一种磺化聚苯硫醚质子交换膜及其制备方法转让专利

申请号 : CN202211011532.6

文献号 : CN115084611B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 郭万才刘洪陈云

申请人 : 四川中科兴业高新材料有限公司

摘要 :

本发明公开了一种磺化聚苯硫醚质子交换膜及其制备方法,制备方法包括:制备磺化聚苯硫醚质子交换树脂;该批合成的磺化聚苯硫醚质子交换树脂进行质量评估;将高级的磺化聚苯硫醚质子交换树脂输入生产线,输给挤出机;建立多目标优化模型,对反应时的温度、压强进行优化;建立动态多目标优化模型,对下一次热定型时所需的温度T3进行优化。交换膜包括70%‑80%的磺化聚苯硫醚,其余为树脂,还有防尘膜。本发明的能有效提升磺化聚苯硫醚质子交换膜的综合性能,确保每生产一批磺化聚苯硫醚质子交换膜,都能优化一次加工的精度,并且降低原料变化或其他因素影响所带来的误差,保证生产出的产品的质量和稳定性。

权利要求 :

1.一种磺化聚苯硫醚质子交换膜的制备方法,其特征在于,包括以下步骤:

S1:利用聚苯硫醚原料和质子交换树脂在极性溶剂中进行反应,并确保反应在设定温度T1和压强P1下进行;

S2:反应完成后,回收多余的极性溶剂,利用漏斗进行过滤,去除多余的杂质,制备成均聚聚苯硫醚质子交换树脂;

S3:向聚苯硫醚质子交换树脂加入硫化物,在设定温度T2和压强P2条件下进行反应,形成磺化聚苯硫醚质子交换树脂;

S4:取磺化聚苯硫醚质子交换树脂样品,检测磺化聚苯硫醚质子交换树脂的质量流速v;

S5:根据质量流速v、温度T2、压强P2、温度T1和压强P1对同批次合成的磺化聚苯硫醚质子交换树脂进行质量评估,得到同批次磺化聚苯硫醚质子交换树脂的质量等级,磺化聚苯硫醚质子交换树脂的质量等级包括高级原料和低级原料;步骤S5包括:S51:建立质量评估模型:

其中,Fb为评估值,xb为质量流速v、温度T2、压强P2、温度T1或压强P1,b为质量流速v、温度T2、压强P2、温度T1或压强P1的种类,x0为质量流速v、温度T2、压强P2、温度T1或压强P1的标准值,D为测量值与标准值之间的差对质量影响的权重;

S52:将质量流速v、温度T2、压强P2、温度T1或压强P1对应得到的评估值取算数平均,得到评估值的平均值Fb平均,将平均值Fb平均与阈值Fb阈值进行比较,对同批次磺化聚苯硫醚质子交换树脂的质量等级进行评估:若平均值Fb平均≥Fb阈值,则该批磺化聚苯硫醚质子交换树脂为高级原料;执行步骤S6若平均值Fb平均<Fb阈值,则该批磺化聚苯硫醚质子交换树脂为低级原料,返回步骤S1,重新生产磺化聚苯硫醚质子交换树脂为原料;

S6:将高级的磺化聚苯硫醚质子交换树脂输入质子交换膜生产线,经过高精度过滤器进行熔融过滤,输给挤出机;

S7:磺化聚苯硫醚质子交换树脂在冷辊上进行流延、极冷和固化得到非晶态薄片,检测非晶态薄片的横向拉伸强度F1、纵向拉伸强度F2、厚度H和透明度A;

S8:建立多目标优化模型,将横向拉伸强度F1、纵向拉伸强度F2、厚度H、透明度A、输入到多目标优化模型中,对反应时的温度T2、压强P2、温度T1和压强P1进行优化,并将优化输出的值作为下一次生产原料时的反应条件;

S9:将非晶态薄片进行纵向和横向拉伸,并在设定温度T3条件下进行热定型,热定型完成后形成标准的磺化聚苯硫醚质子交换膜,对磺化聚苯硫醚质子交换膜的性能进行检测,性能参数包括:极限耐热温度t、电阻率R、击穿场强C和介电损耗J;

S10:建立动态多目标优化模型,将温度T3、极限耐热温度t、电阻率R、击穿场强C和介电损耗J输入动态多目标优化模型中,对下一次热定型时所需的温度T3进行优化;

所述多目标优化模型为:

其中,x为温度T2、压强P2、温度T1或压强P1, 为理论条件下最优的横向拉伸强度F1、纵向拉伸强度F2、厚度H和透明度A值,f(x)为测量的横向拉伸强度F1、纵向拉伸强度F2、厚度H和透明度A值, 为温度T2、压强P2、温度T1或压强P1的优化值,j为优化值的种类,i为横向拉伸强度F1、纵向拉伸强度F2、厚度H和透明度A的种类;

所述动态多目标优化模型为:

其中,fn为多目标优化函数,N为极限耐热温度t、电阻率R、击穿场强C和介电损耗J的数据量,n为反馈次数,R为极限耐热温度t、电阻率R、击穿场强C或介电损耗J的变化极限,X为检测的极限耐热温度t、电阻率R、击穿场强C和介电损耗J值,μ为理论情况下极限耐热温度t、电阻率R、击穿场强C和介电损耗J值,a为温度T3的优化极限。

2.一种利用权利要求1所述的磺化聚苯硫醚质子交换膜的制备方法制备的磺化聚苯硫醚质子交换膜,其特征在于,磺化聚苯硫醚质子交换膜中磺化聚苯硫醚的质量百分含量为:

70%‑80%,其余的质量百分含量为质子交换树脂,所述磺化聚苯硫醚质子交换膜的表面还设置有一层防尘膜。

说明书 :

一种磺化聚苯硫醚质子交换膜及其制备方法

技术领域

[0001] 本发明涉及燃料电池用质子交换膜的制备技术领域,具体涉及一种磺化聚苯硫醚质子交换膜及其制备方法。

背景技术

[0002] 随着环境污染越来越严重,将作为清洁能源的燃料电池用作汽车的动能使用的市场也越来越大,使用氢能的燃料电池为氢燃料电池。而质子交换膜是氢燃料电池的关键部件,不仅能作为电解质为氢离子提供通道,而且能防止电池内的燃料直接发生反应。质子交换膜的性质的优良直接决定燃料电池工作性能的高低,它不仅是一种隔膜材料和电解质,还是电极活性物质的基底。
[0003] 现有技术中,应用到氢燃料电池中的质子交换膜大多为磺化聚苯硫醚质子交换膜,随着氢燃料电池的需求量越来越大,磺化聚苯硫醚质子交换膜的需求也越来越大,也早已进行了流水线生产。但是在流水线生产的过程中,生产出的不同批次的膜的质量参差不齐,质量差异较大,这主要受到原料的质量以及生产参数调整的影响。因为现有技术中原料供应不好控制,并且生产线的参数调好之后无法频繁进行调整,所以亟待开发一种能实现动态数据调整的磺化聚苯硫醚质子交换膜及其制备方法。

发明内容

[0004] 针对现有技术中的上述不足,本发明提供了一种能实现流水线生产动态参数调整与质量监控的磺化聚苯硫醚质子交换膜的制备方法。
[0005] 为了达到上述发明目的,本发明所采用的技术方案为:
[0006] 提供一种磺化聚苯硫醚质子交换膜的制备方法,其包括以下步骤:
[0007] S1:利用聚苯硫醚原料和质子交换树脂在极性溶剂中进行反应,并确保反应在设定温度T1和压强P1下进行;
[0008] S2:反应完成后,回收多余的极性溶剂,利用漏斗进行过滤,去除多余的杂质,制备成均聚聚苯硫醚质子交换树脂;
[0009] S3:向聚苯硫醚质子交换树脂加入硫化物,在设定温度T2和压强P2条件下进行反应,形成磺化聚苯硫醚质子交换树脂;
[0010] S4:取磺化聚苯硫醚质子交换树脂样品,检测磺化聚苯硫醚质子交换树脂的质量流速v;
[0011] S5:根据质量流速v、温度T2、压强P2、温度T1和压强P1对同批次合成的磺化聚苯硫醚质子交换树脂进行质量评估,得到同批次磺化聚苯硫醚质子交换树脂的质量等级,磺化聚苯硫醚质子交换树脂的质量等级包括高级原料和低级原料;步骤S5包括:
[0012] S51:建立质量评估模型:
[0013]
[0014] 其中,Fb为评估值,xb为质量流速v、温度T2、压强P2、温度T1或压强P1,b为质量流速v、温度T2、压强P2、温度T1或压强P1的种类,x0为质量流速v、温度T2、压强P2、温度T1或压强P1的标准值,D为测量值与标准值之间的差对质量影响的权重;
[0015] S52:将质量流速v、温度T2、压强P2、温度T1或压强P1对应得到的评估值取算数平均,得到评估值的平均值Fb平均,将平均值Fb平均与阈值Fb阈值进行比较,对同批次磺化聚苯硫醚质子交换树脂的质量等级进行评估:
[0016] 若平均值Fb平均≥Fb阈值,则该批磺化聚苯硫醚质子交换树脂为高级原料;执行步骤S6[0017] 若平均值Fb平均<Fb阈值,则该批磺化聚苯硫醚质子交换树脂为低级原料,返回步骤S1,重新生产磺化聚苯硫醚质子交换树脂为原料;
[0018] S6:将高级的磺化聚苯硫醚质子交换树脂输入质子交换膜生产线,经过高精度过滤器进行熔融过滤,输给挤出机;
[0019] S7:磺化聚苯硫醚质子交换树脂在冷辊上进行流延、极冷和固化得到非晶态薄片,检测非晶态薄片的横向拉伸强度F1、纵向拉伸强度F2、厚度H和透明度A;
[0020] S8:建立多目标优化模型,将横向拉伸强度F1、纵向拉伸强度F2、厚度H、透明度A、输入到多目标优化模型中,对反应时的温度T2、压强P2、温度T1和压强P1进行优化,并将优化输出的值作为下一次生产原料时的反应条件;
[0021] S9:将非晶态薄片进行纵向和横向拉伸,并在设定温度T3条件下进行热定型,热定型完成后形成标准的磺化聚苯硫醚质子交换膜,对磺化聚苯硫醚质子交换膜的性能进行检测,性能参数包括:极限耐热温度t、电阻率R、击穿场强C和介电损耗J;
[0022] S10:建立动态多目标优化模型,将温度T3、极限耐热温度t、电阻率R、击穿场强C和介电损耗J输入动态多目标优化模型中,对下一次热定型时所需的温度T3进行优化。
[0023] 进一步地,多目标优化模型为:
[0024]
[0025] 其中,x为温度T2、压强P2、温度T1或压强P1, 为理论条件下最优的横向拉伸强度F1、纵向拉伸强度F2、厚度H和透明度A值,f(x)为测量的横向拉伸强度F1、纵向拉伸强度F2、厚度H和透明度A值, 为温度T2、压强P2、温度T1或压强P1的优化值,j为优化值的种类, i为横向拉伸强度F1、纵向拉伸强度F2、厚度H和透明度A的种类。
[0026] 进一步地,动态多目标优化模型为:
[0027]
[0028] 其中,fn为多目标优化函数,N为极限耐热温度t、电阻率R、击穿场强C和介电损耗J的数据量,n为反馈次数,R为极限耐热温度t、电阻率R、击穿场强C或介电损耗J的变化极限,X为检测的极限耐热温度t、电阻率R、击穿场强C和介电损耗J值,μ为理论情况下极限耐热温度t、电阻率R、击穿场强C和介电损耗J值,a为温度T3的优化极限。
[0029] 利用上述磺化聚苯硫醚质子交换膜的制备方法制备的磺化聚苯硫醚质子交换膜,该磺化聚苯硫醚质子交换膜中磺化聚苯硫醚的质量百分含量为:70%‑80%,其余的质量百分含量为质子交换树脂,磺化聚苯硫醚质子交换膜的表面还设置有一层防尘膜。
[0030] 本发明的有益效果为:本发明分两阶段形成磺化聚苯硫醚质子交换树脂,先形成均聚聚苯硫醚质子交换树脂后再进行硫化,确保成膜的树脂原料硫化更加均匀,提升磺化聚苯硫醚质子交换膜的综合性能,其具备高可靠性、高耐热性以及优异的介电特性。
[0031] 并且在制备过程中,先对磺化聚苯硫醚质子交换树脂原料的质量进行评价,筛选出优质的磺化聚苯硫醚质子交换树脂,避免利用劣质的磺化聚苯硫醚质子交换树脂进行进一步生产,进而避免生产出劣质的磺化聚苯硫醚质子交换膜,同时利用多目标优化方法,实时对生产线提供的温度、压强、以及中间产物非晶态薄片的生产参数进行优化,确保每生产一批磺化聚苯硫醚质子交换膜,都能优化一次加工的精度,并且降低原料变化或其他因素影响所带来的误差,保证生产出的产品的质量和稳定性。

附图说明

[0032] 图1为磺化聚苯硫醚质子交换膜的制备方法的流程图。

具体实施方式

[0033] 下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
[0034] 如图1所示,本方案的磺化聚苯硫醚质子交换膜的制备方法包括以下步骤:
[0035] S1:利用聚苯硫醚原料和质子交换树脂在极性溶剂中进行反应,并确保反应在设定温度T1和压强P1下进行;
[0036] S2:反应完成后,回收多余的极性溶剂,利用漏斗进行过滤,去除多余的杂质,制备成均聚聚苯硫醚质子交换树脂;
[0037] S3:向聚苯硫醚质子交换树脂加入硫化物,在设定温度T2和压强P2条件下进行反应,形成磺化聚苯硫醚质子交换树脂;
[0038] S4:取磺化聚苯硫醚质子交换树脂样品,检测磺化聚苯硫醚质子交换树脂的质量流速v;质量流速v反映了挤出机挤出磺化聚苯硫醚质子交换树脂的流动性能,满足要求的质量流速v使得挤出机在挤出原料时更加均匀,成型的薄膜厚度和质量更加均匀。
[0039] S5:根据质量流速v、温度T2、压强P2、温度T1和压强P1对同批次合成的磺化聚苯硫醚质子交换树脂进行质量评估,得到同批次磺化聚苯硫醚质子交换树脂的质量等级,磺化聚苯硫醚质子交换树脂的质量等级包括高级原料和低级原料;步骤S5包括:
[0040] S51:建立质量评估模型:
[0041]
[0042] 其中,Fb为评估值,xb为质量流速v、温度T2、压强P2、温度T1或压强P1,b为质量流速v、温度T2、压强P2、温度T1或压强P1的种类,x0为质量流速v、温度T2、压强P2、温度T1或压强P1的标准值,D为测量值与标准值之间的差对质量影响的权重;
[0043] S52:将质量流速v、温度T2、压强P2、温度T1或压强P1对应得到的评估值取算数平均,得到评估值的平均值Fb平均,将平均值Fb平均与阈值Fb阈值进行比较,对同批次磺化聚苯硫醚质子交换树脂的质量等级进行评估:
[0044] 若平均值Fb平均≥Fb阈值,则该批磺化聚苯硫醚质子交换树脂为高级原料;执行步骤S6[0045] 若平均值Fb平均<Fb阈值,则该批磺化聚苯硫醚质子交换树脂为低级原料,返回步骤S1,重新生产磺化聚苯硫醚质子交换树脂为原料;
[0046] S6:将高级的磺化聚苯硫醚质子交换树脂输入质子交换膜生产线,经过高精度过滤器进行熔融过滤,输给挤出机;
[0047] S7:磺化聚苯硫醚质子交换树脂在冷辊上进行流延、极冷和固化得到非晶态薄片,检测非晶态薄片的横向拉伸强度F1、纵向拉伸强度F2、厚度H和透明度A;
[0048] S8:建立多目标优化模型,将横向拉伸强度F1、纵向拉伸强度F2、厚度H、透明度A、输入到多目标优化模型中,对反应时的温度T2、压强P2、温度T1和压强P1进行优化,并将优化输出的值作为下一次生产原料时的反应条件;多目标优化模型为:
[0049]
[0050] 其中,x为温度T2、压强P2、温度T1或压强P1, 为理论条件下最优的横向拉伸强度F1、纵向拉伸强度F2、厚度H和透明度A值,f(x)为测量的横向拉伸强度F1、纵向拉伸强度F2、厚度H和透明度A值, 为温度T2、压强P2、温度T1或压强P1的优化值,j为优化值的种类,i为横向拉伸强度F1、纵向拉伸强度F2、厚度H和透明度A的种类。
[0051] S9:将非晶态薄片进行纵向和横向拉伸,并在设定温度T3条件下进行热定型,热定型完成后形成标准的磺化聚苯硫醚质子交换膜,对磺化聚苯硫醚质子交换膜的性能进行检测,性能参数包括:极限耐热温度t、电阻率R、击穿场强C和介电损耗J;
[0052] S10:建立动态多目标优化模型,将温度T3、极限耐热温度t、电阻率R、击穿场强C和介电损耗J输入动态多目标优化模型中,对下一次热定型时所需的温度T3进行优化。动态多目标优化模型为:
[0053]
[0054] 其中,fn为多目标优化函数,N为极限耐热温度t、电阻率R、击穿场强C和介电损耗J的数据量,n为反馈次数,R为极限耐热温度t、电阻率R、击穿场强C或介电损耗J的变化极限,X为检测的极限耐热温度t、电阻率R、击穿场强C和介电损耗J值,μ为理论情况下极限耐热温度t、电阻率R、击穿场强C和介电损耗J值,a为温度T3的优化极限。
[0055] 利用上述磺化聚苯硫醚质子交换膜的制备方法制备的磺化聚苯硫醚质子交换膜,该磺化聚苯硫醚质子交换膜中磺化聚苯硫醚的质量百分含量为:70%‑80%,其余的质量百分含量为质子交换树脂,磺化聚苯硫醚质子交换膜的表面还设置有一层防尘膜,用于防尘。
[0056] 以上显示和描述了本发明的基本原理和主要特征和本发明的优点,对于 本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本 发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的 所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
[0057] 此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。