基于阿霉素-环糊精多重作用力形成的纳米笼及其制备转让专利

申请号 : CN202210805451.7

文献号 : CN115124723B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 许志刚王婧婷胡峻峰梁梦云

申请人 : 西南大学

摘要 :

本发明公开了一种基于阿霉素‑环糊精多重作用力形成的纳米笼及其制备,制备方法包括以下步骤:(1)β环糊精(β‑CD)与含双硫键的交联剂合成肿瘤微环境响应的环糊精超分子(PCD)的制备;(2)通过大分子与小分子之间主客作用力及化学交联作用将PCD与阿霉素(DOX)结合,得到PDOX;(3)随后将PEG‑NH2引入PDOX中得到一种纳米尺寸的超分子纳米笼,并将产物命名为PDOP。所得的环糊精纳米笼可在水中形成超分子药物胶束,具有高胶束稳定性、胶束形状可控、高药物上载量、低毒副作用、良好的药物控释等优势,该纳米颗粒基于肿瘤微环境响应释放,在构建长循环深渗透的智能给药系统方面有广阔的应用前景。

权利要求 :

1.一种基于阿霉素‑环糊精多重作用力形成的纳米笼的制备方法,其特征在于,包括以下步骤:

(1)制备环糊精超分子纳米笼PCD,其合成路线如下所示,包括以下步骤:首先将β‑CD溶解于无水二甲基亚砜DMSO中配置成β‑CD溶液,将含双硫键的交联剂DBHD和三乙胺TEA溶解在DMSO中配置成DBHD/TEA混合溶液,再滴加入刚刚制备的β‑CD溶液中,然后将反应置于55℃油浴中,搅拌12h得到PCD溶液(2)制备PCD与阿霉素DOX多重作用力产物PDOX,其合成路线如下所示,包括以下步骤:

将DOX加入DMSO中配成DOX溶液,在55℃下将DOX溶液加入到步骤(1)中的PCD溶液中继续反应12小时,得到PDOX(3)制备含PEG‑NH2和PDOX的纳米颗粒PDOP,其合成路线如下所示,包括以下步骤:用DMSO溶解PEG‑NH2配成PEG‑NH2溶液,接着加入步骤(2)中的PDOX继续反应过夜,随后,混合液体被转移到透析袋中经去离子水透析48h,其中透析袋的截留分子量为3500kDa,真空干燥后,获得纳米颗粒PDOP

2.根据权利要求1所述的一种基于阿霉素‑环糊精多重作用力形成的纳米笼的制备方法,其特征在于:所述步骤(1)中β‑CD溶液的摩尔浓度为0.22~0.24mol/L;所述步骤(1)中DBHD/TEA混合溶液中DBHD的摩尔浓度为22~24mol/L;DBHD/TEA混合溶液中TEA与DMSO的体积比为0.8:10~1.2:10;β‑CD溶液与DBHD/TEA混合溶液的体积比为10:0.9~10:1.1。

3.根据权利要求1所述的一种基于阿霉素‑环糊精多重作用力形成的纳米笼的制备方法,其特征在于:所述步骤(2)中DOX溶液的摩尔浓度为0.05~0.15mol/L,DOX溶液与PCD溶液的体积比为0.8:16~1.2:16。

4.根据权利要求1所述的基于阿霉素‑环糊精多重作用力形成的纳米笼的制备方法,其特征在于:所述步骤(3)中PEG‑NH2溶液的摩尔浓度为0.1~0.2mol/L,PEG‑NH2溶液与PDOX的体积比为0.8:18~1.2:18。

说明书 :

基于阿霉素‑环糊精多重作用力形成的纳米笼及其制备

技术领域

[0001] 本发明涉及高分子化学药物领域,具体涉及到一种基于阿霉素‑环糊精多重作用力形成的纳米笼及其制备。

背景技术

[0002] 环糊精(Cyclodextrin,简称CD)是直链淀粉在由芽孢杆菌产生的环糊精葡萄糖基转移酶作用下生成的一系列环状低聚糖的总称,通常含有6 12个D‑吡喃葡萄糖单元。由于~环糊精的外缘(Rim)亲水而内腔(Cavity)疏水,因而它能够像酶一样提供一个疏水的结合部位,作为主体(Host)包络各种适当的客体(Guest),如有机分子、无机离子以及气体分子等。其内腔疏水而外部亲水的特性使其可依据范德华力、疏水相互作用力、主客体分子间的匹配作用等与许多有机和无机分子形成包合物及分子组装体系,这种选择性的包络作用即通常所说的分子识别,其结果是形成主客体包络物(Host‑Guest Complex)。环糊精是迄今所发现的类似于酶的理想宿主分子,并且其本身就有酶模型的特性。因此,在催化、分离、食品以及药物等领域中,环糊精受到了极大的重视和广泛应用。其中研究得较多并且具有重要实际意义的是含有6、7、8个葡萄糖单元的分子,分别称为α、β、γ‑环糊精。由于α‑CD分子空洞孔隙较小,通常只能包接较小分子的客体物质,应用范围较小;γ‑CD的分子洞大,但其生产成本高,工业上不能大量生产,其应用受到限制;β‑CD的分子洞适中,应用范围广,生产成本低,是工业上使用最多的环糊精产品。但β‑CD的疏水区域及催化活性有限,使其在应用上受到一定限制。改变环糊精的理化特性已成为化学修饰环糊精的重要目的之一。
[0003] 阿霉素(DOX)是一种抗肿瘤抗生素,由于其物理化学性质可抑制RNA 和DNA的合成,对RNA的抑制作用最强,抗瘤谱较广,对多种肿瘤均有作用,属周期非特异性药物,对各种生长周期的肿瘤细胞都有杀灭作用,是一种应用最多的化疗药物。最近的研究证据表明,DOX不仅诱导肿瘤细胞凋亡,而且引起免疫反应,即由DOX介导的免疫原性细胞死亡(ICD),DOX引起的肿瘤细胞死亡表达和释放相关抗原的表达(CRT)暴露在细胞膜和释放高流动性组盒1(HMGB1)刺激DC成熟和增强体内抗肿瘤免疫反应。临床上用于治疗急性淋巴细胞白血病、急性粒细胞性白血病、霍奇金和非霍奇金淋巴瘤、乳腺癌、肺癌、卵巢癌、软组织肉瘤、成骨肉瘤、横纹肌肉瘤、肾母细胞瘤、神经母细胞瘤、膀胱瘤、甲状腺瘤、绒毛膜上皮癌、前列腺癌、睾丸癌、胃癌、肝癌等。
[0004] 多年来,超分子纳米材料在药物传递方面得到了广泛的关注。基于其分子间键,超分子相互作用,如范德华、疏水相互作用、氢键和主客体相互作用,稳定了纳米颗粒在生理环境中,提高了其稳定性、循环时间和可利用性。超分子纳米载体的主客体复合物可以有效提高阿霉素(DOX)、紫杉醇(PTX)、喜树碱(CPT)等药物的溶解度。环糊精(CDs)是宿主‑客体复合物中的一种众所周知的超分子宿主,可作为识别药物客体的受体。此外,环糊精(CDs)由于其固有的疏水腔和优越的生物相容性,允许它们与腔内的小疏水分子结合,通过形成包合物来克服某些药物的局限性,提高药物的溶解度和稳定性以及生物利用度。最近,基于CDs的各种结构的超分子聚合物已被制备出来,并具有理想的稳定性和延长循环时间。然而,在单一的主客体复合体形成中,并不能实现特定的刺激‑反应基序来实现控制或肿瘤定位的释放。

发明内容

[0005] 针对纳米颗粒面临的不能实现特定的刺激‑反应基序来实现控制或肿瘤定位的释放的问题。要想实现聚合物体系的高性能治疗效果,肿瘤微环境(TME)的刺激响应释放仍是一个不可缺少的问题。本发明旨在提供一种基于阿霉素‑环糊精多重作用力形成的纳米笼及其制备方法及其在药物治疗癌症领域的应用。
[0006] 本发明的技术方案具体如下:
[0007] 一种基于阿霉素‑环糊精多重作用力形成的纳米笼的制备方法,其特征在于,包括以下步骤:
[0008] (1)制备环糊精超分子纳米笼PCD,其合成路线如下所示,包括以下步骤:首先将β‑CD溶解于无水二甲基亚砜DMSO中配置成β‑CD溶液,将含双硫键的交联剂DBHD和三乙胺TEA溶解在DMSO中配置成DBHD/TEA混合溶液,再滴加入刚刚制备的β‑CD溶液中,然后将反应置于55℃油浴中,搅拌12h得到PCD溶液;
[0009]
[0010] (2)制备PCD与阿霉素DOX主多重作用力产物PDOX,其合成路线如下所示,包括以下步骤:将DOX加入DMSO中配成DOX溶液,在55℃下将DOX溶液加入到步骤(1)中的PCD溶液中继续反应12小时,得到PDOX;
[0011]
[0012] (3)制备含PEG‑NH2和PDOX的纳米颗粒PDOP,其合成路线如下所示,包括以下步骤:用DMSO中溶解PEG‑NH2配成PEG‑NH2溶液,接着加入步骤(2)中的PDOX继续反应过夜,随后,混合液体被转移到透析袋中经去离子水透析48 h,其中透析袋的截留分子量为3500 kDa,真空干燥后,获得纳米颗粒PDOP。
[0013]
[0014] 进一步,其特征在于:所述步骤(1)中β‑CD溶液的摩尔浓度为0.22 0.24 mol/L;所~述步骤(1)中DBHD/TEA混合溶液中DBHD的摩尔浓度为22 24 mol/L;DBHD/TEA混合溶液中~
TEA与DMSO的体积比为0.8:10 1.2:10;β‑CD溶液与DBHD/TEA混合溶液的体积比为10:0.9~ ~
10:1.1。
[0015] 进一步,其特征在于:所述步骤(2)中DOX溶液的摩尔浓度为0.05 0.15 mol/L,DOX~溶液与PCD溶液的体积比为0.8:16 1:16。
~
[0016] 进一步,其特征在于:所述步骤(3)中PEG‑NH2溶液的摩尔浓度为0.1~0.2 mol/L,PEG‑NH2溶液与PDOX的体积比为0.8:18~1.2:18。
[0017] 本发明的主要优点在于:
[0018] 1.针对目前主客聚合物平台系统存在的问题,本项目创造性地提出基于阿霉素‑环糊精多重作用力形成的纳米笼及其制备。针对纳米颗粒面临的不能实现特定的刺激‑反应基序来实现控制或肿瘤定位的释放的问题。本方法可有效解决肿瘤微环境(TME)的刺激响应释放问题,在肿瘤部位高度积累。
[0019] 2.本方法的超分子纳米笼稳定性好,不易分解,内源性GSH引发二硫键断裂在肿瘤细胞中释放活性DOX,延长了保留时间,促使DOX诱导的ICD效应的释放放大,以诱导免疫反应,增强肿瘤生长抑制。

附图说明

[0020] 为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图:
[0021] 图1为实施例1中一种基于阿霉素‑环糊精多重作用力形成的纳米笼PDOP的合成示意图。
[0022] 图2为实施例1中一种基于阿霉素‑环糊精多重作用力形成的纳米笼PDOP的红外示意图。
[0023] 图3为实施例1中一种基于阿霉素‑环糊精多重作用力形成的纳米笼PDOP的透射电镜图和动态光散射粒径分布图。
[0024] 图4为实施例1中一种基于阿霉素‑环糊精多重作用力形成的纳米笼PDOP的体外药物释放示意图。
[0025] 图5为实施例1中一种基于阿霉素‑环糊精多重作用力形成的纳米笼PDOP对4T1细胞的毒性图。

具体实施方式

[0026] 以下实施例用于说明本发明,但不用来限制本发明的范围。
[0027] 实施例1一种基于阿霉素‑环糊精多重作用力形成的纳米笼及其制备
[0028] 一种基于阿霉素‑环糊精多重作用力形成的纳米笼PDOP及其制备的总合成示意图如图1所示,主要包括以下步骤:
[0029] (1)制备环糊精超分子纳米笼(PCD),包括以下步骤:首先将β‑CD (3.5 μmol) 预先溶解于1.5 mL无水二甲基亚砜(DMSO)中,将DBHD(含双硫键的交联剂,35 μmol)和17 μL三乙胺(TEA)溶解在150 μL DMSO中滴加入刚刚制备的1.5 mL β‑CD溶液中,然后将反应置于55 ℃油浴中,搅拌12 h得到PCD。
[0030] (2)制备PCD与阿霉素(DOX)多重作用力产物PDOX,包括以下步骤:将DOX (10.8 μmol) 加入100 μL DMSO中,在55℃下加入第一步所得的PCD混合溶液中继续反应12小时,得到PDOX。
[0031] (3)制备含PEG‑NH2和PDOX的纳米颗粒PDOP,包括以下步骤:用100μL的DMSO溶解PEG‑NH2 (14.4 μmol),接着加入第二步的PPDOX混合物中继续反应过夜,随后,混合液体被转移到透析袋中经去离子水透析48 h,其中透析袋的截留分子量为3500 kDa,真空干燥后,获得产品PDOP。
[0032] PDOP红外示意图如图2所示,PCD、PDOX和PDOP三种聚合物在3382cm‑1,3932cm‑1分‑1别对应O‑H拉伸振动、C‑H振动。与PCD相比,PDOX和PDOP在1726cm 处的新特征峰值,证实了‑1 ‑1 ‑1
DOX的存在,且与PDOX 相比,PDOP在950cm 、1100cm 和1640cm 处分别对应PEG‑NH2的C‑N拉伸、C‑O‑C拉伸和N‑H弯曲。
[0033] PDOP的透射电镜图和动态光散射粒径分布图如图3所示,用动态光散射(DLS)测量的PDOP的直径和zeta电位分别为94.82±5.41nm和‑22±0.8 mV。透射电镜(TEM)显示PDOP呈球形,粒径约为100nm,与DLS结果一致,证明PDOP具有良好的纳米结构。
[0034] PDOP的体外药物释放示意图如图4所示,PDOP在包含10 mM DTT(二硫苏糖醇,模拟肿瘤微环境)的PBS缓冲液中DOX的48h释放率近80% ,而在纯PBS缓冲液中只有30%,证明PDOP具有良好的肿瘤微环境响应释放。
[0035] PDOP对4T1细胞的毒性图如图5所示,10 μg/mL PDOP作用于4T1细胞24h后细胞活性只有17.9%,且PDOP比游离DOX对4T1细胞毒性更大,这可以证明PDOP可以有效地在4T1细胞内渗透和聚合。
[0036] 最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。