好,是钢结构防火保护新的发展方向,具体而言,就是通过高温耐火胶粘剂将防火板覆在钢结构表面,实现火灾时隔热的目的,从而防止钢材在火灾时温度快速升高。高温粘合剂和防火板材中都会用到无机或有机粘结剂作为主体材料,其中,水玻璃是常见的无机粘结剂类型,其因为成本低,凝固后强度较高,且耐热性好受到广泛使用,但是相对较为昂贵的硅溶胶而言,其耐水性较为逊色,这是因为水玻璃中含具有大量强亲水性的羟基,且有碱金属例子如钠离子、钾离子,甚至有可能导致水玻璃型高温粘合剂或水玻璃型防火保护板出现返碱现象。现有技术中也有提到在水玻璃中加入硬化剂可与水玻璃中的碱金属离子和碱金属氧化物发生化学反应有利于改善水玻璃的耐水性和其它性能,但是防水性虽可提高,但比较有限,且不能同时提升产品的强度和保温性能。
[0003] 因此,本发明的目的是对水玻璃进行改性,提高其防水性,另外尝试同时提高其保温性、以及固化后的强度。

发明内容

[0004] 本发明提供一种用于制备隔热防火材料的改性水玻璃,其制备方法如下:
[0005] (1)制备初步改性水玻璃:将有机硅烷、酸组成的改性剂对水玻璃进行共混化学改性,其中,有机硅烷为乙烯基三甲氧基硅烷或乙烯基三乙氧基硅烷;酸为有机酸与磷酸的混合酸,其中,有机酸选自丙烯酸或马来酸;有机酸与磷酸的摩尔比为(6‑4):(4‑6);
[0006] 将水玻璃、酸和有机硅烷按照质量比:100:(2‑6):(5‑10),在pH值4‑6的条件下进行搅拌共混,搅拌速度为600‑1500r/min,时间为4‑8小时。
[0007] (2)制备改性二氧化硅隔热填料:首先,选取纳米中空二氧化硅作为隔热填料,其次,利用乙烯基硅烷偶联剂和酸对其进行改性得到有机改性二氧化硅;
[0008] 纳米中空二氧化硅采用模板法制备得到的微球,纳米中空二氧化硅的粒径为50‑300纳米,优选100‑200纳米;
[0009] 具体改性方法:将二氧化硅隔热填料、乙烯基硅烷偶联剂、水、混合酸按照质量比10:(0.5‑1):(20‑30):(1‑2)的比例进行在超声波下进行共混,共混时间为4‑6小时,最终得到改性二氧化硅隔热填料;混合酸为有机酸与磷酸的混合酸,其中,有机酸选自丙烯酸或马来酸;有机酸与磷酸的摩尔比为(6‑4):(4‑6);
[0010] (3)制备有机硅改性聚氨酯丙烯酸酯:
[0011] 在催化剂、溶剂和阻聚剂存在下,将异氰酸酯三聚体、含环氧官能团有机硅和羟基丙烯酸酯进行反应,其中,所述的异氰酸酯三聚体选自异佛尔酮二异氰酸酯(IPDI)三聚体、二环己基甲烷二异氰酸酯(HMDI)三聚体、六氢甲苯二异氰酸酯(HTDI)三聚体中的一种或几种,其中,所述含环氧官能团有机硅为γ‑缩水甘油醚氧丙基三甲氧基硅烷和/或3‑缩水甘油醚氧丙基甲基二乙氧基硅烷;
[0012] 反应温度为70‑85℃,反应时间为2‑3小时;
[0013] 异氰酸酯三聚体、含环氧官能团有机硅和羟基丙烯酸酯的质量比为:(4‑6):(1‑1.5):(4‑6);
[0014] 羟基丙烯酸酯由甲基丙烯酸羟乙酯、甲基丙烯酸羟丙酯或甲基丙烯酸羟丁酯中的一种或多种组成。
[0015] (4)制备得到改性水玻璃:将步骤(1)‑(3)分别得到的初步改性水玻璃、有机硅改性聚氨酯丙烯酸酯和改性二氧化硅隔热填料按照质量比10:(1‑2):(0.3‑0.5)在添加引发剂的条件下进行有机无机自由基共聚反应,引发剂为过硫酸钠或过硫酸铵。
[0016] 采用上述技术方案后,本发明至少具有如下有益效果:
[0017] (1)本发明利用选自丙烯酸或马来酸的有机酸与磷酸的混合酸,促使水玻璃在酸性条件下水解,并与乙烯基硅烷偶联剂发生缩合反应,形成带乙烯基官能基团的改性水玻璃,在此基础上,通过机硅改性聚氨酯丙烯酸酯、改性二氧化硅隔热填料的有机共聚改性,在水玻璃的表面形成了稳定的聚氨酯丙烯酸酯聚合物,使得不稳定的硅酸中间态最终形成了有机硅、聚氨酯、二氧化硅隔热填料的化学交联复合体系,防止了水玻璃的逆缩合水解反应,极大地提升了水玻璃的耐水性,在耐水性得到根本性的改善。
[0018] (2)本发明的隔热填料通过与水玻璃、聚氨酯丙烯酸酯的化学有机改性,改变了隔热填料在水玻璃因粘度过高容易团聚的问题,由于发生自由基共聚,二氧化硅隔热填料均匀分散中水玻璃和聚氨酯丙烯酸酯共同形成的体系中,分散稳定性得到提高,而且由于分散均匀,也显著提高了体系的隔热性。
[0019] (3)发明的硅烷水解催化剂采用有机酸和无机酸的混合物,其中,有机酸选择丙烯酸或马来酸,该有机酸都具有可自由基反应的双键,这样,有机酸不仅在反应时提供了酸性环境,还能参与步骤(4)的自由基共聚,因此,降低了残留的酸对粘合剂防水性的负面作用,又避免了后面需额外除酸的后续工艺。(4)本发明在制备聚氨酯丙烯酸中加入了环氧官能团有机硅,通过环氧基团与羟基丙烯酸酯的反应,使得聚氨酯丙烯酸酯接枝上大量的有机硅氧烷,同时,结合步骤(1)‑(2)中有机硅烷的改性,使得最终制得的水玻璃含有一定量的有机硅烷,大幅度降低了水玻璃的表面张力,显著提升了防水性,同时,相对于乙烯基有机硅烷,带环氧官能团有机硅会带入更多的较为稳定的羟基,有利于提升与水玻璃、二氧化硅的相容性。
[0020] (5)在水玻璃、二氧化硅隔热填料、聚氨酯丙烯酸通过硅氧键和自由基共聚形成的碳碳键,形成了水玻璃、有机硅、聚氨酯丙烯酸酯的化学网络交联体,用该粘合剂制成的防火板材,机械强度大幅增加,韧性也有很大的改善,高温抗裂性也有了极大地提高。

具体实施方式

[0021] 下面结合具体实施例对发明的技术方案进行详细说明。
[0022] 实施例1制备改性水玻璃
[0023] (1)制备初步改性水玻璃A:
[0024] 将水玻璃、酸和有机硅烷按照质量比:100:4:6,在pH值5的条件下进行搅拌共混,搅拌速度为800r/min,时间为6小时,其中,有机硅烷为乙烯基三甲氧基硅烷,酸为有丙烯酸与磷酸的混合酸,两种酸摩尔比为5:5。
[0025] (2)制备改性二氧化硅隔热填料:
[0026] 首先,纳米中空二氧化硅为隔热填料,其次,利用乙烯基硅烷偶联剂对其进行改性得到有机改性二氧化硅;将纳米中空二氧化硅、乙烯基硅烷偶联剂、水、混合酸按照10:0.8:20:1的比例进行在超声波下进行共混,共混时间为4.5小时;混合酸为马来酸与磷酸的混合酸,其中,有机酸为马来酸,摩尔比为6:4;该纳米中空二氧化硅通过模板法制得。
[0027] (3)制备有机硅改性聚氨酯丙烯酸酯:
[0028] 在催化剂、溶剂和阻聚剂存在下,将异佛尔酮二异氰酸酯(IPDI)三聚体、γ‑缩水甘油醚氧丙基三甲氧基硅烷和甲基丙烯酸羟乙酯进行反应,反应温度为80℃,反应时间为2.5小时;
[0029] 异佛尔酮二异氰酸酯(IPDI)三聚体、γ‑缩水甘油醚氧丙基三甲氧基硅烷和甲基丙烯酸羟乙酯的质量比为5:1:5;
[0030] (4)制备得到改性水玻璃:将步骤(1)‑(3)分别得到的初步改性水玻璃、有机硅改性聚氨酯丙烯酸酯和改性二氧化硅填料按照质量比10:1.5:0.4在添加引发剂的条件下进行有机无机自由基共聚反应,引发剂为过硫酸铵。
[0031] 实施例2利用改性水玻璃制备钢结构用蛭石防火保护板
[0032] 防火保护的原料配方按质量比为:水玻璃20%,膨胀蛭石60%,高岭土5%,珍珠岩5%,氢氧化铝5%,增强纤维4%,氟硅酸钠早强剂1%,其中水玻璃为实施例1制备的改性水玻璃。
[0033] 蛭石防火保护板具体制备方法如下:
[0034] (1)混合:将原料计量,在高速混合机内将上述原料混合均匀得到料浆;
[0035] (2)压制成型:将步骤(1)制得的料浆利用模具压制成型,得到板坯;
[0036] (3)微波干燥定型:利用微波窑微波干燥定型,干燥时间为25分钟,最终得到厚度为25mm的防火板,一般大小为1.2m*2.4m。
[0037] 实施例3:将实施例2中制备蛭石防火保护板中的改性水玻璃替换为市售常规水玻璃B(即与制备改性水玻璃A的原料相同),其余组分、配比、制备方法均与实施例2相同。
[0038] 实施例4:首先将水玻璃、聚氨酯丙烯酸酯乳液和硅烷偶联剂按照10:1.5:0.4质量比进行物理共混得到改性水玻璃C,将实施例2中的改性水玻璃A替换为改性水玻璃C,其余组分、配比、制备方法均与实施例2相同。
[0039] 性能测试
[0040] 按照名为钢结构防火保护板的消防行业标准(XF/T3012‑2020)进行测试,对实施例2‑4制备的蛭石防火保护板的耐水性性能、耐火性能、干态抗弯强度进行测试。
[0041] 耐水性合格,以30d后,板材无开裂、起层、脱落,允许轻微发胀和变色作为合格。
[0042] 测试耐火性能,采用HC烃类火灾升温曲线,试件制作时,采用36b热轧工字钢(截面系数为126m‑1)作为实验基材,并设置试件热电偶,钢结构防火保护板的耐火极限以平均温度达到538℃的时间来计。
[0043] 表1防火涂料性能
[0044]
[0045]
[0046] 由实验看出,采用本发明改性水玻璃制得的蛭石防火保护板与普通水玻璃或简单共混改性水玻璃得到的防火保护板相比,耐水性具有明显的提高,同时,防火极限、干态抗弯强度都有明显的提升,现有技术中较为优秀的防火保护板要想达到超过3H的防火极限,一般板的厚度为30mm,而本发明的防火保护板在25mm时就达到了这一效果,这主要得益于分散状态较好的纳米级中空二氧化硅。但是公司也发现,稍显不足的是,改性水玻璃中采用了中空二氧化硅,制造成本相较于常规原料具有一定的增加。