一种作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料及其制备方法和应用转让专利

申请号 : CN202210983662.X

文献号 : CN115050951B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 孔冬青邢伟李创谢冬柏谢凯王冠琴冯玉娇

申请人 : 潍坊科技学院

摘要 :

本申请提供一种作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料及其制备方法和应用。以泡沫碳为基底,通过恒电位沉积法在泡沫碳表面原位制备了苯胺和吡咯的共聚物。实现了聚苯胺和聚吡咯两者优良性能的综合化,用做铝离子电池正极材料时,表现出优异的电化学储能性能。在0.5 Ag‑1的电流密度下和0.4~2.35V电压窗口内,以本复合材料做正极的铝离子电池具有约148.7 mAh g‑1的电池比容量。另外,由于本材料有稳定的骨架结构和优异的导电性能,可将本材料直接用作一体式电极,不需要额外添加导电剂和粘结剂等非活性材料,有利于提高电极的质量能量密度和循环性能,能够有效简化电极的制备步骤,降低电极的制备成本。

权利要求 :

1.一种作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料的制备方法,其特征在于,包括如下步骤:步骤1:将泡沫镍依次用HCl溶液、丙酮、乙醇超声清洗,清洗后干燥,得到预处理的泡沫镍;

步骤2:将预处理的泡沫镍作为模板,以苯为碳源、高纯氩气为载气,通过化学气相沉积法制备以泡沫镍为模板的泡沫碳材料;

步骤3:将步骤2制备的以泡沫镍为模板的泡沫碳材料作为工作电极,铂电极作为对电极,饱和甘汞电极作为参比电极,将苯胺单体和吡咯单体分散在磷酸氢二钠和高氯酸钠的混合溶液中作为电解液,使用三电极体系,通过恒电位沉积法在泡沫镍为模板的泡沫碳表面原位聚合,制备苯胺和吡咯的共聚物PANI/PPy/C/Ni;

步骤4:将步骤3制备的PANI/PPy/C/Ni干燥后加入HCl溶液中浸泡,得到除去泡沫镍模板的复合材料,将所述除去泡沫镍模板的复合材料烘干,得到作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料。

2.根据权利要求1所述的方法,其特征在于,所述步骤2还包括如下步骤:将预处理的泡沫镍放置于管式炉中通入高纯氩气,升温至700‑750℃;

将所述管式炉内抽真空后持续通入氢气,继续升温至800‑1000℃;

以高纯氩气为载气通入苯2‑10 min,然后降温至700‑750℃,保持恒温3‑5min后快速降温至350‑450℃;

停止通入氢气,并将管式炉自然降温至室温,制得以泡沫镍为模板的泡沫碳材料。

3.根据权利要求2所述的方法,其特征在于,所述氢气的流速为100 SCCM,升温至700‑

750℃的升温速率为5℃/min,升温至800‑1000℃的升温速率为5℃/min。

4.根据权利要求1所述的方法,其特征在于,所述步骤1中HCl溶液、丙酮、乙醇超声清洗时间均为5‑20 min,干燥温度为40‑60℃。

5.根据权利要求1所述的方法,其特征在于,所述步骤3中苯胺单体和吡咯单体的浓度为0.05‑0.3 M,磷酸氢二钠的浓度为0.2 M,高氯酸钠的浓度为0.001 M,恒电位沉积电压为

0.9 ‑1.3 V,沉积时间为10‑100s。

6.根据权利要求1所述的方法,其特征在于,所述步骤4中PANI/PPy/C/Ni在HCl溶液中的浸泡时间为20‑40 h,浸泡温度为50‑80℃,HCl溶液浓度为3‑5 M。

7.一种由权利要求1‑6任意一项所述方法制备的作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料。

8.一种由权利要求1‑6任意一项所述方法制备的作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料作为一体式电极在铝离子电池正极中的应用。

说明书 :

一种作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料及

其制备方法和应用

技术领域

[0001] 本发明涉及新能源储能材料技术领域,尤其涉及一种作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料及其制备方法和应用。

背景技术

[0002] 由于锂资源分布不均匀且相对稀有,导致锂离子电池成本逐年上升,寻找下一代可持续的廉价储电器件已经成为电化学储能领域的重要研究课题。铝离子电池由于多种优势受到了广泛关注:(1)铝作为地壳中含量最为丰富的金属元素,储量丰富,价廉易得;(2)‑1基于铝负极三电子转移反应,铝离子电池具有非常高的理论能量密度(2980 mAh g ,8050 ‑3
mAh cm );(3)金属铝负极反应具有高度可逆性,极化电阻小,且在充放电循环过程中无显著的枝晶现象;(4)AlCl3型离子液体电解液种类多、安全性高。基于金属铝负极较高的理论容量,铝离子电池的容量大小主要取决于电池正极,所以正极材料的选择与设计对于提高铝离子电池性能具有十分重要的意义。
[0003] 与无机物电极材料相比,有机类电极材料具有多方面的优势:(1)其多由自然界储量丰富的碳、氢、氧、氮等元素组成,不含金属元素,环境友好、价格低廉;(2)其结构灵活多样,可通过调节取代基或官能团,改变电池的氧化还原电势和比容量;(3)大多数的有机电极材料具有多电子转移效应,可以提供较高的理论比容量。基于以上分析,有机电极材料用作铝离子电池正极材料具有很大潜力。但是,现有有机类电极材料的循环性能差,电化学综合性能不足。

发明内容

[0004] 本发明针对现有有机电极正极材料的不足,提供一种作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料及其制备方法和应用。
[0005] 第一方面,本发明提供一种作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料的制备方法,包括如下步骤:
[0006] 步骤1:将泡沫镍依次用HCl溶液、丙酮、乙醇超声清洗,清洗后干燥,得到预处理的泡沫镍;
[0007] 步骤2:将预处理的泡沫镍作为模板,以苯为碳源、高纯氩气为载气,通过化学气相沉积法制备以泡沫镍为模板的泡沫碳材料;
[0008] 步骤3:将步骤2制备的以泡沫镍为模板的泡沫碳材料作为工作电极,铂电极作为对电极,饱和甘汞电极作为参比电极,将苯胺单体和吡咯单体分散在磷酸氢二钠和高氯酸钠的混合溶液中作为电解液,使用三电极体系,通过恒电位沉积法在泡沫镍为模板的泡沫碳表面原位聚合,制备苯胺和吡咯的共聚物PANI/PPy/C/Ni;
[0009] 步骤4:将步骤3制备的PANI/PPy/C/Ni干燥后加入HCl溶液中浸泡,得到除去泡沫镍模板的复合材料,将所述除去泡沫镍模板的复合材料烘干,得到作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料。
[0010] 优选的,所述步骤2还包括如下步骤:
[0011] 将预处理的泡沫镍放置于管式炉中通入高纯氩气,升温至700‑750℃;
[0012] 将所述管式炉内抽真空后持续通入氢气,继续升温至800‑1000℃;
[0013] 以高纯氩气为载气通入苯2‑10 min,然后降温至700‑750℃,保持恒温3‑5min后快速降温至350‑450℃;
[0014] 停止通入氢气,并将管式炉自然降温至室温,制得以泡沫镍为模板的泡沫碳材料。
[0015] 优选的,所述氢气的流速为100 SCCM,升温至700‑750℃的升温速率为5℃/min,升温至800‑1000℃的升温速率为5℃/min。
[0016] 优选的,所述步骤1中HCl溶液、丙酮、乙醇超声清洗时间均为5‑20 min,干燥温度为40‑60℃。
[0017] 优选的,所述步骤3中苯胺单体和吡咯单体的浓度为0.05‑0.3 M,磷酸氢二钠的浓度为0.2 M,高氯酸钠的浓度为0.001 M,恒电位沉积电压为0.9 ‑1.3 V,沉积时间为10‑100 s。
[0018] 优选的,所述步骤4中PANI/PPy/C/Ni在HCl溶液中的浸泡时间为20‑40 h,浸泡温度为50‑80℃,HCl溶液浓度为3‑5 M。
[0019] 第二方面,本发明还提供一种由上述方法制备的作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料。
[0020] 第三方面,本发明还提供一种由上述方法制备的作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料作为一体式电极在铝离子电池正极中的应用。
[0021] 本申请的有益效果如下:
[0022] 聚苯胺具有电稳定性好、成本低等优点,导电聚吡咯则具有更为优异的电学性能和电化学性能。本申请以通过CVD(英文全称为:Chemical Vapor Deposition,化学气相沉积)方法制备的泡沫碳为基底,通过恒电位沉积的方法在泡沫碳表面原位制备了苯胺和吡咯的共聚物PANI/PPy/C。本复合材料实现了聚苯胺和聚吡咯两者优良性能的综合化,用作‑1铝离子电池正极材料时,表现出了优异的电化学储能性能。在0.5 Ag 的电流密度下和0.4‑1
~2.35 V电压窗口内,PANI/PPy/C作正极的铝离子电池具有约160 mAh g 的电池比容量。
通过恒电位电沉积的方式制备的聚苯胺和聚吡咯共聚物可以通过控制沉积时间、沉积电压以及电解液浓度灵活可控的控制所制备的共聚物的聚合程度和厚度,能够灵活的应用于铝离子电池正极材料中。另外,由于本申请提供的PANI/PPy/C复合材料具有稳定的骨架结构和优异的导电性能,因此,可将本PANI/PPy/C复合材料直接用作一体式电极,不需要额外添加导电剂和粘结剂等非活性材料,有利于提高电极的质量能量密度和循环性能,并且能够有效简化电极的制备步骤,降低电极的制备成本。

附图说明

[0023] 为了更清楚的说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见的,对于本领域技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0024] 图1为本发明实施例提供的一种作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料制备方法的流程图;
[0025] 图2 为本发明实施例1提供的一种以泡沫镍为模板的泡沫碳材料的SEM图;
[0026] 图3 为本发明实施例1提供的一种作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料的SEM图;
[0027] 图4 为本发明实施例1提供的作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料组装的一体式电极的电化学性能测试结果示意图;
[0028] 图5 为本发明实施例2‑实施例5提供的不同恒电位沉积时间制备的作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料的恒流充放电测试结果示意图。

具体实施方式

[0029] 为了使本技术领域的人员更好地理解本发明中的技术方案,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明的保护范围。
[0030] 针对有机电极正极材料的不足,本方案提供一种作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料及其制备方法和应用。请参考图1,所示分别为本发明实施例提供的一种作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料制备方法的流程图,以下实施例均以上述方法为基础。由图1可见,本方法包括如下步骤:
[0031] 步骤S10:将泡沫镍依次用HCl溶液、丙酮、乙醇超声清洗,清洗后干燥,得到预处理的泡沫镍;
[0032] 步骤S20:将预处理的泡沫镍作为模板,以苯为碳源、高纯氩气为载气,通过化学气相沉积法制备以泡沫镍为模板的泡沫碳材料;
[0033] 步骤S30:将步骤S20制备的以泡沫镍为模板的泡沫碳材料作为工作电极,铂电极作为对电极,饱和甘汞电极作为参比电极,将苯胺单体和吡咯单体分散在磷酸氢二钠和高氯酸钠的混合溶液中作为电解液,使用三电极体系,通过恒电位沉积法在泡沫镍为模板的泡沫碳表面原位聚合,制备苯胺和吡咯的共聚物PANI/PPy/C/Ni;
[0034] 步骤S40:将步骤S30制备的PANI/PPy/C/Ni干燥后加入HCl溶液中浸泡,得到除去泡沫镍模板的复合材料,将所述除去泡沫镍模板的复合材料烘干,得到作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料。
[0035] 实施例1
[0036] 步骤1:将泡沫镍剪成1*2 cm的长方形,用适量1 M HCl超声5 min去除氧化物,用去离子水清洗;然后加入丙酮,超声5 min去除有机物,用去离子水冲洗;最后加入乙醇超声10 min去除丙酮,放入60 ℃干燥箱中干燥,直至乙醇完全挥发,得到预处理的泡沫镍。
[0037] 步骤2:将预处理的泡沫镍放入管式炉中,通入高纯氩气,其流速设置为0.5 SLM;升高温度至750 ℃,升温速率为5℃/min;打开真空泵,将管式炉内抽成真空环境;通入氢气,氢气流速控制在100 SCCM;继续升温至900℃,升温速率为5℃/min;以高纯氩气为载气通入苯5 min,高纯氩气流量设置为100 SCCM;然后降温至750 ℃,恒温4 min后取出,急冷至400℃,关闭氢气,待温度降至室温,关闭真空泵,制得以泡沫镍为模板的泡沫碳材料。
[0038] 步骤3:将步骤2制备的以泡沫镍为模板的泡沫碳材料作为工作电极,铂电极作为对电极,饱和甘汞电极作为参比电极,结合苯胺单体和吡咯单体分散在磷酸氢二钠和高氯酸钠的混合溶液中制备的电解液,将初始电位设置为1 V,沉积时间设置为50 s,通过恒电位沉积法在以泡沫镍为模板的泡沫碳表面原位聚合,制备苯胺和吡咯的共聚物PANI/PPy/C/Ni复合材料。其中,电解液的详细制备过程为将35.814 g Na2HPO4·12H2O和0.07023 g NaClO4加入500 mL去离子水中,超声30 min,配制成浓度为0.2 M Na2HPO4和0.001 M NaClO4的混合溶液。将91μL苯胺和70μL吡咯加入到10 mL上述Na2HPO4·12H2O和NaClO4混合溶液中,超声30 min使其混合均匀,制得浓度为0.1 M苯胺和0.1 M吡咯的电解液。
[0039] 步骤4:将电沉积好的PANI/PPy/C/Ni复合材料置于55 ℃干燥箱中干燥2 h,然后在200 mL 3 M HCl中浸泡36 h,浸泡温度为60℃,除去泡沫镍模板,将除去镍的PANI/PPy/C置于玻璃片上,放入烘箱烘干12 h,待样品完全干后,将样品与玻璃片分离,最终制得PANI/PPy/C复合材料。
[0040] 铝离子电池的组装:
[0041] 本发明用到的电池模具为定制的世伟洛克型模具,得益于PANI/PPy/C复合材料稳定的骨架结构和优异导电性的优势,可以将PANI/PPy/C复合材料直接用作一体式电极,不需要再添加导电剂和粘结剂等非活性材料。称取一定质量上述步骤制备的PANI/PPy/C复合材料作为一体式正极,以高纯铝直接作为负极,玻璃纤维薄膜作为隔膜。选用[EMIm]Cl/AlCl3型室温离子液体电解液进行铝离子电池组装。
[0042] 请参考图2,所示为本发明实施例1提供的一种以泡沫镍为模板的泡沫碳材料的SEM图。由图2可见,通过CVD方法制备的泡沫碳具有开放的三维框架结构,作为碳骨架,可以为苯胺和吡咯共聚物的负载提供较大的负载面积。
[0043] 请参考图3,所示为本发明实施例1提供的一种作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料的SEM图。与图2相比,图3中泡沫碳表面出现了明显的负载材料,结合制备过程,可知通过恒电位沉积方法在泡沫碳表面成功的制备了苯胺和吡咯共聚物,成功制得了PANI/PPy/C复合材料。
[0044] 请参考图4,所示为本发明实施例1提供的作为铝离子电池正极的苯胺吡咯共聚‑1物/碳复合材料组装的一体式电极的电化学性能测试结果示意图。由图4可见,在0.5 A g‑1
电流密度下,0.4~2.35 V的电压范围内,电池最高放电比容量达148.7 mA h g ,1000次循‑1
环后,放电比容量依然保持在136.2 mA h g ,表现出了较高容量和较好的循环稳定性。
[0045] 本实施例中,电化学测试在上海辰华CHI660D电化学工作站和LANHE CT2001A型电‑1池充放电仪上进行;CV测试的参数设置为:0.4 2.35 V的电压区间和 1、2、5、10、20 mV s~
‑1
的扫描速率;恒流充放电测试的参数设置为:0.4 2.35 V电压区间和 100 10000 mA g 的~ ~
电流密度。
[0046] 实施例2‑实施例5
[0047] 实施例2‑实施例5的步骤3中恒电位沉积时间分别为10s、30s、50s、90s,其他流程和参数均与实施例1相同。请参考图5,所示为本发明实施例提供的不同恒电位沉积时间制备的作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料的恒流充放电测试结果示意图。由图5可见,在10 50 s内随着恒电位沉积时间的增加,PANI/PPy/C电极质量比容量随之增~
加;当沉积时间大于50s后,随着沉积时间的增加,PANI/PPy/C电极质量比容量反而开始减少,这是由于沉积时间过长,制备的PANI/PPy共聚物沉积厚度较厚,导致活性位点暴露不充分,活性材料利用率减低,使得电极容量下降。根据优化结果,当沉积电位设置为1V时,最优沉积时间确定为50 s。
[0048] 实施例6
[0049] 步骤1:将泡沫镍剪成1*2 cm的长方形,用适量1 M HCl超声10 min去除氧化物,用去离子水清洗;然后加入丙酮,超声20 min去除有机物,用去离子水冲洗;最后加入乙醇超声20 min去除丙酮,放入40 ℃干燥箱中干燥,直至乙醇完全挥发,得到预处理的泡沫镍。
[0050] 步骤2:将预处理的泡沫镍放入管式炉中,通入高纯氩气,其流速设置为0.5 SLM;升高温度至700℃,升温速率为5℃/min;打开真空泵,将管式炉内抽成真空环境;通入氢气,氢气流速控制在100 SCCM;继续升温至800℃,升温速率为5℃/min;以高纯氩气为载气通入苯10min,高纯氩气流量设置为100 SCCM;然后降温至700 ℃,恒温3 min后急冷至450℃,关闭氢气,待温度降至室温,关闭真空泵,制得以泡沫镍为模板的泡沫碳材料。
[0051] 步骤3:将步骤2制备的以泡沫镍为模板的泡沫碳材料作为工作电极,铂电极作为对电极,饱和甘汞电极作为参比电极,结合苯胺单体和吡咯单体分散在磷酸氢二钠和高氯酸钠的混合溶液中制备的电解液。其中,苯胺单体和吡咯单体的浓度为0.05M,磷酸氢二钠的浓度为0.2 M,高氯酸钠的浓度为0.001 M,将初始电位设置为0.9 V,沉积时间设置为100 s,通过恒电位沉积法在以泡沫镍为模板的泡沫碳表面原位聚合,制备苯胺和吡咯的共聚物PANI/PPy/C/Ni复合材料。
[0052] 步骤4:将电沉积好的PANI/PPy/C/Ni复合材料置于55 ℃干燥箱中干燥2 h,然后在200 mL 5M HCl中浸泡40h,浸泡温度为50℃,除去泡沫镍模板,将除去镍的PANI/PPy/C置于玻璃片上,放入烘箱烘干12 h,待样品完全干后,将样品与玻璃片分离,最终制得PANI/PPy/C复合材料。
[0053] 实施例7
[0054] 步骤1:将泡沫镍剪成1*2 cm的长方形,用适量1 M HCl超声20 min去除氧化物,用去离子水清洗;然后加入丙酮,超声10 min去除有机物,用去离子水冲洗;最后加入乙醇超声5 min去除丙酮,放入40 ℃干燥箱中干燥,直至乙醇完全挥发,得到预处理的泡沫镍。
[0055] 步骤2:将预处理的泡沫镍放入管式炉中,通入高纯氩气,其流速设置为0.5 SLM;升高温度至720℃,升温速率为5℃/min;打开真空泵,将管式炉内抽成真空环境;通入氢气,氢气流速控制在100 SCCM;继续升温至1000℃,升温速率为5℃/min;以高纯氩气为载气通入苯2 min,高纯氩气流量设置为100 SCCM;然后降温至720 ℃,恒温5 min后急冷至350℃,关闭氢气,待温度降至室温,关闭真空泵,制得以泡沫镍为模板的泡沫碳材料。
[0056] 步骤3:将步骤2制备的以泡沫镍为模板的泡沫碳材料作为工作电极,铂电极作为对电极,饱和甘汞电极作为参比电极,结合苯胺单体和吡咯单体分散在磷酸氢二钠和高氯酸钠的混合溶液中制备的电解液。其中,苯胺单体和吡咯单体的浓度为0.3M,磷酸氢二钠的浓度为0.2 M,高氯酸钠的浓度为0.001 M,将初始电位设置为1.3 V,沉积时间设置为100 s,通过恒电位沉积法在以泡沫镍为模板的泡沫碳表面原位聚合,制备苯胺和吡咯的共聚物PANI/PPy/C/Ni复合材料。
[0057] 步骤4:将电沉积好的PANI/PPy/C/Ni复合材料置于55 ℃干燥箱中干燥2 h,然后在200 mL 4M HCl中浸泡20h,浸泡温度为80℃,除去泡沫镍模板,将除去镍的PANI/PPy/C置于玻璃片上,放入烘箱烘干12 h,待样品完全干后,将样品与玻璃片分离,最终制得PANI/PPy/C复合材料。
[0058] 另外,本申请还提供一种产品实施例,该产品为由上述实施例1‑3的方法实施例制备的作为铝离子电池正极的苯胺吡咯共聚物/碳复合材料。