一种温敏控释四氧化三铁/PD-L1单抗修饰纳米颗粒的制备方法转让专利

申请号 : CN202211015477.8

文献号 : CN115068630B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 姚舒宋坤孔北华褚然刘昶王仔莹

申请人 : 山东大学齐鲁医院

摘要 :

本发明公开了一种温敏控释四氧化三铁/PD‑L1单抗修饰纳米颗粒的制备方法,属于靶向纳米材料技术领域。以温敏磷脂为骨架,包裹四氧化三铁,化学偶联二氧化锰、叶酸、葡萄糖氧化酶和PD‑L1单克隆抗体。本发明制备得到的纳米颗粒提高了材料的稳定性和偶联率,降低了纳米药物对机体的毒副作用,减少PD‑L1的使用量。利用温敏材料实现肿瘤缓释效果,叶酸的主动靶向特性提高纳米材料肿瘤聚集,葡萄糖氧化酶在消耗葡萄糖的同时产生了芬顿反应的原材料H2O2,H2O2作为四氧化三铁和二氧化锰协同诱导肿瘤铁死亡反应原材料,提高肿瘤杀伤效果,PD‑L1通过竞争抑制解除对T淋巴细胞的抑制作用,诱导T细胞活化,促进肿瘤杀伤。

权利要求 :

1.一种温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒,其特征在于,以温敏磷脂为骨架,包裹四氧化三铁,化学偶联二氧化锰、叶酸、葡萄糖氧化酶和PD‑L1单克隆抗体;

所述温敏磷脂为DPPC;

所述温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒的制备方法,包括以下步骤:(1)Fe3O4‑OA的制备

在0.7g乙酰丙酮中,加入25mL二苄醚、3mL油酸和1mL油胺,在氮气气氛下,高温反应,得到所述Fe3O4‑OA;

所述高温反应具体包括:

15℃升温至220℃、用时1h;

220℃维持1h;

220℃升温至290℃、用时30min;

290℃维持50min;

(2)Fe3O4‑DPPC/DSPE‑PEG‑COOH的制备量取15mL浓度为1mg/mL的Fe3O4‑OA溶液,加入80mg DSPE‑PEG‑COOH和50mg DPPC超声混合均匀,旋转蒸发,得到Fe3O4‑DPPC/DSPE‑PEG‑COOH;

(3) Fe3O4‑DPPC/DSPE‑PEG‑COOH‑GOD的制备将15mg Fe3O4‑DPPC/DSPE‑PEG‑COOH溶解在25mL MES缓冲液中,加入50mg EDC和80mg NHS,溶解后置于37℃摇床活化30min,加入10mL浓度为1mg/mL的GOD,用硼酸盐缓冲液调pH值至8.4,置于37℃摇床孵育12h,得到Fe3O4‑DPPC/COOH‑GOD;

(4)MnO2‑BSA的制备

称取31.6mg KMnO4溶解在3mL水中,得到KMnO4溶液;称取250mg BSA溶解在7mL水中,得到BSA溶液;搅拌状态下,将KMnO4溶液滴加在BSA溶液中,反应3h,透析后冷冻干燥,得到MnO2‑BSA;

(5)Fe3O4‑DPPC/COOH‑GOD‑MnO2的制备将15mg Fe3O4‑DPPC/COOH‑GOD溶解在25mL MES缓冲液中,加入50mg EDC和80mg NHS,溶解后置于37℃摇床活化30min,加入10mL浓度为1mg/mL的MnO2‑BSA,用硼酸盐缓冲液调pH值至8.4,置于37℃摇床孵育12h,得到Fe3O4‑DPPC/COOH‑GOD‑MnO2;

(6)Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1的制备将15mg Fe3O4‑DPPC/COOH‑GOD‑MnO2溶解在25mL MES缓冲液中,加入120mg EDC和140mg NHS,37℃摇床活化30min后,加入10μL PD‑L1单克隆抗体,用硼酸盐缓冲液调pH值至8.4,37℃摇床孵育12h,得到Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1;

(7)Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的制备将25mg FA溶解在25mL MES缓冲液中,加入50mg EDC和80mg NHS,37℃摇床活化30min,加入15mg上述Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1,用硼酸盐缓冲液调pH值至8.4,37℃摇床孵育12h,得到所述温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒。

2.一种权利要求1所述的温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒在制备治疗卵巢癌药物中的应用。

说明书 :

一种温敏控释四氧化三铁/PD‑L1单抗修饰纳米颗粒的制备

方法

技术领域

[0001] 本发明涉及靶向纳米材料技术领域,特别是涉及一种温敏控释四氧化三铁/PD‑L1单抗修饰纳米颗粒的制备方法。

背景技术

[0002] 卵巢癌是卵巢肿瘤的一种恶性肿瘤,是指生长在卵巢上的恶性肿瘤,其中90 95%~为卵巢原发性的癌,另外5 10%为其它部位原发的癌转移到卵巢。由于卵巢癌早期缺少症~
状,即使有症状也不特异,筛查的作用又有限,因此早期诊断比较困难,就诊时60 70%已为~
晚期,而晚期病例又疗效不佳。因此,虽然卵巢癌的发病率低于宫颈癌和子宫内膜癌,居妇科恶性肿瘤的第三位,但死亡率却超过宫颈癌及子宫内膜癌之和,高居妇科癌症首位,是严重威胁妇女健康的最大疾患。
[0003] 并且卵巢癌预后效果极差,迫切需要新的治疗手段。免疫检查点抑制剂抗肿瘤疗效确切,但对卵巢癌总体反应率不高;铁死亡是最新发现的细胞死亡方式,易发生于肿瘤细胞且可激活机体免疫,二者联合治疗肿瘤前景巨大。纳米药物具有肿瘤靶向、控释特性,可携带多种药物实现联合、精准治疗。但现有技术中制备的具有卵巢癌主动靶向和磁热响应控释能力的纳米药物,仅仅可以实现同时携带铁死亡诱导剂Fe3O4、MnO2和免疫检查点抑制剂PD‑L1单抗,具有一定的生物学效应;而叶酸实现卵巢癌主动靶向,DPPC实现温敏控释,Fe3O4和MnO2协同催化芬顿反应实现铁死亡和磁热效应,PD‑L1单抗实现免疫杀伤。但还无法实现纳米技术高效整合铁死亡和免疫治疗两个领域,从而使二者协同实现纳米药物的靶向递送和控释,进而显著提高杀伤效率,为卵巢癌提供一种精准治疗新策略。

发明内容

[0004] 本发明的目的是提供一种温敏控释四氧化三铁/PD‑L1单抗修饰纳米颗粒的制备方法,以解决现有技术中存在的问题。
[0005] 为实现上述目的,本发明提供了如下方案:
[0006] 本发明的技术方案之一:一种温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒,以温敏磷脂为骨架,包裹四氧化三铁,化学偶联二氧化锰、叶酸、葡萄糖氧化酶和PD‑L1单克隆抗体。
[0007] 进一步地,所述温敏磷脂为DPPC(二棕榈酰磷脂酰胆碱)。
[0008] 本发明的技术方案之二:一种上述温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒的制备方法,其特征在于,包括以下步骤:
[0009] (1)将Fe3O4‑OA(油酸修饰的四氧化三铁磁性纳米颗粒)与DSPE‑PEG‑COOH(二硬脂酰磷脂酰乙醇胺‑聚乙二醇‑羧基)、DPPC超声混合均匀,得到Fe3O4‑DPPC/DSPE‑PEG‑COOH;
[0010] 如未反应完全(圆底烧瓶底部存在黑色残留四氧化三铁),添加适当DPPC(磷脂)重复上述操作,直至圆底烧瓶底部反应完全,即获得Fe3O4‑DPPC/DSPE‑PEG‑COOH(Fe3O4‑DPPC/COOH)。
[0011] (2)将所述Fe3O4‑DPPC/DSPE‑PEG‑COOH溶解在缓冲液中,加入EDC(1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸盐)和NHS(N‑羟基琥珀酰亚胺),溶解后活化30min,加入GOD(葡萄糖氧化酶),调节pH值至弱碱性后孵育12h,得到Fe3O4‑DPPC/COOH‑GOD;
[0012] (3)将所述Fe3O4‑DPPC/COOH‑GOD溶解在缓冲液中,加入EDC和NHS,溶解后活化30min,加入MnO2‑BSA(牛血清白蛋白负载MnO2),调节pH值至弱碱性后孵育12h,得到Fe3O4‑DPPC/COOH‑GOD‑MnO2;
[0013] (4)将所述Fe3O4‑DPPC/COOH‑GOD‑MnO2溶解在缓冲液中,加入EDC和NHS,溶解后活化30min,加入PD‑L1(PD‑L1单克隆抗体),调节pH值至弱碱性后孵育12h,得到Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1;
[0014] (5)将FA(叶酸)溶解在缓冲液中,加入EDC和NHS,溶解后活化,加入所述Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1,调节pH值至弱碱性后孵育,得到所述温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒;
[0015] 所述调节pH值至弱碱性为调节pH值至8.4 9。~
[0016] 进一步地,步骤(1)中,所述Fe3O4‑OA的制备具体包括:在乙酰丙酮铁中加入二卞醚、油酸和油胺,在但其气氛下,高温反应,得到所述Fe3O4‑OA。
[0017] 进一步地,所述高温反应具体包括:
[0018] 15℃升温至220℃、用时1h;
[0019] 220℃维持1h;
[0020] 220℃升温至290℃、用时30min;
[0021] 290℃维持50min。
[0022] 进一步地,步骤(2)(5)中,所述活化温度为37℃。~
[0023] 进一步地,步骤(2)(5)中,所述缓冲液为MES缓冲液。~
[0024] 更进一步地,采用硼酸盐缓冲液调节pH值。
[0025] 进一步地,步骤(3)中,所述MnO2‑BSA的制备具体包括:搅拌状态下将KMnO4溶液滴加在BSA溶液中,反应3h,透析后冷冻干燥,得到所述MnO2‑BSA。
[0026] 本发明的技术方案之三:一种上述温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒在制备治疗卵巢癌药物中的应用。
[0027] 温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒利用化学键的形式偶联葡萄糖氧化酶和PDL1,其偶联率大幅度提高,利用温敏材料将四氧化三铁和二氧化锰分隔,避免在血液循环中两者反应对正常细胞杀伤
[0028] 本发明公开了以下技术效果:
[0029] (1)本发明制备的温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒以磷脂为骨架,包裹四氧化三铁,化学偶联二氧化锰、叶酸、葡萄糖氧化酶和PD‑L1单克隆抗体,该纳米颗粒提高了材料的稳定性(透射电镜和粒径)和偶联率(79.3%),降低了纳米药物对机体的毒副作用,减少PD‑L1的使用量。利用温敏材料(磷脂)实现肿瘤缓释效果,叶酸的主动靶向特性提高纳米材料肿瘤聚集,葡萄糖氧化酶在消耗葡萄糖的同时产生了芬顿反应的原材料H2O2,H2O2作为四氧化三铁和二氧化锰协同诱导肿瘤铁死亡反应原材料,提高肿瘤杀伤效果,PD‑L1通过竞争抑制解除对T淋巴细胞的抑制作用,诱导T细胞活化,促进肿瘤杀伤。
[0030] (2)本发明利用温敏材料(DPPC),对Fe3O4进行可控性释放,在肿瘤区域,增加Fe3O4富集量,协同二氧化锰促进酶促反应发生,增强肿瘤效果,并减少正常组织的毒副反应。
[0031] (3)本发明纳米颗粒表面的PDL1单抗,对肿瘤组织的具有靶向聚集作用,结合Fe3O4磁热反应,在温度升高时释放药物,实现了铁死亡和促进免疫杀伤协同肿瘤杀伤效果。

附图说明

[0032] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0033] 图1为Fe3O4纳米颗粒的透射电镜图;
[0034] 图2为本发明实施例1制备的Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的透射电镜图;
[0035] 图3为本发明对比例1制备的Fe3O4‑DPPC‑COOH‑MnO2‑PDL1‑FA的粒径分布图;
[0036] 图4为本发明对比例2制备的DPPC‑COOH‑GOD‑MnO2‑PDL1的粒径分布图;
[0037] 图5为本发明对比例3制备的Fe3O4‑DPPC‑COOH‑GOD‑PDL1的粒径分布图;
[0038] 图6为本发明实施例1制备的Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的粒径分布图;
[0039] 图7为本发明实施例1制备的Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的基本功能检测‑图,其中,A为紫外吸收光谱分析,B为产生OH能力,C为Zeta电位变化,D为细胞毒性;
[0040] 图8为本发明实施例1制备的Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA体内体外磁热转化能力变化图,其中,A和B为体外实验,C和D为小鼠体内实验;
[0041] 图9为本发明实施例1制备的Fe3O4‑DPPC‑COOH‑GOD‑MnO2和Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1药物内吞能力图;
[0042] 图10为Fe3O4‑DPPC‑COOH‑MnO2‑PDL1、DPPC‑COOH‑GOD‑MnO2‑PDL1和Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1的活性氧荧光检测图;
[0043] 图11为Fe3O4‑DPPC‑COOH‑MnO2‑PDL1、DPPC‑COOH‑GOD‑MnO2‑PDL1、Fe3O4‑DPPC‑COOH‑GOD‑PDL1和Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1脂质过氧化荧光检测图;
[0044] 图12为本发明实施例1制备的Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的透射电镜图;
[0045] 图13为本发明实施例1制备的Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的粒径分布图。

具体实施方式

[0046] 现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
[0047] 应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
[0048] 除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和材料。在与任何并入的文献冲突时,以本说明书的内容为准。
[0049] 在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本申请说明书和实施例仅是示例性的。
[0050] 关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
[0051] 实施例1
[0052] 一种温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒的制备方法:
[0053] (1)Fe3O4‑OA的制备
[0054] 称取0.7g乙酰丙酮铁置于100mL三颈烧瓶中,加入25mL二卞醚、3mL油酸和1mL油胺,通入氮气,设置温控仪反应程序,依次按照15℃升温至220℃(用时1h,升温速率保持恒定),220℃维持1h,220℃升温至290℃(用时30min,升温速率保持恒定),290℃维持50min的程序进行高温反应,反应完成后撤除热源,关闭氮气,冷却至室温,经磁座分离后用无水乙醇洗3遍,得到黑色颗粒(Fe3O4‑OA),复溶在氯仿中得到Fe3O4‑OA溶液。
[0055] (2)Fe3O4‑DPPC/DSPE‑PEG‑COOH的制备
[0056] 量取15mL Fe3O4‑OA溶液(浓度为1mg/mL)装入100mL圆底烧瓶内,加入80mg DSPE‑PEG‑COOH和50mg DPPC,旋转蒸发,得到Fe3O4‑DPPC/DSPE‑PEG‑COOH(Fe3O4‑DPPC/COOH)。
[0057] (3) Fe3O4‑DPPC/DSPE‑PEG‑COOH‑GOD的制备
[0058] 将15mg Fe3O4‑DPPC/DSPE‑PEG‑COOH充分溶解在25mL MES缓冲液中,加入50mg EDC和80mg NHS,超声溶解后置于37℃摇床活化30min,待其反应结束后,加入10mL GOD(浓度为1mg/mL),用硼酸盐缓冲液调pH值至8.4,置于37℃摇床孵育12h即获得Fe3O4‑DPPC/COOH‑GOD。
[0059] (4)MnO2‑BSA的制备
[0060] 称取31.6mg KMnO4溶解在3mL纯水中得到KMnO4溶液,250mg BSA溶解在7mL纯水中得到BSA溶液;将BSA溶液置于37℃磁力搅拌器上(搅拌速度为650rpm),然后滴加KMnO4溶液,持续反应3h,待反应结束后,用分子量为10000KDa的透析袋透析3d,将透析结束后的样品经冷冻干燥处理,得到MnO2‑BSA,置于4℃保存备用。
[0061] (5)Fe3O4‑DPPC/COOH‑GOD‑MnO2的制备
[0062] 将15mg Fe3O4‑DPPC/COOH‑GOD充分溶解在25mL MES缓冲液中,加入50mg EDC和80mg NHS,超声溶解后置于37℃摇床活化30min,待其反应结束后,加入10mL MnO2‑BSA(纯水溶解后浓度为1mg/mL),用硼酸盐缓冲液调pH值至8.4,置于37℃摇床孵育12h,得到Fe3O4‑DPPC/COOH‑GOD‑MnO(2 Fe3O4‑DPPC‑COOH‑GOD‑MnO2)。
[0063] (6)Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1的制备
[0064] 将15mg Fe3O4‑DPPC/COOH‑GOD‑MnO2充分溶解在25mL MES缓冲液中,加入120mg EDC和140mg NHS,37℃摇床活化30min后,待其反应结束后,加入10μL PD‑L1单克隆抗体,用硼酸盐缓冲液调pH值至8.4,37℃摇床孵育12h,得到Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1。
[0065] (7)Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的制备
[0066] 将25mg FA溶解在25mL MES缓冲液中,加入50mg EDC和80mg NHS,37℃摇床活化30min后,待其反应结束后,加入15mg上述Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1,用硼酸盐缓冲液调pH值至8.4,37℃摇床孵育12h,得到温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒(Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA),图1为Fe3O4纳米颗粒的TEM图,图2为Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的TEM图(100nm),图12为Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的TEM图(200nm),图13为Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的粒径分布图。
[0067] 对比例1
[0068] Fe3O4‑DPPC‑COOH‑MnO2‑PDL1‑FA的制备
[0069] (1)将25mg Fe3O4‑DPPC/COOH溶解在25mL MES缓冲液中,加入50mg EDC和80mg NHS,37℃摇床活化30min后,待其反应结束后,加入10mL MnO2‑BSA(纯水溶解后浓度为1mg/mL),用硼酸盐缓冲液调pH值至8.4,置于37℃摇床孵育12h,得到Fe3O4‑DPPC‑COOH‑MnO2;
[0070] (2)将25mg Fe3O4‑DPPC‑COOH‑MnO2,加入50mg EDC和80mg NHS,37℃摇床活化30min后,待其反应结束后,加入10μL PD‑L1单克隆抗体,用硼酸盐缓冲液调pH值至8.4,37℃摇床孵育12h,得到Fe3O4‑DPPC‑COOH‑MnO2‑PDL1;
[0071] (3)将25mg FA溶解在25mL MES缓冲液中,加入50mg EDC和80mg NHS,37℃摇床活化30min后,待其反应结束后,加入15mg上述Fe3O4‑DPPC‑COOH‑MnO2‑PDL1,用硼酸盐缓冲液调pH值至8.4,37℃摇床孵育12h,得到Fe3O4‑DPPC‑COOH‑MnO2‑PDL1‑FA。
[0072] 对比例2
[0073] DPPC‑COOH‑GOD‑MnO2‑PDL1的制备:
[0074] 将15mg DPPC/DSPE‑PEG‑COOH充分溶解在25mL MES缓冲液中,加入50mg EDC和80mg NHS,超声溶解后置于37℃摇床活化30min,待其反应结束后,加入10mL GOD(浓度为
1mg/mL),用硼酸盐缓冲液调pH值至8.4,置于37℃摇床孵育12h即获得DPPC/COOH‑GOD。将
15mg DPPC/COOH‑GOD充分溶解在25mL MES缓冲液中,加入50mg EDC和80mg NHS,超声溶解后置于37℃摇床活化30min,待其反应结束后,加入10mL MnO2‑BSA(纯水溶解后浓度为1mg/mL),用硼酸盐缓冲液调pH值至8.4,置于37℃摇床孵育12h,得到DPPC/COOH‑GOD‑MnO2。将
15mg DPPC/COOH‑GOD‑MnO2充分溶解在25mL MES缓冲液中,加入120mg EDC和140mg NHS,37℃摇床活化30min后,待其反应结束后,加入10μL PD‑L1单克隆抗体,用硼酸盐缓冲液调pH值至8.4,37℃摇床孵育12h,得到DPPC‑COOH‑GOD‑MnO2‑PDL1。
[0075] 对比例3
[0076] Fe3O4‑DPPC‑COOH‑GOD‑PDL1的制备:
[0077] (1)将25mg Fe3O4‑DPPC/COOH溶解在25mL MES缓冲液中,加入50mg EDC和80mg NHS,37℃摇床活化30min后,待其反应结束后,加入10mL GOD(浓度为1mg/mL),用硼酸盐缓冲液调pH值至8.4,置于37℃摇床孵育12h即获得Fe3O4‑DPPC‑COOH‑GOD。
[0078] (2)将25mg Fe3O4‑DPPC‑COOH‑GOD溶解在25mL MES缓冲液中,加入50mg EDC和80mg NHS,37℃摇床活化30min后,待其反应结束后,加入10μL PD‑L1单克隆抗体,用硼酸盐缓冲液调pH值至8.4,37℃摇床孵育12h,得到Fe3O4‑DPPC‑COOH‑GOD‑PDL1。
[0079] 效果例1
[0080] 测定Fe3O4纳米颗粒(Fe3O4‑OA)和本发明实施例1制备的Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的微观结构(TEM图),结果见图1~2。
[0081] 图1为Fe3O4纳米颗粒的TEM图,图2为Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的TEM图(100nm)。
[0082] 图12为本发明实施例1制备的Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的透射电镜图(200nm);图13为本发明实施例1制备的Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的粒径分布图。
[0083] 从图12~13中可以看出,本发明制备的温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒具有良好的稳定性。
[0084] 测定实施例1和对比例1 3制备得到的纳米颗粒的粒径,结果见图3 6。~ ~
[0085] 图3为对比例1制备的Fe3O4‑DPPC‑COOH‑MnO2‑PDL1‑FA的粒径分布图,图4为对比例2制备的DPPC‑COOH‑GOD‑MnO2‑PDL1的粒径分布图,图5为对比例3制备的Fe3O4‑DPPC‑COOH‑GOD‑PDL1的粒径分布图,图6为本发明实施例1制备的Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的粒径分布图;
[0086] 从图6中可以看出,Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA的粒径为120~130nm,满足生物学应用需求。
[0087] 效果例2
[0088] 通过紫外吸收光谱分析确定实施例1制备的温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒的性能,并以对比例1制备的纳米颗粒和GOD作为对照。
[0089] 实施例1制备的温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒中已经包覆Fe3O4,化学偶联GOD,结果见图7A;
[0090] 以H2O2为底物,TMB检测实施例1制备的温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒产‑生OH能力,证明Fe3O4具有H2O2类酶特性催化芬顿反应发生,结果见图7B;
[0091] 本发明制备得到的温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒的Zeta电位明显升高,是由于利用Fe3O4‑GOD‑DPPC对PD‑L1的修饰作用,说明PD‑L1成功修饰在纳米材料表面,结果见图7C;
[0092] CCK8检测表明,本发明实施例1制备的温敏控释Fe3O4/PD‑L1单抗修饰纳米颗粒在100ug/mL以内时对细胞基本没有毒性,具有良好的生物相容性,结果见图7D。
[0093] 效果例3
[0094] 体外磁热转化效率验证:取Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA作为实验组,PBS作为对照组,在交变磁场作用下(AMF)热成像仪检测其温度变化,并绘制温度时间曲线。
[0095] 体内磁热转化效率验证:构建皮下荷瘤小鼠模型,静脉注射Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1‑FA(Fe3O4‑NP)作为实验组,PBS作为对照组,在交变磁场作用下(AMF)热成像仪检测其温度变化,并绘制温度时间曲线。
[0096] 测定四氧化三铁体内体外磁热转化能力,结果见图8。
[0097] 图8A和图8B为体外实验,图8C和图8D为小鼠体内实验。
[0098] 从图8中可以看出,Fe3O4颗粒在外部交流磁场作用下可产生热量,呈剂量和时间依赖性,为磁热响应控释纳米药物设计提供了依据。
[0099] 效果例4
[0100] 将Fe3O4‑DPPC‑COOH‑GOD‑MnO(2 实施例1步骤(5)制备)和Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1(实施例1步骤(6)制备)与卵巢癌细胞共同孵育4h,正常培养基作为对照组,普鲁士蓝染色后显微镜下观察细胞中四氧化三铁含量,结果见图9。
[0101] 通过普鲁士蓝染色液检测细胞内的铁元素探究PD‑L1单抗介导的纳米药物内吞能力。结果表明偶联PD‑L1单抗的纳米药物被大量内吞进入肿瘤细胞内部,提示纳米药物表面PD‑L1单抗与肿瘤细胞PD‑1抗原的特异性结合。
[0102] 效果例5
[0103] 将Fe3O4‑DPPC‑COOH‑MnO2‑PDL1(对比例1步骤(2)制备)、DPPC‑COOH‑GOD‑MnO2‑PDL1(对比例2制备)和Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1(实施例1步骤(6)制备)与卵巢癌细胞共同孵育48h,将活性氧检测试剂盒加入共同孵育的细胞中检测不同组产生ROS的能力,并将荧光图像Image J定量分析,结果见图10。
[0104] 图10为(活性氧荧光检测图),从图10中可以看出,Fe3O4‑DPPC‑COOH‑MnO2‑PDL1、DPPC‑COOH‑GOD‑MnO2‑PDL1和Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1组荧光强度分别为3.84±0.80、4.33±1.80、14.60±2.28,说明GOD、Fe3O4可提高细胞内活性氧水平。
[0105] 效果例6
[0106] 将Fe3O4‑DPPC‑COOH‑MnO2‑PDL1(对比例1步骤(2)制备)、DPPC‑COOH‑GOD‑MnO2‑PDL1(对比例2制备)、Fe3O4‑DPPC‑COOH‑GOD‑PDL1(对比例3制备)和Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1(实施例1步骤(6)制备)与卵巢癌细胞共同孵育48h,利用脂质过氧化检测试剂盒加入共同孵育的细胞中检测不同组产生不饱和脂质过氧化物的能力,并将荧光图像Image J定量分析荧光强度,结果见图11。
[0107] 图11为(脂质过氧化荧光检测图),利用C11 BODIPY581/591脂质过氧化探针检测卵巢癌细胞脂质过氧化水平,从图11中可以看出,Fe3O4‑DPPC‑COOH‑MnO2‑PDL1、DPPC‑COOH‑GOD‑MnO2‑PDL1、Fe3O4‑DPPC‑COOH‑GOD‑PDL1和Fe3O4‑DPPC‑COOH‑GOD‑MnO2‑PDL1组荧光强度分别为20.56±2.79、14.63±1.86、12.32±10.50、30.61±1.97,说明GOD、Fe3O4两者协同促进细胞内脂质过氧化,诱导铁死亡发生。
[0108] 以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。