二溴柱[5]芳烃化合物及其制备方法、其共轭聚合物及该聚合物的制备方法和应用转让专利

申请号 : CN202210583118.6

文献号 : CN114957040B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李辉肖宇涂曼汪锋

申请人 : 武汉工程大学

摘要 :

本发明属于有机合成与分析检测技术领域,具体涉及一种二溴柱[5]芳烃化合物及其制备方法、其共轭聚合物及该聚合物的制备方法和应用。将双羟基柱[5]芳烃、5‑溴‑2‑氟苯腈和碳酸钾溶于反应溶剂中,在惰性气体保护下反应20‑26h,停止反应后入加大量水,抽滤,将得到的粗产品用柱层析分离纯化处理得到二溴柱[5]芳烃化合物。其与四苯乙烯硼酸酯可进一步的聚合,得到能在特定波长的光源激发下发出荧光的共轭聚合物。该聚合物能与百草枯选择性结合,使聚合物荧光发生猝灭。

权利要求 :

1.一种二溴柱[5]芳烃化合物,其特征在于,结构式如下:

2.一种根据权利要求1所述的二溴柱[5]芳烃化合物的制备方法,其特征在于,包括以下步骤:将双羟基柱[5]芳烃、5‑溴‑2‑氟苯腈和碳酸钾溶于反应溶剂中,在惰性气体保护下反应20‑26h,停止反应后加入大量水,抽滤,将得到的粗产品用柱层析分离纯化处理得到化合物M‑1,即得,反应路线如下:

3.根据权利要求2所述的二溴柱[5]芳烃化合物的制备方法,其特征在于:双羟基柱[5]芳烃与5‑溴‑2‑氟苯腈的摩尔比为:1:(2‑2.3);

反应溶剂为:DMF,DMAc或DMSO;

反应温度为80‑140℃;

粗产品用柱层析分离时,选用的溶剂体系为乙酸乙酯与石油醚,体积比为:1:(10‑15)。

4.一种二溴柱[5]芳烃化合物的共轭聚合物,其特征在于,结构通式如下:其中n为3‑6。

5.一种根据权利要求4所述的共轭聚合物的制备方法,其特征在于,包括以下步骤:取权利要求1所述的化合物M‑1和四苯乙烯硼酸酯溶于反应溶剂中,再依次加入催化剂、K2CO3溶液,在惰性气体保护下反应18‑36h,反应结束后冷却至室温,将反应液倒入适量丙酮中,抽滤得到目标产物P,即得,反应路线如下:。

6.根据权利要求5所述的制备方法,其特征在于:反应溶剂为甲苯或DMF;

反应温度为120‑140℃。

7.一种根据权利要求4所述的二溴柱[5]芳烃化合物的共轭聚合物的应用,其特征在于:作为百草枯的荧光探针,所述探针用于制备百草枯检测试剂。

说明书 :

二溴柱[5]芳烃化合物及其制备方法、其共轭聚合物及该聚合

物的制备方法和应用

技术领域

[0001] 本发明属于有机合成与分析检测技术领域,具体涉及一种二溴柱[5]芳烃化合物及其制备方法、其共轭聚合物及该聚合物的制备方法和应用。

背景技术

[0002] 农药残留是农药使用一个周期后没有被分解而残留于生物体、农作物、土壤、水体、大气中的微量农药原体、有毒代谢物、降解物和杂质的总称。百草枯(PQ),化学名称是1,1′‑二甲基‑4,4′‑联吡啶阳离子盐,是一种非选择性、速效的除草剂。由于它的高毒性,易被消化道、呼吸道和皮肤吸收,导致器官损害甚至死亡,对人类健康和环境构成了严重风险。
因此,迫切需要寻求可以快速、便捷地检测百草枯残留物的方法。
[0003] 农药残留传统的检测方法有如下几种:高效液相色谱法、气相色谱法、液相色谱—质谱联用技术、气相色谱—质谱联用技术、毛细管电泳法等。上述检测方法主要依赖于实验室的大型检测仪器,检测精确度高、可靠性强,但是大型仪器分析需要复杂的样品前处理,而且无法做到实时和快速的检测。
[0004] 新型的百草枯检测方法还在不断地开发中,中国科学院生物医药与生物技术研究所的Chen,W.L.发表学术论文“Rapid and sensitive detection of pesticide residues using dynamic surface‑enhanced Raman spectroscopy”(JRaman Spectrosc,2020,51(4):611‑618.),该研究采用动态表面增强拉曼光谱(dynamic SERS)技术可以对百草枯实现敏感检测。江南大学Shan,X.Q.等人发表的学术论文“A molecularly imprinted electrochemical sensor based on Au nanocross‑chitosan composites for detection of paraquat”(J Solid State Electr 2019,23,1211‑1220.),在金纳米交联壳聚糖(AuNCs‑CS)修饰的玻碳电极上构建了一种百草枯(PQ)电化学传感器。虽然这些技术检测结果较准确,但是仍存在检测成本高,检测时间长,检测仪器要求高等问题。
[0005] 荧光识别方法以其操作简单,技术水平要求低,检测过程快速方便及灵敏度高、响应快等优点受到人们的广泛关注。因此,设计一种荧光探针用于检测百草枯非常有必要。同小分子荧光探针比起来,共轭聚合物具有许多优势,最重要的一点是它具有离域的π电子共轭“分子导线”效应,对于特定的被分析物,共轭聚合物由于多识别单元而使络合效率和识别选择性都得到了大大的提高。
[0006] 柱芳烃是由1,4‑二甲氧基苯单元通过2,5对位亚甲基桥连成环的柱状分子,由于其独特的对称结构,如刚性柱状结构和富电子空腔以及相对易修饰化,以及卓越的分子识别能力,并成为一类新的大环主体分子。这些内在特性决定了柱[5]芳烃作为优异的主体分子,它可以与不同的阳离子和中性客体络合。目前对柱芳烃的研究方向主要集中在超分子化学,而将具有优良光物理性能的柱芳烃骨架进行修饰做成聚合物的研究工作还比较少。

发明内容

[0007] 为解决现有技术的不足,本发明提供了一种二溴柱[5]芳烃化合物及其制备方法,其共轭聚合物及该共轭聚合物的制备方法,以及该共轭聚合在检测百草枯中的应用。该聚合物作为荧光探针具有选择性好、抗干扰能力强、灵敏度高、可在含水溶液中快速检测百草枯的优点。
[0008] 本发明所提供的技术方案如下:
[0009] 一种二溴柱[5]芳烃化合物,其结构式:
[0010]
[0011] 上述二溴柱[5]芳烃化合物可作为聚合单体。
[0012] 本发明还提供了上述二溴柱[5]芳烃化合物的合成方法,包括如下步骤:双羟基柱[5]芳烃、5‑溴‑2‑氟苯腈和碳酸钾溶于反应溶剂中,在惰性气体保护下反应20‑26h,停止反应后加入大量水,抽滤,得到的粗产品用柱层析分离纯化处理得到化合物M‑1,反应路线如下:
[0013]
[0014] 上述反应中双羟基柱[5]芳烃与5‑溴‑2‑氟苯腈的摩尔比为:1:2‑2.3;反应溶剂为:DMF,DMAc或DMSO;反应温度为80‑140℃;粗产品用柱层析分离时,选用的溶剂体系为乙酸乙酯与石油醚,体积比为1:(10‑15)。
[0015] 本发明还提供了上述柱[5]芳烃的共轭聚合物,其结构式如下:
[0016]
[0017] 其中n为3‑6。
[0018] 上述柱[5]芳烃的共轭聚合物在二甲亚砜与水的混合溶液中具有AIEE效应。
[0019] 本发明还提供了上述柱[5]芳烃的共轭聚合物的制备方法,包括如下步骤:取合成的二溴柱[5]芳烃化合物M‑1和四苯乙烯硼酸酯溶于反应溶剂中,再依次加入适量催化剂、K2CO3溶液,在惰性气体保护下反应18‑36h。反应结束后冷却至室温,溶液中加入适量丙酮,抽滤得到目标产物P,其结构式如下:
[0020]
[0021] 具体的上述反应中反应溶剂为甲苯或DMF;反应温度为120‑140℃。
[0022] 本发明还提供了上述二溴柱[5]芳烃化合物的共轭聚合物的应用,其作为百草枯的荧光探针,后者,用于制备百草枯检测试剂。
[0023] 在二甲亚砜与水的混合溶液中加入聚合物P,再分别加入百草枯、麦草畏、异丙甲2+ 2+ 3+ 2+ 2+ 2+ 2+ 2+ 2+
草胺、4‑氨基吡啶、吡啶共5种有机小分子,Mn 、Ni 、Cr 、Cd 、Ca 、Co 、Hg 、Ba 、Mg 、
3+ + 2+ 2+ 2+
Al 、Ag、Pb 、Co 和Zn 等共18种金属阳离子,只有百草枯可以使聚合物P的荧光发生显著的荧光淬灭现象,淬灭程度(1‑F/F0)达98.7%,其他有机小分子与金属离子的加入不能使聚合物P的荧光强度发生明显的变化。透射电镜结果表明,加入百草枯后,聚合物与百草枯通过主客体作用发生了自组装,出现明显的纳米球状聚集。表明合成的新型基于柱[5]芳烃的共轭聚合物可在含有水的溶液中能选择性检测百草枯。
[0024] 与现有技术相比,本发明的有益效果是:
[0025] 本发明所提供的二溴柱[5]芳烃化合物及其共轭聚合物的合成方法简单,新型柱[5]芳烃共轭聚合物可以实现对百草枯快速、灵敏、经济的检测,在实际应用时效率高,适合微量百草枯残留的检测。
[0026] 本发明所提供的柱[5]芳烃聚合物是一种能在特定波长的光源激发下发出荧光的共轭聚合物,能与百草枯选择性结合,使聚合物荧光发生猝灭。该检测方法对其他有机小分子与金属离子的抗干扰能力强,能够实现对百草枯的特异性检测识别。

附图说明

[0027] 图1为柱[5]芳烃共轭聚合物P在不同含水量的二甲亚砜溶液中的荧光发射光谱图(a)及其荧光强度柱状图(b);
[0028] 图2为柱[5]芳烃共轭聚合物P与不同有机小分子与金属离子的荧光发射光谱图;
[0029] 图3为柱[5]芳烃共轭聚合物P中与不同当量比的百草枯的荧光发射光谱图(a)及其荧光强度变化趋势图(b);
[0030] 图4为百草枯检测的标准曲线;
[0031] 图5为柱[5]芳烃共轭聚合物P(a)和P与百草枯(b)的透射电镜图。

具体实施方式

[0032] 以下对本发明的原理和特征进行描述,所举实施例只用于解释本发明,并非用于限定本发明的范围。
[0033] 实施例1
[0034] 一种新型二溴柱[5]芳烃化合物的合成方法:
[0035] (1)双羟基柱[5]芳烃(1.4g,2mmol)、5‑溴‑2‑氟苯腈(0.88g,4.4mmol)和碳酸钾(0.66g,4.8mmol)溶于二甲亚砜(20mL),在N2保护下保持100℃反应12h,升温到120℃继续搅拌12h,停止反应倒入大量水(700mL)中,抽滤,得到的粗产品用柱分离纯化(EA/PE=1:1
14,v/v)得到化合物M‑1(1.53g,73.2%)。HNMR(400MHz,CDCl3,δ(ppm)):7.77(2H),7.19(2H),7.03(2H),6.91(2H),6.80(4H),6.58(2H),6.13(2H),3.76(18H),3.76(6H),3.52(10H).
[0036] 实施例2
[0037] 一种新型的基于柱[5]芳烃的共轭聚合物的制备方法:
[0038] (2)取步骤(1)制备的化合物M‑1(0.2045g,0.35mmol)和四苯乙烯硼酸酯(0.2921g,0.5mmol)溶于DMF(10mL)中,再依次加入适量催化剂(4mg,3.46mmol)、K2CO3溶液(2ml,2M),在N2保护下温度保持120℃,反应36h。反应结束后冷却至室温,将反应液倒入丙酮(200mL)中,抽滤得到目标产物P(0.31g,70.5%)。
[0039] 实施例3
[0040] 新型柱[5]芳烃共轭聚合物的AIEE效应测试
[0041] 将聚合物P分别加入到含水量为0、10%、20%…90%的二甲亚砜溶液中,各混合溶‑5液中P的浓度均为1×10 mol/L,分别以激发波长280nm进行荧光发射光谱测定,从图1中可以看出,二甲亚砜中的含水量从0增加至30%,聚合物P在发射波长为510nm处的荧光强度增加了4.88倍。这说明聚合物P在二甲亚砜与水的混合溶液中具有聚集诱导荧光增强效应。
[0042] 实施例4
[0043] 新型柱[5]芳烃共轭聚合物P的荧光选择性响应测试:
[0044] 将聚合物P和有机小分子与金属离子分别加入到水‑二甲亚砜溶液(3:7,v/v)中,‑5待测液中P的浓度为1×10 mol/L,分别加入50倍摩尔当量的百草枯(PQ)、麦草畏、异丙甲草+ 2+ 2+ 2+ 2
胺、4‑氨基吡啶、吡啶、钠离子(Na)、镁离子(Mg )、钙离子(Ca )、镉离子(Cd )、铬离子(Cr+ 2+ 2+ 2+ 2+ 2+ 2+
)、钡离子(Ba )、锰离子(Mn )、锌离子(Zn )、钴离子(Co )、镍离子(Ni )、铯离子(Sr )、
3+ + 2+ 2+ 2+ +
铝离子(Al )、银离子(Ag)、汞离子(Hg )、铅离子(Pb )、锌离子(Zn )、钾离子(K)、锂离+
子(Li),分别以激发波长280nm进行荧光发射光谱测定,从图2中可以看出,除了百草枯外,体系的发射峰基本没有变化,加入百草枯后,荧光强度显著淬灭,淬灭程度(1‑F/F0)达
98.7%(如图中曲线P+PQ所示)。这说明荧光探针P对百草枯具有较好的荧光选择性识别能力。
[0045] 实施例5
[0046] 新型柱[5]芳烃共轭聚合物P的荧光滴定测试:
[0047] 将P溶于水‑二甲亚砜溶液(3:7,v/v)中配置成浓度为1×10‑5mol/L的标准溶液,而后逐渐滴加摩尔比为0‑50倍当量的百草枯溶液,依次以激发波长280nm进行荧光发射光谱测定。从图3可以发现,随着测试体系中百草枯浓度的升高,荧光发射强度也随之逐渐降低。这表明荧光探针P对百草枯的识别具有可靠的灵敏度,并且根据3σ法得出其检测限为4.9×‑8
10 M。
[0048] 实施例6
[0049] 新型柱[5]芳烃共轭聚合物检测百草枯的具体方法如下:
[0050] (1)标准溶液的准备:在水‑二甲亚砜溶液(3:7,v/v)中配置不同浓度的百草枯溶液,包括10μmol/L、20μmol/L、30μmol/L、40μmol/L,往不同浓度百草枯溶液中加一定量P配‑5置成聚合物浓度为1×10 mol/L的标准溶液。
[0051] (2)标准曲线的绘制:以固定激发波长280nm分别对一系列不同浓度的百草枯‑荧光探针P溶液进行荧光发射光谱测定,绘制发射波长为510nm处的荧光强度与百草枯浓度之间对应关系的标准曲线,如图4,其中线性回归方程为y=0.00813x+0.09499。
[0052] (3)样品的检测:在样品溶液中加入一定量P配置成聚合物浓度为1×10‑5mol/L的待测溶液,以激发波长280nm进行荧光发射光谱测定,将得到的发射波长为510nm处的荧光强度信号代入步骤(2)绘制的标准曲线中,得出样品溶液中百草枯的浓度。
[0053] 实施例7
[0054] 新型柱[5]芳烃共轭聚合物P加PQ前(a)和后(b)的透射电镜测试:
[0055] 将P溶于水‑二甲亚砜溶液(3:7,v/v)中配置成浓度为1×10‑5mol/L的标准溶液,将配制的标准溶液滴在铜网上烘干后进行TEM测试。往标准溶液中加入50倍摩尔当量的百草枯溶液然后滴在铜网上烘干后进行TEM测试。测试结果图5表明,聚合物P是一个完整的团聚体,添加百草枯后,由于主客体作用发生自组装,团聚体分散成近似球形的纳米颗粒。
[0056] 以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。