调节端粒酶限速蛋白运动的多肽探针及其复合物和方法转让专利

申请号 : CN202210526465.5

文献号 : CN114920802B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 娄筱叮夏帆吴霞

申请人 : 中国地质大学(武汉)

摘要 :

本发明提供一种调节端粒酶限速蛋白运动的多肽探针及其复合物和应用方法。本发明设计了PKK‑TTP多肽探针和PKK‑TTP/hs多肽探针复合物,其中PKK‑TTP在白光的刺激下(PKK‑TTP+L)可促进细胞核内的端粒酶限速蛋白转移到细胞质中;PKK‑TTP/hs复合物可将hs携带到癌细胞中抑制细胞质中hTERT蛋白的表达,切断细胞核中的hTERT蛋白来源;此外,在白光的刺激下,PKK‑TTP/hs复合物(PKK‑TTP/hs+L)不仅能将hs成功递送到细胞中,减少细胞核内的hTERT蛋白,还能促进hTERT蛋白从细胞核移出进入细胞质;本发明中提供的两种复合物在不同的应用场景中均能够有效减少细胞核中的hTERT蛋白含量,从而达到抑制肿瘤细胞增殖的技术效果。

权利要求 :

1.一种调节端粒酶限速蛋白运动的多肽探针,其特征在于,所述多肽探针主要由可经光诱导产生ROS的物质与PKKKRKVKAARRRRRRRR正炔基肽(PKK)反应而成,所述多肽探针的结构如下:

2.一种如权利要求1所述调节端粒酶限速蛋白运动的多肽探针的制备方法,其特征在于,采用TTP化学小分子和序列为PKKKRKVKAARRRRRRRRRRpra的多肽PKK,置于含DMSO和水的混合溶剂体系中,加入抗坏血酸钠盐和溴化亚铜,惰性气氛下反应,纯化,即得。

3.根据权利要求2所述调节端粒酶限速蛋白运动的多肽探针复合物的制备方法,其特征在于,TTP和多肽PKK的反应摩尔比为2:1。

4.一种调节端粒酶限速蛋白运动的多肽探针复合物,其特征在于,所述多肽探针复合物由权利要求1所述的多肽探针负载hTERT蛋白的小干扰RNA(hTERT siRNA)形成的复合物。

5.根据权利要求4所述的多肽探针复合物,其特征在于,所述多肽探针与hTERT蛋白的小干扰RNA的摩尔比为30~40:1。

6.一种如权利要求4所述调节端粒酶限速蛋白运动的多肽探针复合物的制备方法,其特征在于,按照权利要求2或3的方法制备多肽探针PKK‑TTP,再将PKK‑TTP与hTERT siRNA孵育反应形成,即得。

7.根据权利要求6所述调节端粒酶限速蛋白运动的多肽探针复合物的制备方法,其特征在于,PKK‑TTP与hTERT siRNA的摩尔比为40:1。

8.权利要求1所述的调节端粒酶限速蛋白运动的多肽探针、权利要求4或5所述的多肽探针复合物在制备降低细胞核内端粒酶限速蛋白含量的产品中的应用。

9.根据权利要求8所述的应用,其特征在于,采用所述多肽探针和/或所述多肽探针复合物降低细胞核内端粒酶限速蛋白含量时,需要采用白光刺激。

说明书 :

调节端粒酶限速蛋白运动的多肽探针及其复合物和方法

技术领域

[0001] 本发明涉及生物技术领域,具体涉及一种调节端粒酶限速蛋白运动的多肽探针及其复合物及方法。

背景技术

[0002] 细胞核是细胞遗传和代谢活动的控制中心。核膜是一种将细胞核完全包覆的双层膜,提供了一个细胞内区室化的环境,使很多生物学过程在核内发生。核质穿梭是一个重要的生物学过程,可以将信号从细胞质传递到细胞核,调控细胞行为。其中,端粒酶是在细胞核中发挥活性作用的一种核糖核蛋白复合体,通过以自身RNA为模板,催化合成单链TTAGGG重复序列于端粒的3'端,以维持端粒长度。人端粒酶由核糖核酸模板、逆转录酶催化组分(hTERT蛋白)和其他相关蛋白组成。其中,逆转录蛋白是端粒酶活性的主要限速蛋白,催化端粒酶的逆转录酶活性。
[0003] 在正常人体组织中,端粒酶的活性被抑制。但是,在约85%的癌细胞中,端粒酶被重新激活,使肿瘤细胞能够在细胞分裂中维持端粒长度,实现永生化。研究发现:逆转录蛋白与癌细胞中的端粒酶活性呈正相关关系。端粒酶阳性的癌细胞中人类端粒酶逆转录酶(hTERT)下调会导致肿瘤细胞生长停滞。因此,逆转录蛋白可作为利用端粒酶靶向治疗癌细胞的又一研究目标。

发明内容

[0004] 基于此,有必要提供一种可调节端粒酶限速蛋白运动的多肽探针复合物及应用方法,能够降低细胞核中hTERT蛋白含量,抑制细胞核内的端粒酶活性,达到防止癌细胞增殖的目的。
[0005] 本发明采用如下技术方案:
[0006] 本发明在于提供一种在细胞质中调节端粒酶限速蛋白运动的多肽探针,主要由可经光诱导产生ROS的物质与PKKKRKVKAARRRRRRRR正炔基肽(PKK)反应而成。
[0007] 具体地,本发明提供一种调节端粒酶限速蛋白运动的多肽探针PKK‑TTP,其结构如下式所示:
[0008]
[0009] 该PKK‑TTP的制备方法包括:采用TTP和序列为PKKKRKVKAARRRRRRRRRRpra的多肽PKK,置于含DMSO和水的混合溶剂体系中,加入抗坏血酸钠盐和溴化亚铜,惰性气氛下反应,纯化,即得。在其中一些实施例中,优选地,TTP和多肽PKK的反应摩尔比为2:1。
[0010] 本发明还提供一种调节端粒酶限速蛋白运动的多肽探针复合物,所述多肽探针复合物由可经光诱导产生ROS的物质与PKKKRKVKAARRRRRRRR正炔基肽(PKK)偶联后合成多肽探针、再负载hTERT蛋白的小干扰RNA即可形成复合物。
[0011] 优选地,PKK‑TTP/hs由PKK‑TTP与hTERT siRNA反应制备而成的PKK‑TTP/hs复合物。其制备方法包括:按照上述方法制备PKK‑TTP,再将PKK‑TTP与hTERT siRNA孵育反应形成,即得。在其中一些实施例中,PKK‑TTP与hTERT siRNA的摩尔比为40:1。
[0012] 本发明还提供上述调节端粒酶限速蛋白运动的多肽探针复合物、PKK‑TTP、PKK‑TTP/hs在制备降低细胞核内端粒酶限速蛋白含量的产品中的应用。采用PKK‑TTP和/或PKK‑TTP/hs降低细胞核内端粒酶限速蛋白含量时,需要采用白光刺激。
[0013] 与现有技术相比,本发明的有益效果是:
[0014] 根据端粒酶蛋白自身的性质,利用切断/减少细胞核内端粒酶限速蛋白“转入”和促细胞核端粒酶蛋白“转出”的策略开发了三组对应的多肽/核酸探针:①PKK‑TTP多肽探针在白光的刺激下能够产生活性氧ROS,促进细胞核内的蛋白转移到细胞质中;②PKK‑TTP多肽负载核酸人端粒酶逆转录蛋白小干扰RNA(hTERT siRNA,hs)构建形成PKK‑TTP/hs复合物纳米探针,PKK‑TTP/hs可将hs携带到癌细胞中,使其细胞质中的mRNA沉默,抑制细胞质hTERT蛋白的表达,切断细胞核蛋白的来源,从而使得细胞核中的蛋白含量降低;③PKK‑TTP/hs+L复合物一方面可将hs成功递送到细胞中,另一方面,在光照下,PKK‑TPP产生的活性氧可以促进hTERT蛋白从细胞核移出进入细胞质。两者联合可以更大程度地减少位于细胞核中的hTERT蛋白。
[0015] 本发明首次公开了三种在细胞质中调节核端粒酶逆转录限速蛋白(hTERT)运动的方法,其中包括PKK‑TTP+L和PKK‑TTP/hs这两种具有单调控hTERT作用的能多肽探针复合物以及PKK‑TTP/hs+L具有双重调节模式的多功能多肽探针复合物,通过多肽探针复合物在细胞质中的相关通路减少细胞核中的hTERT蛋白含量。这三种方法能在体外和体内有效降低细胞核内的hTERT蛋白含量,其中第三种联合策略效果最佳,可以达到高效抑制肿瘤细胞增殖的目的。

附图说明

[0016] 图1为PKK‑TTP多肽探针的合成路线图。
[0017] 图2为PKK‑TTP多肽探针的LC‑MS表征图。
[0018] 图3为PKK‑TTP多肽探针在溶液中光学性质及其产ROS性能的表征;其中(A)为PKK‑TTP多肽探针的光学性质表征;(B)为溶液体系中PKK‑TTP多肽探针产生ROS的性能表征。
[0019] 图4为PKK‑TTP多肽探针在细胞内产生ROS性能的表征。其中(A)为不同浓度PKK‑TTP多肽探针的细胞毒性研究;(B)为6μM的PKK‑TTP多肽探针与细胞共孵育后光照不同时间后DCFH‑DA的相对吸收值;(C)为6μM的PKK‑TTP多肽探针与细胞共孵育后光照不同时间后,细胞内ROS指示剂的荧光响应。
[0020] 图5为PKK‑TTP+L体外调节细胞端粒酶TERT蛋白的胞内运动的测试结果;其中(A)2
为免疫荧光成像图像显示在HeLa细胞与6μM PKK‑TTP共孵育后,在白光照射下(50mW/cm ,
2min),hTERT蛋白从细胞质易位到细胞核;(B)为其荧光强度相对定量统计结果;(C)为6μM 
2
PKK‑TTP与HeLa细胞共孵育后,白光L(50mW/cm ,2min)刺激后提取细胞核及细胞质的总蛋白,与没有光照时的通过ELISA测定的hTERT蛋白量对比(以ng/mL表示,n=3)。
[0021] 图6为PKK‑TTP+L作用后的细胞核端粒酶活性测试结果;其中(A‑B)为6μM PKK‑TTP2
与HeLa细胞共孵育后,白光L(50mW/cm)刺激2min后提取细胞核的端粒酶,与没有光照时的细胞核端粒酶活性进行TRAP测定和相应的定量结果对比;(C)为6μM PKK‑TTP与HeLa细胞共
2
孵育后,白光L(50mW/cm)刺激2min后的细胞活力与没有光照时的对比。
[0022] 图7为PKK‑TTP探针负载hs的测试结果统计;其中(A)为不同比例PKK‑TTP/hs复合物的聚丙烯酰胺凝胶电泳图;(B)为不同比例PKK‑TTP/hs复合物的粒径图;(C)为不同比例PKK‑TTP多肽与siRNA复合物的电势表征图。
[0023] 图8为PKK‑TTP/hs对细胞核内细胞端粒酶逆转录酶的调节;其中(A)为PKK‑TTP/hs(6μM PKK‑TTP,150nM hs)处理HeLa细胞24小时后的IF图像;(B)为其细胞核中hTERT蛋白的表达定量统计;(C)为ELISA法测定PKK‑TTP/hs(6μM PKK‑TTP,150nM hs)孵育24h后HeLa细胞核中hTERT蛋白的含量(表示为ng/mL,n=3);(D‑E)为PKK‑TTP/hs孵育24小时后HeLa细胞核提取物中端粒酶活性的TRAP测定和相应定量结果;(F)为PKK‑TTP/hs(6μM PKK‑TTP,150nM hs)孵育24h后对HeLa细胞的细胞毒性。
[0024] 图9为PKK‑TTP/hs+L对细胞核内端粒酶逆转录酶的体外调节;其中(A‑B)为PKK‑TTP/hs(40:1,6μM PKK‑TTP,150nM hs)孵育24小时后,有或没有白光激光照射(L,2分钟,2
50mW/cm)后HeLa细胞共聚焦图像及其荧光强度统计,绿色荧光(DCFH‑DA,Ex:488nm,Em:
500‑530nm),黄色荧光(hs‑Cy5,Ex:633nm,Em:700‑750nm);(C)为PKK‑TTP/hs+L处理后细胞内TERT mRNA的定量PCR测试结果;(D‑E)为PKK‑TTP/hs+L处理后细胞的IF图像及其细胞核中hTERT蛋白的表达定量统计;(F)为ELISA法测定PKK‑TTP/hs+L的HeLa细胞核中hTERT蛋白的含量(表示为ng/mL,n=3)
[0025] 图10为PKK‑TTP与PKK‑TTP/hs+L的对比测试效果图,其中(A‑B)为6μM PKK‑TTP和2
PKK‑TTP/hs+L(40:1,6μM PKK‑TTP,150nM hs,2min,50mW/cm)孵育后HeLa细胞核提取物中端粒酶活性的测定和相应定量结果;(C)为PKK‑TTP/hs+L处理后的细胞毒性。
[0026] 图11为小鼠肿瘤中的蛋白调节效果图,其中(A)为PKK‑TTP/hs+L联合治疗疗效的抗肿瘤作用,荷瘤小鼠治疗示意图;(B)为PBS、PKK‑TTP、PKK‑TTP+L、PKK‑TTP/hs和PKK‑TTP/hs+L处理后肿瘤切片的核和细胞质hTERT免疫荧光染色和(C)相应的核荧光强度。
[0027] 图12为小鼠肿瘤模型上各个试例的结果图,其中(A)为PKK‑TTP/hs+L联合治疗疗3
效的抗肿瘤作用,荷瘤小鼠治疗示意图;当移植的肿瘤长到约200mm时,将PBS、PKK‑TTP、PKK‑TTP、PKK‑TTP/hs和PKK‑TTP/hs通过瘤内注射的方式注射到五组小鼠体内,在24h后用白光激光照射小鼠肿瘤部位;(B)为治疗期间各组肿瘤的相对体积变化(V1/V0)(n=4);(C)为15天瘤内注射治疗后不同组的代表性肿瘤图像;(D)为PBS、PKK‑TTP、PKK‑TTP、PKK‑TTP/hs和PKK‑TTP/hs中的小鼠在整个治疗期间的体重变化(n=4);(E)为PBS、PKK‑TTP、PKK‑TTP+L、PKK‑TTP/hs和PKK‑TTP/hs+L处理后肿瘤切片的ki67免疫荧光染色和(F)相应的荧光强度;(G)为PBS、PKK‑TTP、PKK‑TTP+L、PKK‑TTP/hs和PKK‑TTP/hs+L处理后肿瘤切片的HE染色。
[0028] 图13为本发明PKK‑TTP/hs+L的技术路线及作用机理的解释说明图。

具体实施方式

[0029] 下面结合具体实施例对本发明作进一步的详细说明,以使本领域的技术人员更加清楚地理解本发明。
[0030] 以下各实施例,仅用于说明本发明,但不止用来限制本发明的范围。基于本发明中的具体实施例,本领域普通技术人员在没有做出创造性劳动的情况下,所获得的其他所有实施例,都属于本发明的保护范围。
[0031] 在本发明实施例中,若无特殊说明,所有原料组分均为本领域技术人员熟知的市售产品;在本发明实施例中,若未具体指明,所用的技术手段均为本领域技术人员所熟知的常规手段。
[0032] 试验例1
[0033] 如图1所示,本试验例提供一种PKK‑TTP多肽探针,其合成方法包括:将2个当量的TTP分子和一个当量的多肽分子(序列为PKKKRKVKAARRRRRRRRRRpra)溶解在DMSO/H2O(v/v=1:1)中,添加2个当量的抗坏血酸钠盐和2个当量的溴化亚铜,置于40℃氮气保护下反应24h。反应结束后,待将溶剂旋干,HPLC纯化后即可获得合成产物。将合成的产物冷冻干燥,
9+
得到红色固体(产率为50%)。产物质谱如图2所示,高分辨率质谱图显示质荷比[M+9H]
8+ 7+
calcd,353.5487;found,353.5504.[M+8H] calcd,397.6164;found,397.6187.[M+7H]
6+ 5+
calcd,454.2748;found,454.2767.[M+6H] calcd,529.8194;found,529.8217.[M+5H]calcd,635.5819;found,635.5839,证明产物PKK‑TTP多肽探针合成成功。
[0034] PKK‑TTP多肽探针由2个模块组成:1)TPETP‑N3(TTP),为具有红色发射的叠氮修饰的四苯基乙烯噻吩,被设计来进行生物成像和产生ROS;2)PKKKRKVKAARRRRRRRRpra‑炔基多肽(PKK),利用阳离子多肽提高细胞的内化效率。
[0035] 进一步探究PKK‑TTP多肽探针产生ROS及其效率,方法步骤为:
[0036] 将PKK‑TTP多肽探针加入到水中,再添加10μMABDA后用于研究溶液中白光照射下PKK‑TTP多肽探针产生ROS的能力。记录不同光照时间下ABDA在378nm处的吸光度值,以获得光敏过程的衰减率。此外,细胞中的单线态氧测试可以在96孔板和共聚焦皿中进行,将PKK‑TTP多肽探针与细胞在黑暗中孵育指定时间后,加入10μM DCFH‑DA添加到每个孔/皿中,孵育30分钟后,用PBS洗涤细胞去掉多余的DCFH‑DA后,进行相应时间的光照刺激,光照结束后置于酶标仪下读数或者激光共聚焦显微镜下拍摄,即可获得细胞内产生ROS的效果。
[0037] 结果如图3和4所示。结果表明:PKK‑TTP多肽探针在溶液和细胞内都具有令人满意的ROS生成效率,但是随着光照时间的增加,PKK‑TTP多肽探针产生的ROS随之增多,这就会促使细胞发生凋亡。为了进一步确保实验中刺激细胞光照的安全性,筛选试验证明了在2
2min的白光照射(50mW/cm)处理后的细胞中可以观察到hTERT蛋白的转移情况。
[0038] 进一步对PKK‑TTP多肽探针在白光作用下(简称“PKK‑TTP+L”)抑制核端粒酶活性的作用进行研究,方法步骤为:
[0039] 将PKK‑TTP多肽探针与细胞孵育24小时后,再利用50mW/m2强度的白光光源对细胞进行2分钟的照射,其处理结果可通过免疫荧光成像技术和酶联免疫吸附试验对蛋白的定位及含量进行测试,结果如图5所示,从图像中可以观察到核hTERT蛋白在细胞质中的分布增强,其相应的荧光强度统计表明核hTERT蛋白从细胞核中转移到细胞质中,细胞质中的hTERT蛋白的量增加。通过ELISA蛋白定量分析方法对这些组分中的hTERT蛋白进行测试及计算,ELISA的计算结果与上述观察免疫荧光成像的结果一致,证明PKK‑TTP多肽探针触发2
的ROS(50mW/cm ,2min)的确可以使细胞核内的hTERT蛋白转移到细胞质中去,从而导致细胞核内hTERT蛋白的含量减少,证明PKK‑TTP+L可以介导hTERT蛋白从细胞核转出到细胞质中。
[0040] 进一步通过酶活性测试和MTT法检测PKK‑TTP+L刺激后细胞核hTERT蛋白易位后对细胞活力的影响,结果如图6所示。
[0041] 与PKK‑TTP多肽探针相比,PKK‑TTP+L可以介导细胞核中的端粒酶活性显著降低,抑制率为18.8%。随后,PKK‑TTP+L表现出比PKK‑TTP多肽探针更高的细胞毒性,ROS生成后细胞活力降低了13.8%。
[0042] 以上这些结果证明了PKK‑TTP+L可以促进细胞核hTERT蛋白通过核孔易位到细胞质中,进而抑制核端粒酶活性,影响细胞活力。
[0043] 试验例2
[0044] 本试验例进一步提供PKK‑TTP多肽探针负载hTERT siRNA形成PKK‑TTP/hs复合物的制备方法,包括如下步骤:
[0045] 先用DEPC水配置hTERT siRNA(hs)溶液,分别将不同浓度的PKK‑TTP多肽探针溶液与将等体积等浓度的hs溶液以(0~1000):1的摩尔浓度比例(1:0,1:1,10:1,20:1,30:1,40:1,50:1,60:1,1000:1)混合,用DEPC水稀释至所需体积,置于常温下孵育30min形成不同反应比例的PKK‑TTP/hs复合物。
[0046] 利用聚丙烯酰胺凝胶电泳分析PKK‑TTP多肽与hs静电结合后的PKK‑TTP/hs复合物形成情况,结果如图3中的A所示。进一步对不同反应比例的PKK‑TTP/hs复合物进行粒径和电势分析,结果如图3中的B和C所示。为了避免阳离子过多对细胞产生较强的毒性,结合聚丙烯酰胺凝胶电泳结果和粒径结果,选择PKK‑TTP多肽探针与hs以摩尔浓度40:1反应的PKK‑TTP/hs复合物作为最佳运载hs的比例浓度。
[0047] PKK‑TTP/hs复合物旨在高效进入细胞后通过基因沉默作用来调节细胞核内的hTERT蛋白含量,从而降低细胞核中与hTERT蛋白相关的端粒酶活性。
[0048] 进一步探究PKK‑TTP/hs复合物的基因沉默效果,试验方法步骤为:
[0049] 将PKK‑TTP/hs复合物(40:1)与细胞孵育24小时后,提取细胞内的RNA,利用定量逆转录聚合酶链反应(RT‑PCR)实验检测的细胞中hTERT mRNA的表达,其结果如图7所示,细胞内hTERT mRNA的表达水平显着降低,这说明PKK‑TTP/hs复合物在细胞内成功发挥了基因沉默作用。
[0050] 进一步观察HeLa细胞与PKK‑TTP/hs复合物共孵育24h后,hs可以促进细胞核内hTERT蛋白的下调。抗hTERT蛋白的免疫荧光成像实验(IF)和酶联免疫吸附实验测定(ELISA)分析结果显示hTERT蛋白在细胞核和细胞质中的定位及含量,结果如图8所示。结果表明PKK‑TTP/hs复合物可以成功地减少HeLa细胞中核hTERT蛋白的含量。
[0051] 试验例3
[0052] 进一步探究PKK‑TTP/hs复合物在白光处理下(简称“PKK‑TTP/hs+L”)的作用效果,方法步骤为:
[0053] 先将PKK‑TTP/hs复合物与细胞孵育24小时后,再利用50mW/m2强度的白光光源对细胞进行2分钟的照射,其处理结果可通过免疫荧光成像技术和酶联免疫吸附试验对蛋白的定位及含量进行测试。
[0054] 结果如图9和10所示,激光共聚焦图像结果表明PKK‑TTP/hs+L(2min,50mW/cm2)孵育后,抗hTERT蛋白的免疫荧光成像实验(IF)和相应的平均荧光强度定量分析结果显示:PKK‑TTP/hs+L可充分降低细胞核中的hTERT蛋白含量(抑制率为44.3%)。
[0055] 此外,细胞核及细胞质对应部分的hTERT蛋白ELISA结果也证实,与PKK‑TTP(没有基因沉默和ROS效应)相比,PKK‑TTP/hs+L可以有效降低细胞核内hTERT蛋白的含量(抑制率为40.6%)。
[0056] 总的来讲,本发明调节核蛋白相关通路的核蛋白抑制策略的原理如图11所示。本发明设计由三个模块组成的多功能复合物:
[0057] 1)TTP,一种叠氮官能化的四苯基噻吩,用于生物成像和产生ROS。
[0058] 2)PKKKRKVKAARRRRRRRR正炔基肽(PKK),作为一种阳离子细胞穿膜肽,可通过静电相互作用提高细胞内化效率和基因负载能力。
[0059] 3)hs,端粒酶逆转录蛋白的特异性小干扰RNA将用于诱导基因沉默和随后的hTERT蛋白低表达。
[0060] 具体来说,该PKK‑TTP/hs复合物可以将hs携带到癌细胞中,使其细胞质中的mRNA沉默,随后抑制细胞质hTERT蛋白的表达,从而切断hTERT细胞核中的蛋白质来源。同时,在光照下,PKK‑TPP产生适度的ROS可以促进hTERT蛋白通过核孔从细胞核移出进入细胞质。
[0061] 试验例4
[0062] 进一步探究PKK‑TTP+L、PKK‑TTP/hs复合物及PKK‑TTP/hs复合物在白光处理下(简称“PKK‑TTP/hs+L”)的在小鼠模型上的作用效果,方法步骤为:
[0063] 先将HeLa细胞种植在小鼠腋下形成移植瘤,待肿瘤生长至一定体积后,将小鼠随机分成5组,每组4只,分别命名为PBS、PKK‑TTP、PKK‑TTP+L、PKK‑TTP/hs和PKK‑TTP/hs+L。将PKK‑TTP多肽探针及PKK‑TTP/hs复合物进行瘤内注射,当孵育24小时后,再利用白光光源对肿瘤进行照射,其治疗结果可通过观察肿瘤体积大小及肿瘤切片免疫荧光成像技术进行测试。
[0064] 结果如图11和12所示,与PBS和PKK‑TTP组相比,在PKK‑TTP/hs组中可以检测到较少的核hTERT蛋白红色信号(选择的圆圈),表明hs由PKK‑TTP/hs能有效抑制hTERT蛋白的表达。此外,白光照射后,可以观察到hTERT蛋白在细胞质中的信号明显增强(如箭头所示),证明PKK‑TTP+L系统具有调节细胞核蛋白转移到细胞质的功效。更有效的是,hTERT蛋白免疫荧光的平均荧光强度表明核hTERT蛋白在PKK‑TTP/hs+L处理后急剧降低(抑制率为42.3%)(图11C),表明结合上述两种方法,PKK‑TTP/hs+L可以最大限度地减少核hTERT蛋白的量。
[0065] 此外,通过在15天的治疗期内连续监测肿瘤的体积变化来判断不同组对小鼠肿瘤生长的抑制活性。相对肿瘤体积显示PBS和PKK‑TTP无明显抑制肿瘤生长的效果。与此形成鲜明对比的是,PKK‑TTP/hs+L具有显著的肿瘤抑制作用(图12)。这种双重调节系统以PKK‑TTP/hs+L依赖性方式显着抑制肿瘤生长,当在第11天停止治疗时,与PKK‑TTP对照组相似的肿瘤生长曲线就证明了这一点。最后,利用在肿瘤学中广泛用于预测肿瘤增殖趋势的ki67免疫荧光染色和H&E染色进一步仔细证实了协同治疗结果,与其他治疗组相比,PKK‑TTP/hs+L可观察到明显增强的肿瘤抑制效果(图12)。
[0066] 总之,这些结果表明PKK‑TTP/hs可以将hs递送到肿瘤组织中,以干扰hTERT蛋白,从而实现抗增殖治疗。另一方面,PKK‑TTP+L可产生ROS,促进hTERT蛋白从细胞核转运至细胞质,实现抗增殖治疗。与单独的其他治疗相比,PKK‑TTP/hs+L的组合对肿瘤生长的抑制作用显着提高。整个治疗过程中小鼠体重几乎没有差异,表明PKK‑TTP/hs、PKK‑TTP+L和PKK‑TTP/hs+L的全身细胞毒性可忽略不计。
[0067] 本发明从两个方面调节hTERT蛋白在细胞质中的低表达,在切断细胞核的蛋白源头和促进细胞核内的蛋白转移后,会对细胞核内的端粒酶活性及细胞活力产生一定的影响。PKK‑TPP+L成功促进hTERT蛋白通过核孔从细胞核移出进入细胞质,从而减少了细胞核蛋白的含量,PKK‑TTP/hs成功地介导基因沉默并导致核hTERT蛋白在HeLa细胞的细胞质中低表达,从而可以切断核hTERT蛋白来源。结果表明PKK‑TTP+L比单独的多肽探针试验组的细胞核内的端粒酶活性有效降低了18.8%;PKK‑TTP/hs比单独的多肽探针试验组的细胞核内的端粒酶活性有效降低了26.3%;PKK‑TTP/hs+L比单独的多肽探针试验组的细胞核内的端粒酶活性有效降低了40.1%,利用本发明中的策略可有效抑制核端粒酶活性,体内及体外实验证明该策略可以有效降低肿瘤HeLa细胞的增殖率。
[0068] 在此有必要指出的是,以上实施例仅限于对本发明的技术方案做进一步的阐述和说明,并不是对本发明的技术方案的进一步的限制,本发明的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。