一种高温自交联含氟聚芳醚酮及制备方法和涂料及其制备方法转让专利

申请号 : CN202210492600.9

文献号 : CN115109253B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 赵芸常浩焦晓光矫庆泽冯彩虹黎汉生史大昕张耀远

申请人 : 铜陵精达特种电磁线股份有限公司

摘要 :

本发明涉及聚芳醚酮技术领域,公开了一种高温自交联含氟聚芳醚酮及其制备方法和涂料及其制备方法。所述高温自交联含氟聚芳醚酮分子链中含有苯乙烯基和硫醚基两种交联基团,其结构式为其中,m的取值范围为1-40%(m+n),n的取值范围为60-99%(m+n),R为六氟双酚A除去酚羟基的基团。含有上述两种基团的含氟聚醚芳酮能够溶解于常规有机溶剂以制备涂料或者漆,且在低温时呈线型,不发生交联反应,涂膜后高温固化过程中发生交联反应形成交联结构聚合物涂层,从而提供良好的耐湿热、耐磨、低摩擦系数的涂层表面,又能降低生产成本,保证漆包线在高温高压和高湿度的恶劣工作环境下,仍能保持良好的电绝缘性。

权利要求 :

1.一种高温自交联含氟聚芳醚酮,其特征在于:含氟聚芳醚酮分子链中含有苯乙烯基和硫醚基,其结构式为,

其中,m的取值范围为1‑40%(m+n),n的取值范围为60‑99%(m+n),R为六氟双酚A除去酚羟基的基团;

所述高温自交联含氟聚芳醚酮的制备方法为:在装有机械搅拌装置、温度计、分水器和通氮气的容器中依次加入原料4,4’‑二氟二苯甲酮、六氟双酚A,交联剂4,4’‑二羟基对苯硫醚,无水碳酸钾,反应溶剂N‑甲基吡咯烷酮,搅拌升温至115~125℃反应2~3h,除去反应生成的水,然后再升温至175~190℃继续反应2.5~3.5h;高温聚合反应完毕待反应体系降至室温,加入4‑乙烯基苄氯室温搅拌20~25小时至反应完毕,将反应产物倒入去离子水中,冷却后将产物粉碎,用乙醇和去离子水洗涤后过滤,然后在60℃下鼓风干燥4~8小时,55~65℃真空干燥16~20h得到端基为苯乙烯基且分子链中含硫醚基团的高温自交联含氟聚芳醚酮。

2.根据权利要求1所述的高温自交联含氟聚芳醚酮,其特征在于:在所述制备方法中,

4,4’‑二氟二苯甲酮、六氟双酚A、4,4’‑二羟基对苯硫醚、无水碳酸钾、4‑乙烯基苄氯摩尔比为0.1803:0.159075‑0.201495:0.010605‑0.053025:0.252:0.013104‑0.065522。

3.一种含有高温自交联含氟聚芳醚酮的涂料,其特征在于:包括权利要求1或2所述的高温自交联含氟聚芳醚酮、溶剂、稀释剂、流平剂和润滑剂;以涂料总质量计,所述高温自交联含氟聚芳醚酮用量为10~60phr,所述溶剂的用量为30~70phr,所述稀释剂的用量为10~40phr;所述流平剂的用量为0.1~2.0phr,所述润滑剂的用量为1~10phr。

4.根据权利要求3所述的含有高温自交联含氟聚芳醚酮的涂料,其特征在于:所述溶剂为氯仿、1,2‑二氯乙烷、四氢呋喃、环己酮、N,N‑二甲基酰胺、N‑甲基吡咯烷酮、二甲基乙酰胺中的一种或几种的混合物;

所述稀释剂是甲苯、二甲苯、己烷、环己烷、庚烷、辛烷、癸烷中的一种或者几种的混合物;

所述润滑剂为聚乙烯蜡、聚酯蜡、聚酰胺蜡、聚四氟乙烯蜡、棕榈蜡中的一种或几种的混合物;

所述流平剂为低分子量丙烯酸共聚物、聚醚改性聚硅氧烷、硅酮聚合物中的一种或者几种的混合物。

5.根据权利要求4所述的含有高温自交联含氟聚芳醚酮的涂料,其特征在于:所述低分子量丙烯酸共聚物是指链段长度为500‑3000的丙烯酸‑丙烯酸羟丙酯共聚物;所述聚醚改性聚硅氧烷是链段长度为2000‑5000的聚醚接枝二甲基聚硅氧烷、聚醚改性七甲基三硅氧烷表面活性剂TRSE、聚醚改性八甲基四硅氧烷表面活性剂TESE中的一种或几种的混合物;

所述硅酮聚合物是碳酸钙填充硅酮密封胶、改性硅酮密封材料卡内卡Ms聚合物、硅酮‑聚酰亚胺合成的无卤且链段长度为2000‑5000的弹性体型嵌段共聚物SILTEM中的一种或几种的混合物。

6.权利要求3‑5任一项所述的含有高温自交联含氟聚芳醚酮的涂料的制备方法,其特征在于,按照如下步骤进行:将权利要求1或2所述的高温自交联含氟聚芳醚酮溶于溶剂中,控制所述高温自交联含氟聚芳醚酮的固含量范围在10‑50phr之间,溶解过程在20‑40℃范围内进行,待所述高温自交联含氟聚芳醚酮完全溶解后加入稀释剂、流平剂、润滑剂搅拌,制得。

7.权利要求1或2所述的高温自交联含氟聚芳醚酮的应用,其特征在于,所述高温自交联含氟聚芳醚酮作为基体树脂制作涂料或者漆。

说明书 :

一种高温自交联含氟聚芳醚酮及制备方法和涂料及其制备

方法

技术领域

[0001] 本发明涉及聚芳醚酮技术领域,具体涉及一种高温自交联含氟聚芳醚酮及 其制备方法和包括其的涂料及涂料的制备方法。

背景技术

[0002] 漆包线是由表面涂覆高分子绝缘漆(漆包线漆)的铜、铝、锰铜合金等金 属丝绕制而成,其广泛应用于电磁线圈、工业发动机等装置的电能传输。随着 工业电器、家用电器、电讯、电子产品等的迅速发展,近几年漆包线市场需求 量急剧膨胀,但同时随着电器电机都朝着体积小、功率高的方向发展,以及某 些特殊领域对漆包线提出了更高的要求。如有的航空电机要求长期在200℃以 上工作,瞬间使用温度高达420℃左右;有的油冷电机要求长期在含有少量水的润滑油下高低温工作。因此,开发新型耐湿热性好的漆包线的研究具有实际 意义。
[0003] 漆包线的性能主要取决于漆包线漆的性能和质量,漆包线漆是一种特殊用 途的绝缘漆。近年来,广泛采用的耐高温绝缘涂料主要是聚酰亚胺类,其作为 有机类漆包线中耐热等级最高的绝缘漆,长期使用温度可达220℃以上,具有高 的耐热性、良好的耐溶剂和耐冷冻剂性能。但在高温下易水解,即耐湿热性较 差,限制了其在某些领域的应用。
[0004] 聚芳醚酮是一类综合性能优异的高性能工程塑料,具有耐热等级高、耐磨、 耐疲劳、抗冲击、耐湿热、抗辐射及化学稳定性等突出优点,被广泛应用于航 天、电子、机械、信息、汽车及核工业等领域。然而由于聚芳醚酮溶解性差, 不能用传统的溶液法,而只能用熔融的加工方法制成漆包线。中国专利 CN102139263A公开了一种聚醚醚酮导热绝缘涂料的使用方法,其方法是将制备 完成后未经冷却的聚醚醚酮导热绝缘涂料直接涂覆在基体材料上,高温干燥然后真空烧结,得到表面涂覆有聚醚醚酮的基体材料。
[0005] 含氟聚芳醚酮由于主链或侧链上引入氟元素,能在保持很高热稳定性的同 时提高溶解性,因此可用于涂料。中国专利CN101067021A公开了一种纳米氧化 铝改性(含氟)聚芳醚酮聚合物及其纳米瓷膜漆的制备,以纳米氧化铝改性(含 氟)聚芳醚酮聚合物为基体树脂制备纳米瓷膜漆,综合性能良好且性价比低。 CN202111023864.1公开了一种含氟聚芳醚酮的双组份涂料,与其他聚芳醚酮涂 料相比,该涂料成膜固化后形成交联结构聚合物涂层,提供良好的耐磨、低摩擦系数、抗沾污、阻燃及耐高温涂层表面,但由于组份加入催化剂,导致其漆 包线漆电绝缘性能有所下降,且涂漆之前需要增加双组份混合配漆工序导致工 艺复杂,在大规模实际生产中,生产成本不可避免地增大。
[0006] 因此需要针对上述缺陷或者不足研发一种新的聚芳醚酮材料。

发明内容

[0007] 本发明要解决的技术问题是:现有聚酰亚胺耐高温涂料耐湿热性差,以及 双组份含氟聚芳醚酮涂层绝缘性降低,涂漆工艺复杂及成本高。
[0008] 为了解决上述技术问题,本发明提供一种高温自交联含氟聚芳醚酮,其含 氟聚芳醚酮分子链含有苯乙烯基及硫醚基两种交联基团,苯乙烯基作为封端基, 硫醚基作为链段基团,所述高温自交联高温的温度范围为80~350℃。含有上述 两种基团的聚醚芳酮能够溶解于常规有机溶剂以制备涂料或者漆,且在低温时 呈线型,不发生交联反应,涂膜后高温固化过程中发生交联反应形成交联结构聚合物涂层,从而提供良好的耐湿热、耐磨、低摩擦系数的涂层表面,又能降 低生产升本,保证漆包线在高温高压和高湿度的恶劣工作环境下,仍能保持良 好的电绝缘性。所述低温温度为25~80℃。
[0009] 优选的,所述高温自交联含氟聚芳醚酮的用途,作为涂料或者漆的基体树 脂制作涂料。
[0010] 本发明提供一种高温自交联含氟聚芳醚酮的制备方法,按照如下步骤进行:
[0011] S1、含苯乙烯基及硫醚两种交联基团的含氟聚醚醚酮(FPEEK)树脂的合成:
[0012] 在装有机械搅拌装置、温度计、分水器和通氮气的容器中依次加入原料4,4’ ‑二氟二苯甲酮、六氟双酚A,交联剂4,4‑二羟基对苯硫醚,无水碳酸钾,反应 溶剂NMP(NMP即N‑甲基吡咯烷酮),搅拌升温至115~125℃反应2~3h,除去 反应生成的水,然后再升温至175~190℃继续反应2.5~3.5h;高温聚合反应 完毕待反应体系降至室温,加入4‑乙烯基苄氯室温搅拌20~25小时至反应完毕,将反应产物倒入去离子水中,冷却后将产物粉碎,用乙醇和去离子水洗涤后过 滤,然后在60℃下鼓风干燥4~8小时,55~65℃真空干燥16~20h得到端基为 苯乙烯基且分子链中含硫醚基团的高温自交联FPEEK白色聚合物粉末,产率95%。 4‑乙烯基苄氯通过含有的乙烯基起到交联作用,其靠热能打开乙烯基的π键产 生自由基,从而使不同分子链交联。硫醚也发生类似的热交联。4‑乙烯基苄氯 还可以替换为4‑乙烯基苄溴或对氟苯乙烯。
[0013] 所述含苯乙烯基和硫醚基的高温自交联含氟聚芳醚酮的制备过程反应式如 下:
[0014]
[0015] 其中,m的取值范围为1‑40%(m+n),n的取值范围为60‑99%(m+n),优选 的,含氟聚芳醚酮可以为无规共聚,所以仅计算每种重复基团在分子链总长度 m+n中的含量占比,不限定其重复的单个链段长度,即m的取值为链段总长度m+n的1‑40%,n的取值范围为链段总长度m+n的60‑99%;R基团中的‑CF3基团 也可以为氟苯基所替代,即六氟双酚A可以替换为氟苯,R基团即六氟双酚A除 去酚羟基的基团,结构式如下:
[0016]
[0017] 优选的,所述步骤S1中,4,4’‑二氟二苯甲酮、六氟双酚A、4,4’‑二羟 基对苯硫醚、无水碳酸钾、4‑乙烯基苄氯摩尔比为0.1803:0.159075‑0.201495: 0.010605‑0.053025:0.252:0.013104‑0.065522。
[0018] 工艺如上,在保证六氟双酚A与4,4’‑二羟基对苯硫醚摩尔量之和为 0.2121mol的条件下,通过改变4,4’‑二羟基对苯硫醚的摩尔分数调控硫醚基 团的含量,通过改变体系中4‑乙烯基苄氯的用量调控端基苯乙烯的含量。
[0019] 具体的,改变4,4’‑二羟基对苯硫醚的摩尔分数对于性能影响的实验数据 如下:
[0020] 表1:4,4’‑二羟基对苯硫醚含量对漆膜涂层性能影响对比表
[0021]
[0022]
[0023] 从表1可以得出,随着4,4’‑二羟基对苯硫醚含量的增加,漆膜涂层的耐 油性基本不变;耐湿热性测试中,原涂层漆膜表面光滑,在高湿热条件下处理 后漆膜未鼓泡或脱落,性能基本不变;在耐磨损性能中,原涂层耐刮擦力由 3.822N增加到4.09N,经过160℃处理后耐刮擦力由3.711N增大至4.07N;摩 擦系数由0.096N增大至0.119,但摩擦系数增量小,基本维持在0.1左右。
[0024] 改变4‑乙烯基苄氯摩尔分数对于性能影响的试验数据如下:
[0025] 表2:4‑乙烯基苄氯含量对漆膜涂层性能影响对比表
[0026]
[0027] 从表2可以得出,随着4‑乙烯基苄氯含量的增加,漆膜涂层的耐油性基本 不变;耐湿热性测试中,原涂层漆膜表面光滑,在高湿热条件下处理后漆膜也 未鼓泡或脱落,性能基本不变;在耐磨损性能中,原涂层耐刮擦力由3.865N增 加到4.084N,经过160℃处理后耐刮擦力由3.782N增大至4.063N;摩擦系数在0.108N至0.11之间,基本维持不变。
[0028] 本发明还提供一种含高温自交联含氟聚芳醚酮的涂料,包括含苯乙烯基及 硫醚基团的高温自交联含氟聚芳醚酮、含苯乙烯基高温自交联聚芳醚酮、含硫 醚基高温自交联聚芳醚酮中的一种或几种的混合物,以及溶剂、稀释剂。
[0029] 优选的,在所述涂料中,以涂料总质量计,所述含苯乙烯基及硫醚基团的 含氟聚芳醚酮的用量为10~60phr,所述含苯乙烯基自热交联聚芳醚酮的用量为 10~60phr,所述含硫醚基自热交联聚芳醚酮的用量为10~60phr,所述溶剂的 用量为30~70phr,所述稀释剂的用量为10~40phr。
[0030] 优选的,所述涂料还包括流平剂和润滑剂,所述流平剂的用量为0.1~ 2.0phr,所述润滑剂的用量为1~10phr。
[0031] 本发明还提供一种高温自交联含氟聚芳醚酮涂料的制备方法,包括如上所 述的步骤S1,以及步骤S2和S3,具体内容如下:
[0032] S2、苯乙烯基高温自交联FPEEK树脂合成:
[0033] 在装有机械搅拌装置、温度计、分水器和通氮气的容器中依次加入4,4’‑ 二氟二苯甲酮、六氟双酚A、无水碳酸钾及反应溶剂NMP,搅拌升温至115~125℃ 反应2~3h,除去反应生成的水,然后再升温至175~190℃继续反应2.5~3.5h; 高温聚合反应完毕待反应体系降至室温,加入4‑乙烯基苄氯室温搅拌20~25小 时至反应完毕,将反应产物倒入去离子水中,冷却后将产物粉碎,用乙醇和去离子水洗涤后过滤,然后在60℃下鼓风干燥4~8小时,55~65℃真空干燥16~ 20h得到苯乙烯基高温自交联FPEEK白色聚合物粉末,产率95%;
[0034] 所述含苯乙烯的高温自交联FPEEK的制备过程反应式如下:
[0035]
[0036] 其中,m的取值范围为大于或等于1的整数,R基团中的‑CF3基团也可以为 氟苯基所替代,即六氟双酚A可以替换为氟苯,R基团即六氟双酚A除去酚羟基 的基团,结构式如下:
[0037]
[0038] 工艺如上,依次改变4‑乙烯基苄氯的摩尔分数为1%、2%、5%,经过与上述 工艺相同的处理后,分别得到摩尔分数1%、2%、5%的含苯乙烯基的自热交联FPEEK 白色聚合物粉末,产率95%。
[0039] S3、硫醚基高温自交联FPEEK树脂合成:
[0040] 在装有机械搅拌装置、温度计、分水器和通氮气的容器中依次加入原料4,4’ ‑二氟二苯甲酮、六氟双酚A,交联剂4,4’‑二羟基对苯硫醚,无水碳酸钾,反应 溶剂环丁砜,搅拌升温至115~125℃反应2~3h,除去反应生成的水,然后再 升温至175~190℃继续反应2.5~3.5h;高温聚合反应完毕待反应体系降温后, 将反应产物倒入去离子水中,冷却后将产物粉碎,用乙醇和去离子水洗涤后过 滤,然后在60℃下鼓风干燥4~8小时,55~65℃真空干燥16~20h得到硫醚基的高温自交联FPEEK白色聚合物粉末,产率95%;
[0041] 所述含硫醚基的高温自交联FPEEK的制备过程反应式如下:
[0042]
[0043] 其中,m的取值范围为1‑40%(m+n),n的取值范围为60‑99%(m+n),优选 的,含氟聚芳醚酮可以为无规则共聚,所以仅计算每种重复基团在总分子链段 长度中的含量占比,不限定其重复的单个链段长度,即m的取值为链段总长度 m+n的1‑40%,n的取值范围为链段总长度m+n的60‑99%,R基团中的‑CF3基团 也可以为氟苯基所替代,即六氟双酚A可以替换为氟苯,R基团即六氟双酚A除 去酚羟基的基团,结构式如下:
[0044]
[0045] 工艺如上,在保证六氟双酚A与4,4’‑二羟基对苯硫醚摩尔量之和为 0.2121mol的条件下,通过改变4,4’‑二羟基对苯硫醚的摩尔分数为2.5%、7.5%、 12.5%,经过与上述工艺相同的处理后,分别得到摩尔分数2.5%、7.5%、12.5% 的硫醚基自热交联FPEEK白色聚合物粉末,产率95%。
[0046] S4、涂料制备:将步骤S1至步骤S3精制干燥好的FPEEK溶于溶剂,所述 溶剂用量为30‑70phr,固含量范围在10‑50phr之间,溶解过程在20‑40℃范围 内进行,待三种树脂固体完全溶解后加入助剂搅拌均匀即可,所述助剂包括稀 释剂,稀释剂用量为10‑40phr。当需要制备的是含有任意一种或两种官能基团 的含氟聚芳醚酮树脂的涂料时,可将三种FPEEK对应替换成一种或两种含对应 官能基团的含氟聚芳醚酮树脂即可,其他内容不变。
[0047] 优选的,所述步骤S2中,4,4’‑二氟二苯甲酮、六氟双酚A、无水碳酸钾、 4‑乙烯基苄氯的摩尔比为0.1803:0.159075‑0.201495:0.252: 0.013104‑0.065522。
[0048] 优选的,所述步骤S3中,4,4’‑二氟二苯甲酮、六氟双酚A、4,4’‑二羟 基对苯硫醚、无水碳酸钾的摩尔比为0.1803:0.159075‑0.201495: 0.010605‑0.053025:0.252。
[0049] 优选的,所述步骤S4中的溶剂为氯仿、1,2‑二氯乙烷、四氢呋喃、环己酮、 N,N‑二甲基酰胺、N‑甲基吡咯烷酮、二甲基乙酰胺中的一种或几种的混合物。
[0050] 所述步骤S4中的稀释剂是甲苯、二甲苯、己烷、环己烷、庚烷、辛烷、癸 烷中的一种或者几种的混合物。
[0051] 优选的,所述助剂还包括润滑剂、流平剂。
[0052] 优选的,所述润滑剂为聚乙烯蜡、聚酯蜡、聚酰胺蜡、聚四氟乙烯蜡、棕 榈蜡中的一种或几种的混合物。
[0053] 优选的,所述流平剂为低分子量丙烯酸共聚物、聚醚改性聚硅氧烷、硅酮聚合物中的一种或者几种的混合物。
[0054] 优选的,所述低分子量丙烯酸共聚物是指含500‑3000链段长度的丙烯酸共 聚物。所述聚醚改性聚硅氧烷是2000‑5000链段长度的聚醚接枝二甲基聚硅氧 烷、TRSE(聚醚改性七甲基三硅氧烷表面活性剂)、TESE(聚醚改性八甲基四硅 氧烷表面活性剂)、S‑7、S‑8型聚醚改性聚硅氧烷消泡剂和Si‑C型聚醚改性聚硅氧烷匀泡剂中的一种或几种的混合物。所述硅酮聚合物是碳酸钙填充硅酮密 封胶、改性硅酮密封材料卡内卡Ms聚合物、硅酮‑聚酰亚胺合成的无卤且链段 长度为2000‑5000的弹性体型嵌段共聚物(SILTEM)中的一种或几种的混合物。 硅酮密封胶作为防磨涂层材料添加到涂料中,增加涂料的耐磨性。
[0055] 相比现有技术,本发明具有以下优点:
[0056] 本发明的高温自交联含氟聚芳醚酮,将交联基团乙烯基和硫醚基团引入到 含氟聚芳醚酮分子链中,且端基为苯乙烯基,分子链中间含有硫醚基团,含氟 聚芳醚酮与聚芳醚酮相比,由于含氟取代基的引入使其在常规有机溶剂中能够 溶解,因而能够应用于涂料中用于涂料基体树脂;常温条件下其线性结构可以溶于常规有机溶剂,涂覆后热处理时涂膜中的硫醚键和乙烯基受热可以自行发 生交联,涂层树脂成为三维交联网络结构,从而使得涂层在高温下的耐油性以 及耐水解性以及说耐湿热性显著提高,以满足特殊涂料涂层长期在高温高压和 高湿度等恶劣工作环境下的需求;具体的,由本申请的高温自交联含氟聚芳醚 酮树脂制备的涂料能够在150℃以上的高温、2个大气压、相对湿度70%以上的环 境中稳定使用。

附图说明

[0057] 图1‑是本发明的高温自交联含氟聚芳醚酮的制备过程反应式图。

具体实施方式

[0058] 下面结合具体实施方式对本发明的技术方案进行清楚、完整的描述,显然, 所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。
[0059] 实施例1:本实施例提供一种含苯乙烯基及硫醚两种交联基团的含氟聚醚醚 酮(FPEEK)树脂的合成方法来合成所述树脂:
[0060] 在装有机械搅拌装置、温度计、分水器和通氮气的1000ml四口烧瓶中依次 加入原料4,4’‑二氟二苯甲酮46.2849g(0.21mol)、六氟双酚A61.8543g (0.1803mol),交联剂4,4’‑二羟基对苯硫醚6.941g(0.0318mol),无水碳酸钾 35.1808g(0.252mol),反应溶剂NMP(NMP即N‑甲基吡咯烷酮)420ml,搅拌升 温至120℃反应2h,除去反应生成的水,然后再升温至180℃继续反应3h;高 温聚合反应完毕待反应体系降至室温,加入4‑乙烯基苄氯3.2g(0.021mol)在 室温下搅拌24小时至反应完毕,将反应产物倒入去离子水中,冷却后将产物粉 碎,用乙醇和去离子水洗涤后过滤,然后在60℃下鼓风干燥6小时,60℃真空 干燥18h得到摩尔分数5%端基为苯乙烯基且分子链中含摩尔分数7.5%硫醚基团 的自热交联FPEEK白色聚合物粉末,产率95%。
[0061] 实施例2:本实施例提供一种苯乙烯基高温自交联FPEEK树脂合成方法来合 成所述树脂:
[0062] 在装有机械搅拌装置、温度计、分水器和通氮气的1000ml四口烧瓶中依次 加入4,4’‑二氟二苯甲酮46.2849g(0.21mol)、六氟双酚A72.7698g(0.2121mol)、 无水碳酸钾
35.1808g(0.252mol)及反应溶剂NMP420ml,搅拌升温至120℃反 应2h,除去反应生成的水,然后再升温至180℃继续反应3h;高温聚合反应完 毕待反应体系降至室温,加入4‑乙烯基苄氯3.2g(0.021mol)室温搅拌20~25 小时至反应完毕,将反应产物倒入去离子水中,冷却后将产物粉碎,用乙醇和去离子水洗涤后过滤,然后在60℃下鼓风干燥6小时,60℃真空干燥18h得到 摩尔分数5%的苯乙烯基高温自交联FPEEK白色聚合物粉末,产率95%。
[0063] 实施例3:本实施例提供一种硫醚基高温自交联FPEEK树脂合成方法来制备 所述树脂:
[0064] 在装有机械搅拌装置、温度计、分水器和通氮气的1000ml四口烧瓶中依次 加入原料4,4’‑二氟二苯甲酮46.2849g(0.21mol)、六氟双酚A61.8543g (0.1803mol),交联剂4,4‑二羟基对苯硫醚6.941g(0.0318mol),无水碳酸钾 35.1808g(0.252mol),反应溶剂环丁砜420ml,搅拌升温至120℃反应2h,除 去反应生成的水,然后再升温至180℃继续反应3h;高温聚合反应完毕待反应体系降温后,将反应产物倒入去离子水中,冷却后将产物粉碎,用乙醇和去离 子水洗涤后过滤,然后在60℃下鼓风干燥6小时,60℃真空干燥18h得到摩尔 分数7.5%的硫醚基自热交联FPEEK白色聚合物粉末,产率95%。
[0065] 对比例1:本实施例提供一种不含交联剂的FPEEK树脂的制备方法
[0066] 在装有机械搅拌装置、温度计、分水器和通氮气的1000ml四口烧瓶中依次 加入原料4,4’‑二氟二苯甲酮46.2849g(0.21mol)、六氟双酚A 72.7698g (0.2121mol),无水碳酸钾35.1808g(0.252mol),反应溶剂环丁砜420ml,搅 拌升温至120℃反应2h,除去反应生成的水,然后再升温至180℃继续反应3h; 高温聚合反应完毕后将反应产物倒入去离子水中,冷却后将产物粉碎,用乙醇 和去离子水洗涤后过滤,然后在60℃下鼓风干燥6小时,60℃真空干燥18h得 到不含交联剂FPEEK白色聚合物粉末,产率95%。
[0067] 将上述实施例1‑3和对比例1制备的树脂按照本申请的涂料的制备方法统 一制备成含有对应树脂的涂料,各实施例对应的涂料具体包括以下组分:
[0068] FPEEK树脂用量均为50phr,溶剂N甲基吡咯烷酮40phr,稀释剂己烷20Phr, 流平剂低分子量丙烯酸酯0.15phr,产品型号:EPITEX 66,销售方:武汉泽山 成生物医药技术有限公司;润滑剂2000‑5000链段长度的聚醚接枝二甲基聚硅 氧烷3phr,产品型号:SP‑983销售方:广州鑫冠化工科技有限公司。当然,低分子量丙烯酸酯还可采用北京华美互利生物化工销售的ACRYLATES COPOLYMER;链段长度2000‑5000的聚醚接枝二甲基聚硅氧烷还可采用广东 雷邦高新材料有限公司销售的SR‑202。并分别测试各项性能记录于表X中,性 能对比表如下:
[0069] 表3:实施例1‑3和对比例1的各种树脂的性能对比表
[0070]
[0071]
[0072] 从表3可以得出:从耐磨损性能来看,将实施例1‑3和对比例1的技术方案制 备的FPEEK相比较,不含乙烯基和硫醚基团的对比例1的耐磨损性能在原涂层和 高温处理后均较小,特别是在高温处理后只需要1.876N的摩擦力即可损坏涂层; 而含有乙烯基或者硫醚基团的FPEEK,在原涂层和高温处理后两种状况下,磨损 涂层需要的摩擦力均大于3.1N,显然耐磨损性能有所提升;而实施例1的耐磨损 性能最好,在原涂层和高温处理后均需要至少4.063N的摩擦力才会磨损或损坏 涂层,耐磨损性能近乎提高一倍。从耐油性能来看,将实施例1‑3和对比例1的 技术方案制备的FPEEK相比较,不含乙烯基和硫醚基团的对比例1的在高温处理 后涂层表面不平整,说明涂料在高温耐油实验中漆层部分脱落,耐油性能较差。 而含有乙烯基或者硫醚基团的FPEEK,在原涂层和高温处理后两种状况下,漆膜 表面均光滑平整,漆膜均未脱落,显然耐油性能有较大提升。从耐湿热性能来 看,将实施例1‑3和对比例1的技术方案制备的FPEEK相比较,不含乙烯基和硫醚 基团的对比例1的耐刮擦性能在原涂层和高湿热处理后均较小,特别是在高湿热 处理后只需要2.071N摩擦力即可损坏涂层;而含有乙烯基或者硫醚基团的 FPEEK,在原涂层和高湿热处理后两种状况下,磨损涂层需要的摩擦力均大于 3.2N,显然耐湿热性能有所提升;而实施例1的耐湿热性能最好,在原涂层和高湿热处理后均需要至少4.041N的摩擦力才会磨损或损坏涂层,耐湿热性能近乎 提高一倍。而不含有和含有摩擦系数乙烯基和/或者硫醚基团的FPEEK的摩擦系 数基本不变,均为0.108左右。
[0073] 本发明的高温自交联含氟聚芳醚酮,将交联基团乙烯基和硫醚基团引入到 含氟聚芳醚酮分子链中,形成端基为苯乙烯基、分子链中间含有硫醚基团的含 氟聚芳醚酮,与聚芳醚酮相比,本发明的含氟聚芳醚酮由于含氟取代基的引入 使其在常规有机溶剂中能够溶解,因而能够应用于涂料中用于涂料基体树脂;常温条件下其线性结构可以溶于常规有机溶剂,涂覆后热处理时涂膜中的硫醚 键和乙烯基受热可以自行发生交联,涂层树脂成为三维交联网络结构,从而使 得涂层在高温下的耐油性以及耐水解性以及说耐湿热性显著提高,以满足特殊 涂料涂层长期在高温高压和高湿度等恶劣工作环境下的需求。具体的,由本申 请的高温自交联含氟聚芳醚酮树脂制备的涂料能够在150℃以上的高温、2个大 气压、相对湿度70%以上的环境中稳定使用。使用本发明的含氟聚芳醚酮制备的 涂料或者漆也具有所述含氟聚芳醚酮的优点。
[0074] 上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的 范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换 均属于本发明所要求保护的范围。