一种含气泡介质的中子输运计算方法转让专利

申请号 : CN202211046384.1

文献号 : CN115130330B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王永平郑友琦杜夏楠吴宏春曹良志

申请人 : 西安交通大学

摘要 :

本发明公开了一种含气泡介质的中子输运计算方法,首先分别计算核反应堆活性区内各个网格中气泡区域和非气泡区域的宏观中子反应截面;根据各网格内气泡尺寸,计算气泡区域和非气泡区域间的中子碰撞概率;利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度;最后,通过通量‑体积权重对网格中气泡区域和非气泡区域的宏观中子反应截面加权平均获得网格的均匀化宏观中子反应截面,从而考虑了气泡区域和非气泡区域的通量分布的区别,提供了准确的均匀化中子反应截面,提高了后续中子输运计算的精度。

权利要求 :

1.一种含气泡介质的中子输运计算方法,其特征在于:首先分别计算核反应堆活性区网格内气泡区域和非气泡区域的宏观中子反应截面,根据各网格内气泡尺寸计算气泡区域和非气泡区域间的中子碰撞概率,利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度,通过通量‑体积权重获得网格内的均匀化宏观中子反应截面,包括如下步骤:步骤1:对于每个计算网格,分别利用公式(1)和公式(2)计算气泡区域和非气泡区域的宏观中子反应截面:式中:

Σg——气泡区域的宏观中子反应截面;

I——气泡区域的核素总数;

i——气泡区域的第i种核素;

Ng,i——气泡区域第i种核素的核子密度;

σg,i——气泡区域第i种核素的微观中子反应截面;

Σl——非气泡区域的宏观中子反应截面;

J——非气泡区域的核素总数;

j——气泡区域的第j种核素;

Nl,j——非气泡区域第j种核素的核子密度;

σl,j——非气泡区域第j种核素的微观中子反应截面;

步骤2:根据各网格内气泡尺寸,计算气泡区域和非气泡区域间的中子碰撞概率;

根据各网格内气泡尺寸,计算出气泡的中子穿透概率和中子逃脱概率为:式中:

T——气泡的中子穿透概率,即中子进入气泡后能飞出气泡的概率;

E——气泡的中子逃脱概率,即气泡内的中子未经碰撞逃脱气泡的概率;

Σg,tr——气泡区域的宏观中子输运截面;

R——气泡的平均半径;

计算气泡区域和非气泡区域间的中子碰撞概率:式中:

Pg→l——气泡区域到非气泡区域的中子碰撞概率;

Pl→l——非气泡区域到非气泡区域的中子碰撞概率;

Pg→g——气泡区域到气泡区域的中子碰撞概率;

Pl→g——非气泡区域到气泡区域的中子碰撞概率;

Σl,tr——非气泡区域的宏观中子输运截面;

λ——非气泡区域的平均弦长;

步骤3:利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度;

利用中子碰撞概率,建立以下气泡区域和非气泡区域的中子平衡方程:式中:

φg——气泡区域的中子通量密度;

Σg,s——气泡区域的宏观中子散射截面;

φl——非气泡区域的中子通量密度;

Σl,s——非气泡区域的宏观中子散射截面;

keff——核反应堆的中子有效增殖因数;

方程(9)和方程(10)包含的未知量为φg和φl,两个方程两个未知数,因此通过求解获得气泡区域的中子通量密度φg和非气泡区域的中子通量密度φl;

步骤4:通过通量‑体积权重对网格中气泡区域和非气泡区域的宏观中子反应截面加权平均获得网格内的均匀化宏观中子反应截面,从而进行后续中子输运计算,获得各网格内的中子通量密度;

网格内的均匀化宏观中子反应截面计算式为:式中:

——网格的均匀化宏观中子反应截面;

Vg——气泡区域的体积;

Vl——非气泡区域的体积;

获得网格内的均匀化宏观中子反应截面后,便采用中子输运计算方法求解中子输运方程,最终获得所有网格内的中子通量密度。

2.根据权利要求1所述的一种含气泡介质的中子输运计算方法,其特征在于:所述中子输运计算方法为离散纵标计算方法。

说明书 :

一种含气泡介质的中子输运计算方法

技术领域

[0001] 本发明涉及核反应堆物理分析计算技术领域,具体涉及一种含气泡介质的中子输运计算方法。

背景技术

[0002] 在反应堆正常运行过程中,堆芯活性区不会出现气泡,因此在采用两步法进行物理分析时,组件计算只计算包含固体(如燃料或其他结构材料)和液体(如冷却剂)的均匀化截面。然而,在某些情况下,如反应性严重事故工况,由于裂变反应剧增、反应堆温度超限,堆芯内会产生气泡,气泡的产生改变了局部的材料布置特性,对反应堆临界特性产生较大影响,因此必须考虑这一现象。
[0003] 目前,在堆芯输运计算时,若堆芯活性区产生气泡,则根据气泡体积改变网格内核素的平均核子密度,即将气泡均匀打混至液体中去。这一做法相当于体积权重,忽略了气泡区域和非气泡区域的中子通量的差别,无法保证网格内的中子反应率守恒,在中子输运计算中引入了误差。

发明内容

[0004] 针对现有技术存在的问题,本发明的目的在于提供一种含气泡介质的中子输运计算方法,首先分别计算核反应堆活性区网格内气泡区域和非气泡区域的宏观中子反应截面,根据各网格内气泡尺寸计算气泡区域和非气泡区域间的中子碰撞概率,利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度,通过通量‑体积权重获得网格内的均匀化宏观中子反应截面,从而考虑了气泡区域和非气泡区域的通量分布的区别,提供了准确的均匀化中子反应截面,提高了后续中子输运计算的精度。
[0005] 为了实现以上目的,本发明采取如下的技术方案予以实施:
[0006] 一种含气泡介质的中子输运计算方法,首先分别计算核反应堆活性区网格内气泡区域和非气泡区域的宏观中子反应截面,根据各网格内气泡尺寸计算气泡区域和非气泡区域间的中子碰撞概率,利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度,通过通量‑体积权重获得网格内的均匀化宏观中子反应截面,从而考虑了气泡区域和非气泡区域的通量分布的区别,提供了准确的均匀化中子反应截面,提高了后续中子输运计算的精度,包括如下步骤:
[0007] 步骤1:对于每个计算网格,分别利用公式(1)和公式(2)计算气泡区域和非气泡区域的宏观中子反应截面:
[0008]
[0009]
[0010] 式中:
[0011] Σg——气泡区域的宏观中子反应截面;
[0012] I——气泡区域的核素总数;
[0013] i——气泡区域的第i种核素;
[0014] Ng,i——气泡区域第i种核素的核子密度;
[0015] σg,i——气泡区域第i种核素的微观中子反应截面;
[0016] Σl——非气泡区域的宏观中子反应截面;
[0017] J——非气泡区域的核素总数;
[0018] j——气泡区域的第j种核素;
[0019] Nl,j——非气泡区域第j种核素的核子密度;
[0020] σl,j——非气泡区域第j种核素的微观中子反应截面;
[0021] 步骤2:根据各网格内气泡尺寸,计算气泡区域和非气泡区域间的中子碰撞概率;
[0022] 根据各网格内气泡尺寸,计算出气泡的中子穿透概率和中子逃脱概率为:
[0023]
[0024]
[0025] 式中:
[0026] T——气泡的中子穿透概率,即中子进入气泡后能飞出气泡的概率;
[0027] E——气泡的中子逃脱概率,即气泡内的中子未经碰撞逃脱气泡的概率;
[0028] Σg,tr——气泡区域的宏观中子输运截面;
[0029] R——气泡的平均半径;
[0030] 计算气泡区域和非气泡区域间的中子碰撞概率:
[0031]
[0032]
[0033]
[0034]
[0035] 式中:
[0036] Pg→l——气泡区域到非气泡区域的中子碰撞概率;
[0037] Pl→l——非气泡区域到非气泡区域的中子碰撞概率;
[0038] Pg→g——气泡区域到气泡区域的中子碰撞概率;
[0039] Pl→g——非气泡区域到气泡区域的中子碰撞概率;
[0040] Σl,tr——非气泡区域的宏观中子输运截面;
[0041] λ——非气泡区域的平均弦长;
[0042] 步骤3:利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度;
[0043] 利用中子碰撞概率,建立以下气泡区域和非气泡区域的中子平衡方程:
[0044]
[0045]
[0046] 式中:
[0047] φg——气泡区域的中子通量密度;
[0048] Σg,s——气泡区域的宏观中子散射截面;
[0049] φl——非气泡区域的中子通量密度;
[0050] Σl,s——非气泡区域的宏观中子散射截面;
[0051] keff——核反应堆的中子有效增殖因数;
[0052] 方程(9)和方程(10)包含的未知量为φg和φl,两个方程两个未知数,因此通过求解获得气泡区域的中子通量密度φg和非气泡区域的中子通量密度φl;
[0053] 步骤4:通过通量‑体积权重对网格中气泡区域和非气泡区域的宏观中子反应截面加权平均获得网格内的均匀化宏观中子反应截面,从而进行后续中子输运计算,获得各网格内的中子通量密度;
[0054] 网格内的均匀化宏观中子反应截面计算式为:
[0055]
[0056] 式中:
[0057] ——网格的均匀化宏观中子反应截面;
[0058] Vg——气泡区域的体积;
[0059] Vl——非气泡区域的体积;
[0060] 获得网格内的均匀化宏观中子反应截面后,便采用中子输运计算方法求解中子输运方程,最终获得所有网格内的中子通量密度。
[0061] 优选的,获得网格内的均匀化宏观中子反应截面后,利用离散纵标计算方法求解中子输运方程,获得所有网格内的中子通量密度。
[0062] 与现有技术相比,本发明有如下优点:
[0063] 本发明通过计算网格内气泡区域和非气泡区域间的中子碰撞概率,获得了网格内气泡区域和非气泡区域的中子通量密度,进而可以通过体积‑通量权重获得网格均匀化截面,获得了保证反应率守恒的高精度的网格均匀化截面,提高了堆芯中子输运计算的精度。

附图说明

[0064] 图1为一种含气泡介质的中子输运计算方法总体流程图。
[0065] 图2为某一网格内气泡区域和非气泡区域示意图。

具体实施方式

[0066] 下面结合附图和具体实施方式对本发明做进一步详细说明:
[0067] 如图1所示,本发明一种含气泡介质的中子输运计算方法,包括如下步骤:
[0068] 步骤1:对于核反应堆活性区的计算网格,分别利用公式(1)和公式(2)计算气泡区域和非气泡区域的宏观中子反应截面。例如,脉冲堆在大脉冲功率运行工况下,会产生局部高温,导致水中产生气泡,如图2所示,分别计算图2中气泡区域和非气泡区域的宏观中子反应截面。
[0069]
[0070]
[0071] 式中:
[0072] Σg——气泡区域的宏观中子反应截面;
[0073] I——气泡区域的核素总数;
[0074] i——气泡区域的第i种核素;
[0075] Ng,i——气泡区域第i种核素的核子密度;
[0076] σg,i——气泡区域第i种核素的微观中子反应截面;
[0077] Σl——非气泡区域的宏观中子反应截面;
[0078] J——非气泡区域的核素总数;
[0079] j——气泡区域的第j种核素;
[0080] Nl,j——非气泡区域第j种核素的核子密度;
[0081] σl,j——非气泡区域第j种核素的微观中子反应截面;
[0082] 步骤2:中子碰撞概率的计算与气泡尺寸密切相关,因此需要根据各网格内气泡尺寸,计算气泡区域和非气泡区域间的中子碰撞概率;
[0083] 根据各网格内气泡尺寸,计算出气泡的中子穿透概率和中子逃脱概率为:
[0084]
[0085]
[0086] 式中:
[0087] T——气泡的中子穿透概率,即中子进入气泡后能飞出气泡的概率;
[0088] E——气泡的中子逃脱概率,即气泡内的中子未经碰撞逃脱气泡的概率;
[0089] Σg,tr——气泡区域的宏观中子输运截面;
[0090] R——气泡的平均半径;
[0091] 计算气泡区域和非气泡区域间的中子碰撞概率:
[0092]
[0093]
[0094]
[0095]
[0096] 式中:
[0097] Pg→l——气泡区域到非气泡区域的中子碰撞概率;
[0098] Pl→l——非气泡区域到非气泡区域的中子碰撞概率;
[0099] Pg→g——气泡区域到气泡区域的中子碰撞概率;
[0100] Pl→g——非气泡区域到气泡区域的中子碰撞概率;
[0101] Σl,tr——非气泡区域的宏观中子输运截面;
[0102] λ——非气泡区域的平均弦长;
[0103] 步骤3:利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度;
[0104] 利用中子碰撞概率,建立以下气泡区域和非气泡区域的中子平衡方程:
[0105]
[0106]
[0107] 式中:
[0108] φg——气泡区域的中子通量密度;
[0109] Σg,s——气泡区域的宏观中子散射截面;
[0110] φl——非气泡区域的中子通量密度;
[0111] Σl,s——非气泡区域的宏观中子散射截面;
[0112] keff——核反应堆的中子有效增殖因数;
[0113] 方程(9)和方程(10)等号左边为该区域的中子总消失率,等式右边为该区域中子总产生率。以上两个方程包含的未知量为φg和φl,两个方程两个未知数,因此通过求解获得气泡区域的中子通量密度φg和非气泡区域的中子通量密度φl;
[0114] 步骤4:通过通量‑体积权重对网格中气泡区域和非气泡区域的宏观中子反应截面加权平均获得网格内的均匀化宏观中子反应截面,从而进行后续中子输运计算,获得各网格内的中子通量密度;
[0115] 网格内的均匀化宏观中子反应截面计算式为:
[0116]
[0117] 式中:
[0118] ——网格的均匀化宏观中子反应截面;
[0119] Vg——气泡区域的体积;
[0120] Vl——非气泡区域的体积;
[0121] 获得网格内的均匀化宏观中子反应截面后,网格内便不再区分气泡区域和非气泡区域,此时便可采用现有中子输运计算方法求解中子输运方程,本实施例采用离散纵标计算方法求解中子输运方程,最终获得所有网格内的中子通量密度。