一种无人机悬停精度评估方法转让专利

申请号 : CN202210812561.6

文献号 : CN114877876B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王珉唐小聪

申请人 : 南京市计量监督检测院

摘要 :

本发明公开了一种无人机悬停精度评估方法,属于激光跟踪测量评估技术领域。具体包括以下步骤,将无人机悬停在设定高度的位置;分别测量无人机上A靶球、B靶球、C靶球的空间位置坐标;分别计算无人机在当前悬停高度下,A靶球、B靶球、C靶球在X、Y、Z方向的标准差和极差;分别计算无人机在当前悬停高度下,A靶球、B靶球、C靶球在X、Y、Z方向的标准差的平均值,以及X、Y、Z方向极差的最大值;基于标准差的平均值与极差的最大值,实现当前悬停高度下的悬停精度评估;设置其它悬停高度,重复以上步骤,即可获得任意悬停高度下的悬停精度评估。本发明实现了无人机悬停高度在3‑15米范围内悬停精度的准确评估。

权利要求 :

1.一种无人机悬停精度评估方法,其特征在于:包括以下步骤:S1. 将无人机(1)悬停在设定高度的位置;

S2. 分别测量无人机(1)上A靶球(2)、B靶球(3)、C靶球(4)的空间位置坐标,每间隔1分钟测量一次,共测量五次,并分别记录为 、 、,其中,k=1,2…5;

S3. 在步骤S1悬停的高度下,通过计算机(8)将步骤S2中得到的位置坐标拟合生成无人机(1)的空间位置示意图;

S4. 分别计算无人机(1)在步骤S1悬停的高度下,A靶球(2)、B靶球(3)、C靶球(4)在X、Y、Z方向的标准差和极差;

S5. 分别计算无人机(1)在步骤S1悬停的高度下,A靶球(2)、B靶球(3)、C靶球(4)在X、Y、Z方向的标准差的平均值,以及X、Y、Z方向极差的最大值;

S6. 基于标准差的平均值与极差的最大值,实现当前悬停高度下的悬停精度评估;

S7. 设置其它悬停高度,重复S1‑S6,即可测得任意悬停高度下的悬停精度评估;

步骤S4具体包括:

a.计算悬停高度下A靶球(2)在X、Y、Z方向的标准差 、 、 :其中: ,

 ;

b.得到A靶球(2)的三个方向上的最大坐标值 和最小坐标值,计算出A靶球(2)在X、Y、Z方向的极差 、 、 : ,

 ;

c.同理,计算悬停高度下B靶球(3)在X、Y、Z方向的标准差 、 、 和极差 、、 ;

d.同理,计算此悬停高度下C靶球(4)在X、Y、Z方向的标准差 、 、 和极差 、、 ;

步骤S5包括:

分别计算悬停高度下A靶球(2)、B靶球(3)、C靶球(4)在X、Y、Z方向的标准差的平均值、 、 :, , ;

得到X、Y、Z方向极差的最大值 、 、 :, , ;

步骤S6具体包括:

对标准差的平均值设定第一阈值、第二阈值,对极差的最大值设定第三阈值、第四阈值;其中第一阈值大于第二阈值,第三阈值大于第四阈值;当任一平均值 、 、 大于第一阈值或者任一最大值 、 、 大于第三阈值时,悬停精度评估等级为低,则需要重新优化控制算法;

当平均值 、 、 均小于第二阈值,并且最大值 、 、 均小于第四阈值时,悬停精度评估等级为高,则评估结束;

其余情况下,悬停精度评估等级为中。

2.根据权利要求1所述的一种无人机悬停精度评估方法,其特征在于:所述A靶球(2)、B靶球(3)、C靶球(4)固定于无人机(1)上,利用激光跟踪仪的激光跟踪头(6)分别测量固定在无人机(1)上的A靶球(2)、B靶球(3)、C靶球(4)的空间坐标,并将坐标以设定的文件格式记录下来;

A靶球(2)、B靶球(3)、C靶球(4)和配重块(5)分别固定于无人机(1)的四个旋翼下方,所述配重块(5)与A靶球(2)、B靶球(3)、C靶球(4)中任意一个的重量相同,以抵消靶球的不对称性对无人机(1)悬停时平衡性的影响;其中A、B、C三个靶球完全相同。

3.根据权利要求1所述的一种无人机悬停精度评估方法,其特征在于:以A靶球(2)的高度为标准表征无人机(1)的悬停高度,且悬停高度范围为3‑15米。

4.根据权利要求1所述的一种无人机悬停精度评估方法,其特征在于,第一阈值、第二阈值、第三阈值、第四阈值的值分别为80mm、30mm、200mm、100mm。

5.根据权利要求1所述的一种无人机悬停精度评估方法,其特征在于,步骤S3中用计算机(8)拟合生成无人机(1)在空间对应位置的示意图,能够直观反映出无人机(1)在此高度悬停时的位置和偏差的范围。

说明书 :

一种无人机悬停精度评估方法

技术领域

[0001] 本发明属于激光跟踪测量评估技术领域,具体涉及一种无人机悬停精度评估方法。

背景技术

[0002] 在传统测绘工作中,对于野外实地数据的采集一般都是由工作人员借助各种仪器设备手工进行,需要投入大量的人力和物力,而且对于一些复杂地形区域的测量,传统的测绘手段很难完成。随着无人机领域的发展,配合相应的航测技术,对比人工测量,无人机可以轻松完成对危险复杂区域的测量工作,在测绘领域表现出了巨大的优势。但目前无人机还不能做到定点高精度的悬停,这无疑给测绘结果带来了偏差,要得到更高精度的测绘结果,就必须测量出无人机的悬停精度,从而对测绘结果进行偏差补偿。
[0003] 目前,针对无人机的相关技术标准或规范大多集中在无人机的设计、制造环节,而针对无人机检测方面的技术标准也主要集中在电气电磁性能、材料、部件尺寸等方面。此外,很多高空作业无人机基于GPS定位技术,其位置精度的定义是将无人机的实际位置与预设位置进行比较,并未涉及静止悬停状态下精度的测量与评估。因此,针对无人机低空悬停精度进行评估是十分必要的。

发明内容

[0004] 有鉴于此,本发明提供了一种无人机悬停精度评估方法,能够对无人机的悬停精度进行评估。
[0005] 本发明解决其技术问题所采用的技术方案是:
[0006] 本发明的一种无人机悬停精度评估方法,包括以下步骤:
[0007] S1. 将无人机悬停在设定高度的位置;
[0008] S2. 分别测量无人机上A靶球、B靶球、C靶球的空间位置坐标,每间隔1分钟测量一次,共测量五次,并分别记录为 、 、 ,其中,k=1,2…5;
[0009] S3. 在步骤S1悬停的高度下,通过计算机拟合步骤S2中得到的位置坐标,生成无人机的空间位置示意图;
[0010] S4. 分别计算无人机在S1悬停高度下,A靶球、B靶球、C靶球在X、Y、Z方向的标准差和极差;
[0011] S5. 分别计算无人机在S1悬停高度下,A靶球、B靶球、C靶球在X、Y、Z方向的标准差的平均值,以及X、Y、Z方向极差的最大值;
[0012] S6. 基于标准差的平均值与极差的最大值,实现当前悬停高度下的悬停精度评估;
[0013] S7. 设置其它悬停高度,重复S1‑S6,即可测得任意悬停高度下的悬停精度评估。
[0014] 上述A靶球、B靶球、C靶球固定于无人机上,利用激光跟踪仪的激光跟踪头分别测量固定在无人机上的A靶球、B靶球、C靶球的空间坐标,并将坐标以设定的文件格式记录下来;
[0015] A靶球、B靶球、C靶球和配重块分别固定于无人机的四个旋翼下方,所述配重块与A靶球、B靶球、C靶球中任意一个靶球的重量相同 ,以抵消靶球的不对称性对无人机悬停时平衡性的影响;其中A、B、C三个靶球完全相同。
[0016] 以A靶球的高度为标准表征无人机的悬停高度,且悬停高度范围为3‑15米。
[0017] 步骤S4具体包括:
[0018] a.计算悬停高度下A靶球在X、Y、Z方向的标准差 、 、 :
[0019]
[0020]
[0021]
[0022] 其中: ,
[0023] ,
[0024]
[0025] b.得到A靶球的三个方向上的最大坐标值 和最小坐标值,计算出A靶球在X、Y、Z方向的极差 、 、 :
[0026]  ,
[0027] ,
[0028]  ;
[0029] c.同理,计算悬停高度下B靶球在X、Y、Z方向的标准差 、 、 和极差 、、 ;
[0030] d.同理,计算此悬停高度下C靶球在X、Y、Z方向的标准差 、 、 和极差 、、 。
[0031] 步骤S5包括:
[0032] 分别计算悬停高度下A靶球、B靶球、C靶球在X、Y、Z方向的标准差的平均值 、、 :
[0033] , ,;
[0034] 得到X、Y、Z方向极差的最大值 、 、 :
[0035] , ,。
[0036] 所述步骤S6具体包括:
[0037] 对标准差的平均值设定第一阈值、第二阈值,对极差的最大值设定第三阈值、第四阈值;其中第一阈值大于第二阈值,第三阈值大于第四阈值;当任一平均值 、 、大于第一阈值或者任一最大值 、 、 大于第三阈值时,悬停精度评估等级为低,则需要重新优化控制算法;
[0038] 当平均值 、 、 均小于第二阈值,并且最大值 、 、 均小于第四阈值时,悬停精度评估等级为高,则评估结束;
[0039] 其余情况下,悬停精度评估等级为中。
[0040] 第一阈值、第二阈值、第三阈值、第四阈值的值分别为80mm、30mm、200mm、100mm。
[0041] 步骤S3中用计算机拟合生成无人机在空间对应位置的示意图,能够直观反映出无人机(1)在此高度悬停时的位置和偏差的范围。
[0042] 本发明的有益效果在于:
[0043] 1.本发明提出的将靶球和配重块固定于无人机旋翼的下方,通过激光跟踪仪测量并采集固定于无人机旋翼下方的靶球的空间点坐标数据,计算得到无人机悬停时坐标的标准差和极差,设备简单,操作方便;
[0044] 2.测量采集到的数据直接导入计算机,自动拟合生成无人机悬停时不同时刻的空间位置示意图,直观展示出无人机悬停时位置的变换和偏差的范围,联合标准差的平均值和极差的最大值实现悬停精度高中低等级的评估。

附图说明

[0045] 图1为A靶球、B靶球、C靶球和配重块的安装位置示意图;
[0046] 图2为激光跟踪仪测量无人机悬停精度示意图;
[0047] 其标号名称分别为:1、无人机,2、A靶球,3、B靶球,4、C靶球,5、配重块,6、激光跟踪头,7、控制箱,8、计算机,9、环境传感器。

具体实施方式

[0048] 为使本发明的上述目的、特征和优点能够更加明显易懂,下面以测量无人机1在5米高度时的悬停精度为实施例,结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
[0049] 如图1所示,将A靶球2、B靶球3、C靶球4固定于无人机1对应的位置上,为了排除由于三个靶球的加入导致的不对称性而对无人机1平衡的影响,在另一个没有安装靶球的位置安装一个配重块5,重量与任一靶球的重量相同。
[0050] 如图2所示,将无人机1(A靶球2)升至5米高度处悬停,激光跟踪头6发出激光射到A靶球2、B靶球3、C靶球4上,激光又被反射回激光跟踪头6,当目标移动时,激光跟踪头6调整光束方向来对准目标,同时,返回光束为检测系统所接收,用来测算目标的空间位置,测量数据经控制箱7在计算机8上读取显示。
[0051] 分别测量无人机1上A、B、C三个靶球的空间位置坐标,每间隔1分钟测量一次,共测量五次,得到测量数据如下:
[0052] A靶球2:(2100.01,3000.02,5049.32)
[0053] (2200.23,3100.34,5120.24)
[0054] (2230.01,3060.02,5177.28)
[0055] (2252.23,3080.34,5130.32)
[0056] (2232.23,3180.34,5070.32)
[0057] B靶球3:(2000.01,3200.02,5030.32)
[0058] (2010.23,3300.34,5118.24)
[0059] (2100.01,3260.02,5198.28)
[0060] (2152.23,3230.34,5099.32)
[0061] (2032.23,3380.34,5050.32)
[0062] C靶球4:(1900.01,3000.02,5100.32)
[0063] (1800.23,3100.34,5120.98)
[0064] (1960.23,3060.02,5210.28)
[0065]  (1940.03,3180.34,5200.16)
[0066] (1949.37,3100.16,5080.32)
[0067] 对上述数据进行分析计算,得到A靶球2、B靶球3、C靶球4在X、Y、Z三个方向上的标准差平均值为63.05、67.022、55.397,上述标准差平均值的数值越大,说明无人机1在该方向的偏移越大,其数值越小,说明无人机1在该方向的偏移越小。
[0068] 确定无人机1悬停的最大最小位置坐标,得到无人机1的最大位置三个靶球的坐标分别为:(2252.23,3180.34,5177.28),(2152.23,3380.34,5198.28),(1960.23,3180.34,5210.28),最小位置三个靶球的坐标分别为:(2100.01,3000.02,5049.32) ,(2000.01,
3200.02,5030.32),(1800.23,3000.02,5080.32),这是无人机1在此高度上悬停的两个极限位置,因此可知此高度上无人机1均在这两个位置之间的区域悬停。
[0069] 计算得到A靶球2在X、Y、Z方向的极差分别为152.22、180.32、127.96;B靶球3在X、Y、Z方向的极差分别为152.22、180.32、167.96;C靶球4在X、Y、Z方向的极差分别为160.0、180.32、129.96。极差反映了无人机1位置变动的最大范围,极差越大,无人机1的位置变动范围越大;反之,极差越小,无人机1的位置变动范围越小。
[0070] 为进一步实现悬停精度的准确评估,采用标准差的平均值和极差的最大值联合评估悬停精度。对标准差的平均值设定第一阈值、第二阈值,其中第一阈值为80mm,第二阈值为30mm;对极差的最大值设定第三阈值、第四阈值,其中第三阈值为200mm,第四阈值为100mm。在悬停高度为5m的应用中,得到X、Y、Z三个方向上的标准差平均值为63.05、67.022、
55.397,得到极差的最大值为160.0、180.32、167.96。基于表1的评估表,得到当前评估等级为中。
[0071] 表1 悬停精度评估等级表
[0072]
[0073] 进一步地,利用计算机拟合生成此高度上由无人机1三个靶球每组坐标及其最大最小坐标组成的三维空间位置图,通过图形,直观看出无人机1悬停时的状态和偏移程度。
[0074] 测量无人机1其它悬停高度时的悬停精度与上述过程一致。
[0075] 以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。