一种高透明醋酸纤维素生物降解复合膜及其制备方法转让专利

申请号 : CN202210827381.5

文献号 : CN115139596B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李双利杨索成李伟宾张朋宫献展

申请人 : 道恩周氏(青岛)复合包装材料有限公司

摘要 :

本申请涉及高分子材料技术领域,具体公开了一种高透明醋酸纤维素生物降解复合膜及其制备方法。高透明醋酸纤维素生物降解复合膜包括上中下三层膜,其中上层膜为醋酸纤维素膜,中层膜由聚氨酯粘胶剂制成,下层膜由以下重量百分比的组分制成:PBAT 80‑85%、生物淀粉20‑25%。本申请的高透明醋酸纤维素生物降解复合膜具有透明度高、抑菌性好,对气体具有高阻隔性,力学性能高的优点。

权利要求 :

1.一种高透明醋酸纤维素生物降解复合膜,其特征在于,包括上中下三层膜,其中上层膜为醋酸纤维素膜,中层膜由聚氨酯粘胶剂制成,下层膜由以下重量百分比的组分制成:PBAT 80‑85%、生物淀粉20‑25%;

所述醋酸纤维素膜包括以下重量份的原料:3.5‑4份醋酸纤维素、0.2‑0.3份稀土掺杂纳米二氧化钛、1‑2.5份聚苯乙烯、0.2‑0.5份增塑剂;

所述稀土掺杂纳米二氧化钛采用以下方法制成:

将1‑2份纳米二氧化钛加入到0.5‑1份质量浓度为30‑50%的硝酸钐无水乙醇溶液中,超声20‑30min,过滤,清洗,干燥,制得改性纳米二氧化钛;

将2‑3份氧化石墨烯、1‑1.5份戊烷和1.7‑1.9份水混合,形成混合溶液,向其中加入1‑

1.5份丙酮和4‑6份银纳米线,混匀后,预热至105‑110℃,保温10‑20min,冷却至室温,过滤,干燥,制得改性银纳米线;

将所述改性银纳米线、1‑1.2份羟丙基甲基纤维素和0.1‑0.2份非离子氟碳表面活性剂、4‑5份去离子水混匀,制得混合液,将混合液与改性纳米二氧化钛混匀,在50‑55℃下干燥;

所述生物淀粉经过以下处理:

将乙酸锌、硝酸银加入到乙醇和去离子水的混合溶液中,加入柠檬酸钠、生物淀粉和去离子水的混合溶液,混合均匀后,在150‑160℃下水热反应10‑12h,离心、洗涤,干燥;

所述高透明醋酸纤维素生物降解复合膜由以下方法制成:

将醋酸纤维素溶解,配制成质量分数为8‑20wt%的醋酸纤维素溶液,加入稀土掺杂纳米二氧化钛和增塑剂,混合均匀后,脱泡制得铸膜液;

将聚苯乙烯溶解,制成质量分数为14‑26wt%的聚苯乙烯溶液;

采用流延法将铸膜液涂布于模板上,热固化形成中间体膜,将所得中间体膜与模板剥离,将聚苯乙烯溶液涂刷在中间体膜的一侧,烘干,制得上层膜;

将PABT和生物淀粉混合,挤出母料,将母料经吹膜制成下层膜;

将纤维素、离子液体和壳聚糖乙酸溶液混合,形成流延液,在下层膜上流延成膜,干燥,在下层膜上形成阻隔增强膜;

在阻隔增强膜上辊涂聚氨酯粘胶剂,将上层膜未喷涂聚苯乙烯溶液的一侧与聚氨酯粘胶剂压合,熟化,制得复合膜。

2.根据权利要求1所述的高透明醋酸纤维素生物降解复合膜,其特征在于,所述增塑剂为甘油和乙二醇中的一种或两种。

3.根据权利要求1所述的高透明醋酸纤维素生物降解复合膜,其特征在于,所述上层膜的厚度为0.1‑0.15mm,下层膜的厚度为0.03‑0.15mm。

4.根据权利要求1所述的高透明醋酸纤维素生物降解复合膜,其特征在于,所述阻隔增强膜中各原料重量份如下:0.2‑0.3份纤维素、3.8‑4.7份离子液体、5‑7份质量浓度为3‑5%壳聚糖乙酸溶液。

5.根据权利要求1所述的高透明醋酸纤维素生物降解复合膜,其特征在于,所述阻隔增强膜的厚度为0.01‑0.03mm。

6.根据权利要求1所述的高透明醋酸纤维素生物降解复合膜,其特征在于,所述聚氨酯2

粘胶剂的喷涂量为1.2‑1.4g/m。

说明书 :

一种高透明醋酸纤维素生物降解复合膜及其制备方法

技术领域

[0001] 本申请涉及高分子材料技术领域,更具体地说,它涉及一种高透明醋酸纤维素生物降解复合膜及其制备方法。

背景技术

[0002] 塑料因其质轻、密封性好、韧性佳、价廉等优势在包装领域广泛应用,目前塑料包装在各类包装材料总量中占比已经超过30%,我国食品包装材料中,塑料应用量量已超过包装材料总量的50%,巨各种包装材料之首。然而传统包装材料由于石化产品通过化学反正制得,在其产品生命周期的最好将作为不可降解垃圾处理。随着人们环保意识的增强以及对食品安全问题的强烈关注,人们迫切需求可降解的绿色包装塑料。
[0003] 申请号为CN202111217869.8的中国发明专利申请文件公开了一种碳酸钙填充PBAT/PLA生物降解塑料薄膜,体制备方法是:先用甲基丙烯酸缩水甘油酯和过氧化异丙苯对聚乳酸化学改性,制备得到增容剂A;再将聚对苯二甲酸‑己二酸‑丁二醇酯、聚乳酸、碳酸钙微粉、增容剂A和助剂熔融共混造粒,最后吹膜,即得碳酸钙填充PBAT/PLA生物降解塑料薄膜。
[0004] 上述中PBAT和PLA为生物降解材料,制成的复合膜容易降解,对环境没有污染,且力学性能强,但因碳酸钙本身具有非透明性,因而碳酸钙体系的PBAT/PLA复合膜一般也为非透明性或低透明性,无法在透明度要求高的医疗产品等上使用,大大限制了其应用范围。

发明内容

[0005] 为了使可降解复合膜具有高透明度,本申请提供一种高透明醋酸纤维素生物降解复合膜及其制备方法。
[0006] 第一方面,本申请提供一种高透明醋酸纤维素生物降解复合膜,采用如下的技术方案:
[0007] 一种高透明醋酸纤维素生物降解复合膜,包括上中下三层膜,其中上层膜为醋酸纤维素膜,中层膜由聚氨酯粘胶剂制成,下层膜由以下重量百分比的组分制成:PBAT 80‑85%、生物淀粉20‑25%。
[0008] 通过采用上述技术方案,使用醋酸纤维素膜作为上层膜,醋酸纤维素具有柔韧、透明、光泽度好、强度高、熔融流动性好、易成型加工等特点,使用醋酸纤维素膜作为上层膜,能改善复合膜的透明度;PBAT是生物降解材料,透明且质地透软,具有较好的韧性,且具有高耐热性,生物淀粉能为安全降解,分解为二氧化碳和水,不会对环境造成污染,将PBAT和生物淀粉混合,并将其作为下层膜与上层膜通过聚氨酯粘胶剂复合,制成透明度高且力学性能好,能生物降解的复合膜。
[0009] 可选的,所述醋酸纤维素膜包括以下重量份的原料:3.5‑4份醋酸纤维素、0.2‑0.3份
[0010] 稀土掺杂纳米二氧化钛、1‑2.5份聚苯乙烯、0.2‑0.5份增塑剂。
[0011] 通过采用上述技术方案,稀土掺杂纳米二氧化钛中含有稀土和纳米二氧化钛,稀土能增加二氧化钛的光学透明度,使上层膜的透明度增大,且硝酸钐具有抗菌性,纳米二氧化钛具有抗菌杀毒、吸收紫外线、自洁性和阻隔性,醋酸纤维素与二氧化钛之间具有强的作用力,稀土掺杂二氧化钛能作为填料,与醋酸纤维素表面的羟基作用,增强上层膜的力学强度,并且使醋酸纤维素膜具有抗菌性;聚苯乙烯作为可降解透明材料,具有超疏水亲油的特性,能改善醋酸纤维素本身羟基含量多而造成的亲水性强、脆性大、阻隔性能不佳,提高醋酸纤维素膜表面的疏水性,降低灰尘粘附,改善其表面自清洁效果,增大其力学强度,提高对水蒸气和氧气的阻隔性,用于果蔬保鲜时,能延长保鲜效果。
[0012] 可选的,所述稀土掺杂纳米二氧化钛采用以下方法制成:
[0013] 将1‑2份纳米二氧化钛加入到0.5‑1份质量浓度为30‑50%的硝酸钐无水乙醇溶液中,超声20‑30min,过滤,清洗,干燥,制得改性纳米二氧化钛;
[0014] 将2‑3份氧化石墨烯、1‑1.5份戊烷和1.7‑1.9份水混合,形成混合溶液,向其中加入1‑1.5份丙酮和4‑6份银纳米线,混匀后,预热至105‑110℃,保温10‑20min,冷却至室温,过滤,干燥,制得改性银纳米线;
[0015] 将所述改性银纳米线、1‑1.2份羟丙基甲基纤维素和0.1‑0.2份非离子氟碳表面活性剂、4‑5份去离子水混匀,制得混合液,将混合液与改性纳米二氧化钛混匀,在50‑55℃下干燥。
[0016] 通过采用上述技术方案,利用两相界面法,使氧化石墨烯在银纳米线上自组装形成氧化石墨烯薄膜,一方面改善银纳米线的抗氧化性,另一方面能防止银纳米线的团聚,提高整体的抗菌活性;然后使用羟丙基积极纤维素作为粘结剂,使用非离子氟碳表面活性剂改善混合液的表面活性,将包覆氧化石墨烯膜的银纳米线与改性纳米二氧化钛混合,从而进一步改善了稀土掺杂纳米二氧化钛的抗菌效果,另外氧化石墨烯还能使气体渗透路径延长,增大上层膜对水蒸气和氧气的阻隔性。
[0017] 可选的,所述增塑剂为甘油和乙二醇中的一种或两种。
[0018] 可选的,所述生物淀粉经过以下处理:
[0019] 将乙酸锌、硝酸银加入到乙醇和去离子水的混合溶液中,加入柠檬酸钠、生物淀粉和去离子水的混合溶液,混合均匀后,在150‑160℃下水热反应10‑12h,离心、洗涤,干燥。
[0020] 通过采用上述技术方案,利用乙酸锌和柠檬酸钠在水热法的作用下合成氧化锌中空微球,由于银纳米粒子具有较强的抗菌性,但其易于团聚,会降低因纳米粒子的抗菌性,因此将硝酸银在水热合成氧化锌中空微球时,负载在氧化锌中空微球上,银纳米粒子与氧化锌中空微球之间存在强的相互作用,不仅能协同发挥抗菌作用,氧化锌中空微球还能减少银纳米粒子的团聚,使银纳米粒子有更多的机会接触细菌的细胞壁,从而使细菌死亡;将负载银纳米粒子的氧化锌中空微球与生物淀粉混合后,生物淀粉将其包裹,能防止载银纳米粒子的氧化锌中空微球在制备下层膜是发生团聚,提高下层膜的力学强度,氧化锌中空微球氧的水汽阻隔性好,水分子通过膜的路程更加曲折,水蒸气通过的阻力增大。
[0021] 可选的,所述上层膜的厚度为0.1‑0.15mm,下层膜的厚度为0.03‑0.15mm。
[0022] 通过采用上述技术方案,上层膜和下层膜的厚度适宜,使复合膜的强度、韧性和阻隔性较高。
[0023] 第二方面,本申请提供一种高透明醋酸纤维素生物降解复合膜的制备方法,采用如下的技术方案:
[0024] 一种高透明醋酸纤维素生物降解复合膜的制备方法,包括以下步骤:
[0025] 将醋酸纤维素溶解,配制成质量分数为8‑20wt%的醋酸纤维素溶液,加入稀土掺杂纳米二氧化钛和增塑剂,混合均匀后,脱泡制得铸膜液;将聚苯乙烯溶解,制成质量分数为14‑26wt%的聚苯乙烯溶液;
[0026] 采用流延法将铸膜液涂布于模板上,热固化形成中间体膜,将所得中间体膜与模板剥离,将聚苯乙烯溶液涂刷在中间体膜的一侧,烘干,制得上层膜;
[0027] 将PABT和生物淀粉混合,挤出母料,将母料经吹膜制成下层膜;
[0028] 将纤维素、离子液体和壳聚糖乙酸溶液混合,形成流延液,在下层膜上流延成膜,干燥,在下层膜上形成阻隔增强膜;
[0029] 在阻隔增强膜上辊涂聚氨酯粘胶剂,将上层膜未喷涂聚苯乙烯溶液的一侧与聚氨酯粘胶剂压合,熟化,制得复合膜。
[0030] 通过采用上述技术方案,将醋酸纤维素与稀土掺杂纳米二氧化钛、增塑剂混合后流延成膜后,将聚苯乙烯溶液涂覆在中间体膜表面,能增大中间体膜的疏水性和自洁效果;另外,在下层膜上先涂布由纤维素、壳聚糖等制成的流延液,形成阻隔增强层,由于纤维素和壳聚糖之间具有一定的氢键相互作用,使得流延液具有较好的机械性能,且对氧气和水蒸气的阻隔性好,能进一步改善复合膜对水蒸气和氧气的阻隔性。
[0031] 可选的,所述阻隔增强膜中各原料重量份如下:0.2‑0.3份纤维素、3.8‑4.7份离子液体、5‑7份质量浓度为3‑5%壳聚糖乙酸溶液。
[0032] 通过采用上述技术方案,壳聚糖中含有氨基,能与纤维素上的羟基发生氢键等相互作用,因此阻隔增强膜的结构致密,且仍保持了较高的透明性,纤维素与壳聚糖之间没有明显的界面分离,相容性好,因此致密的阻隔增强膜对氧气的阻隔性较好。
[0033] 可选的,所述阻隔增强膜的厚度为0.01‑0.03mm。
[0034] 通过采用上述技术方案,阻隔增强膜厚度适宜,既能保证具有较高的阻隔性,又能不影响复合膜的透明度。
[0035] 优选的,当稀土掺杂纳米二氧化钛中含有氧化石墨烯和银纳米线时,上层膜采用以下方法制成:将醋酸纤维素溶解,配制成质量分数为8‑20wt%的醋酸纤维素溶液,加入稀土掺杂纳米二氧化钛和增塑剂,混合均匀后,加入葡萄糖和氨水,升温至90℃,搅拌10h,脱泡制得铸膜液,葡萄糖、氨水和稀土掺杂纳米二氧化钛的质量比为1:1.4:0.02‑0.03;
[0036] 将聚苯乙烯溶解,制成质量分数为14‑26wt%的聚苯乙烯溶液;
[0037] 采用流延法将铸膜液涂布于模板上,热固化形成中间体膜,将所得中间体膜与模板剥离,将聚苯乙烯溶液涂刷在中间体膜的一侧,烘干,制得上层膜。
[0038] 通过采用上述技术方案,先将稀土掺杂纳米二氧化钛与醋酸纤维素混合,稀土掺杂纳米二氧化钛中含有氧化石墨烯,氧化石墨烯能与醋酸纤维素混合均匀,然后使用葡萄糖和氨水,将氧化石墨烯的含氧官能团还原,得到石墨烯包覆银纳米线,石墨烯为单层,透明度好,石墨烯具有二维片状结构,对小分子具有良好的阻隔性,因此能改善复合膜的透明度和阻隔性。
[0039] 可选的,所述聚氨酯粘胶剂的辊涂量为1.2‑1.4g/m2。
[0040] 综上所述,本申请具有以下有益效果:
[0041] 1、由于本申请采用醋酸纤维素膜作为上层膜,利用聚氨酯粘胶剂与由PBAT和生物淀粉制成的下层膜粘合,醋酸纤维素的透明性好,且PBAT和生物淀粉制成的下层膜的韧性强,具有可降解性,制成的复合膜能用于医疗器械包装、果蔬保鲜等。
[0042] 2、本申请中优选采用醋酸纤维素、稀土掺杂纳米二氧化钛、聚苯乙烯等组分制作作为上层膜的醋酸纤维素膜,聚苯乙烯能增强醋酸纤维素膜的疏水性,提高其表面自清洁效果,稀土掺杂纳米二氧化钛能改善醋酸纤维素膜的抗菌性和对气体的阻隔性。
[0043] 3、本申请中优选在下层膜和和中间膜之间增加阻隔增强层,利用纤维素和壳聚糖等流延制成阻隔增强层,能进一步改善复合膜对水蒸气和氧气的阻隔性。

具体实施方式

[0044] 稀土掺杂纳米二氧化钛的制备例1‑5
[0045] 制备例1:将2kg纳米二氧化钛加入到1kg质量浓度为50%的硝酸钐无水乙醇溶液中,超声30min,过滤,用去离子水清洗3次,在80℃下干燥6h,制得改性纳米二氧化钛;
[0046] 将3kg氧化石墨烯、1.5kg戊烷和1.9kg水混合,形成混合溶液,向其中加入1.5kg丙酮和6kg银纳米线,混匀后,预热至110℃,保温10min,冷却至室温,过滤,干燥,制得改性银纳米线,银纳米线的长度为40μm,直径为30nm;
[0047] 将所述改性银纳米线、1.2kg羟丙基甲基纤维素和0.2kg型号为JL‑DB100的非离子氟碳表面活性剂、5kg去离子水混匀,制得混合液,将混合液与改性纳米二氧化钛混匀,在55℃下干燥3h。
[0048] 制备例2:将1kg纳米二氧化钛加入到0.5kg质量浓度为30%的硝酸钐无水乙醇溶液中,超声20min,过滤,用去离子水清洗3次,在80℃下干燥6h,制得改性纳米二氧化钛;将2kg氧化石墨烯、1kg戊烷和1.7kg水混合,形成混合溶液,向其中加入1kg丙酮和4kg银纳米线,混匀后,预热至105℃,保温20min,冷却至室温,过滤,干燥,制得改性银纳米线,银纳米线的长度为40μm,直径为30nm;
[0049] 将所述改性银纳米线、1kg羟丙基甲基纤维素和0.1kg型号为JL‑DB100的非离子氟碳表面活性剂、4kg去离子水混匀,制得混合液,将混合液与改性纳米二氧化钛混匀,在50℃下干燥4h。
[0050] 制备例3:将1‑2份纳米二氧化钛加入到0.5‑1份质量浓度为30‑50%的硝酸钐无水乙醇溶液中,超声20‑30min,过滤,清洗,干燥,制成稀土掺杂纳米二氧化钛。
[0051] 制备例4:将2kg纳米二氧化钛加入到1kg质量浓度为50%的硝酸钐无水乙醇溶液中,超声30min,过滤,用去离子水清洗3次,在80℃下干燥6h,制得改性纳米二氧化钛;
[0052] 将6kg银纳米线、1.2kg羟丙基甲基纤维素和0.2kg型号为JL‑DB100的非离子氟碳表面活性剂、5kg去离子水混匀,制得混合液,将混合液与改性纳米二氧化钛混匀,在55℃下干燥3h。
[0053] 制备例5:将3kg氧化石墨烯、1.5kg戊烷和1.9kg水混合,形成混合溶液,向其中加入1.5kg丙酮和6kg银纳米线,混匀后,预热至110℃,保温10min,冷却至室温,过滤,干燥,制得改性银纳米线,银纳米线的长度为40μm,直径为30nm;
[0054] 将所述改性银纳米线、1.2kg羟丙基甲基纤维素和0.2kg型号为JL‑DB100的非离子氟碳表面活性剂、5kg去离子水混匀,制得混合液,将混合液与纳米二氧化钛混匀,在55℃下干燥3h。
[0055] 实施例
[0056] 以下实施例中PBAT型号为Flex‑64D;
[0057] 聚氨酯粘胶剂型号为 6092。
[0058] 实施例1:一种高透明醋酸纤维素生物降解复合膜,包括由上至下的上层膜、中层膜和下层膜,上层膜为厚度为0.15mm的醋酸纤维素膜,醋酸纤维素膜包括以下重量份的组分:4kg醋酸纤维素、0.3kg稀土掺杂纳米二氧化钛、2.5kg型号为GPPS5350的聚苯乙烯和0.5kg增塑剂,醋酸纤维素为二醋酸纤维素,稀土掺杂纳米二氧化钛由制备例1制成,增塑剂为乙二醇;中层膜由聚氨酯粘胶剂制成,下层膜厚度为0.15mm,下层膜由以下质量百分比的组分制成:85%PBAT和25%生物淀粉。
[0059] 该高透明醋酸纤维素生物降解复合膜的制备方法包括以下步骤:
[0060] S1、将醋酸纤维素用质量比为3:2的丙酮和DMAC的混合物溶解,配制成质量分数为20wt%的醋酸纤维素溶液,加入稀土掺杂纳米二氧化钛和增塑剂,混合均匀后,加入葡萄糖和质量浓度为28%的氨水,混匀后升温至90℃,搅拌10h,脱泡制得铸膜液,葡萄糖、氨水和稀土掺杂纳米二氧化钛的质量比为1:1.4:0.03;
[0061] 将聚苯乙烯用N,N‑二甲基甲酰胺溶解,制成质量分数为26wt%的聚苯乙烯溶液;
[0062] S2、采用流延法将铸膜液涂布于模板上,在50℃下热固化10h,形成中间体膜,将所得中间体膜与模板剥离,将聚苯乙烯溶液涂刷在中间体膜的一侧,烘干,制得上层膜;
[0063] S3、将PABT和生物淀粉混合,在150℃下熔融挤出,获得母料,将母料经吹膜制成下层膜,吹膜时吹膜机各区温度为:一区115℃、二区125℃、三区125℃、四区130℃、五区140℃、六区150℃;
[0064] S4、将0.3kg纤维素、4.7kg离子液体和7kg质量浓度为5%的壳聚糖乙酸溶液混合,形成流延液,在下层膜上流延成膜,在30℃下干燥20h,在下层膜上形成厚度为0.03mm的阻隔增强膜,离子液体为1‑烯丙基‑3‑甲基咪唑氯盐,壳聚糖分子量为100kDa,脱乙酰度为95%;
[0065] S5、在阻隔增强膜上辊涂聚氨酯粘胶剂,将上层膜未喷涂聚苯乙烯溶液的一侧与2
聚氨酯粘胶剂压合,熟化,制得复合膜,聚氨酯粘胶剂的辊涂量为1.4g/m,上层膜和下层膜的放卷张力为7kg/m,压合压力为0.2MPa,熟化温度为40℃,熟化时间为12h。
[0066] 实施例2:一种高透明醋酸纤维素生物降解复合膜,包括由上至下的上层膜、中层膜和下层膜,上层膜为厚度为0.1mm的醋酸纤维素膜,醋酸纤维素膜包括以下重量份的组分:3.5kg醋酸纤维素、0.2kg稀土掺杂纳米二氧化钛、1kg型号为GPPS5350的聚苯乙烯和0.2kg增塑剂,醋酸纤维素为二醋酸纤维素,稀土掺杂纳米二氧化钛由制备例2制成,增塑剂为甘油;中层膜由聚氨酯粘胶剂制成,下层膜厚度为0.03mm,下层膜由以下质量百分比的组分制成:80%PBAT和20%生物淀粉。
[0067] 该高透明醋酸纤维素生物降解复合膜的制备方法包括以下步骤:
[0068] S1、将醋酸纤维素用质量比为3:2的丙酮和DMAC的混合物溶解,配制成质量分数为8wt%的醋酸纤维素溶液,加入稀土掺杂纳米二氧化钛和增塑剂,混合均匀后,加入葡萄糖和质量浓度为28%的氨水,混匀后升温至90℃,搅拌10h,脱泡制得铸膜液,葡萄糖、氨水和稀土掺杂纳米二氧化钛的质量比为1:1.4:0.02;
[0069] 将聚苯乙烯用N,N‑二甲基甲酰胺溶解,制成质量分数为14wt%的聚苯乙烯溶液;
[0070] S2、采用流延法将铸膜液涂布于模板上,在50℃下热固化10h,形成中间体膜,将所得中间体膜与模板剥离,将聚苯乙烯溶液涂刷在中间体膜的一侧,烘干,制得上层膜;
[0071] S3、将PABT和生物淀粉混合,在150℃下熔融挤出,获得母料,将母料经吹膜制成下层膜,吹膜时吹膜机各区温度为:一区115℃、二区125℃、三区125℃、四区130℃、五区140℃、六区150℃;
[0072] S4、将0.2kg纤维素、3.8kg离子液体和5kg质量浓度为3%的壳聚糖乙酸溶液混合,形成流延液,在下层膜上流延成膜,在30℃下干燥20h,在下层膜上形成厚度为0.01mm的阻隔增强膜,离子液体为1‑烯丙基‑3‑甲基咪唑氯盐,壳聚糖分子量为100kDa,脱乙酰度为95%;
[0073] S5、在阻隔增强膜上辊涂聚氨酯粘胶剂,将上层膜未喷涂聚苯乙烯溶液的一侧与2
聚氨酯粘胶剂压合,熟化,制得复合膜,聚氨酯粘胶剂的辊涂量为1.2g/m,上层膜和下层膜的放卷张力为6kg/m,压合压力为0.1MPa,熟化温度为35℃,熟化时间为12h。
[0074] 实施例3:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,稀土掺杂纳米二氧化钛由制备例3制成,步骤S1中铸膜液制备方法为:将醋酸纤维素用质量比为3:2的丙酮和DMAC的混合物溶解,配制成质量分数为20wt%的醋酸纤维素溶液,加入稀土掺杂纳米二氧化钛和增塑剂,混合均匀后,脱泡制得铸膜液。
[0075] 实施例4:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,稀土掺杂纳米二氧化钛由制备例4制成,步骤S1铸膜液制备方法为:将醋酸纤维素用质量比为3:2的丙酮和DMAC的混合物溶解,配制成质量分数为20wt%的醋酸纤维素溶液,加入稀土掺杂纳米二氧化钛和增塑剂,混合均匀后,脱泡制得铸膜液。
[0076] 实施例5:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,稀土掺杂纳米二氧化钛由制备例5制成。
[0077] 实施例6:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,步骤S1铸膜液制备方法为:将醋酸纤维素用质量比为3:2的丙酮和DMAC的混合物溶解,配制成质量分数为20wt%的醋酸纤维素溶液,加入稀土掺杂纳米二氧化钛和增塑剂,混合均匀后,脱泡制得铸膜液。
[0078] 实施例7:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,上层膜的制备方法为:将聚苯乙烯溶解,制成质量分数为14wt%的聚苯乙烯溶液,将醋酸纤维素用质量比为3:2的丙酮和DMAC的混合物溶解,配制成质量分数为8wt%的醋酸纤维素溶液,加入稀土掺杂纳米二氧化钛和增塑剂,混合均匀,加入葡萄糖和质量浓度为28%的氨水,混匀后升温至90℃,搅拌10h,与聚苯乙烯溶液混匀,作为在铸膜液。
[0079] 实施例8:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,上层膜中未在中间体膜的一侧涂覆聚苯乙烯溶液。
[0080] 实施例9:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,上层膜中未添加稀土掺杂纳米二氧化钛。
[0081] 实施例10:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,上层膜由醋酸纤维素使用质量比为3:2的丙酮和DMAC的混合物溶解获得的质量分数为8wt%的醋酸纤维素溶液作为铸膜液,经流延涂布、干燥制成。
[0082] 实施例11:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,未在下层膜的一侧涂布流延液,而是在下层膜的一侧直接涂覆聚氨酯粘胶剂,然后与上层膜未涂覆聚苯乙烯溶液的一侧压合,熟化。
[0083] 实施例12:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,上层膜中未在中间体膜的一侧涂覆聚苯乙烯溶液,且未在下层膜的一侧涂覆流延液,直接在下层膜的一侧涂覆聚氨酯粘胶剂,然后与上层膜未喷涂聚苯乙烯溶液的一侧压合,熟化。
[0084] 实施例13:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,生物淀粉经过以下预处理:
[0085] 将0.6kg乙酸锌、0.2kg硝酸银加入到5kg乙醇和8kg去离子水的混合溶液中,加入0.06kg柠檬酸钠、0.5kg生物淀粉和2kg去离子水的混合溶液,混合均匀后,在150℃下水热反应12h,离心、洗涤,干燥。
[0086] 实施例14:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,生物淀粉经过以下预处理:
[0087] 将0.6kg乙酸锌加入到5kg乙醇和8kg去离子水的混合溶液中,加入0.06kg柠檬酸钠、0.5kg生物淀粉和2kg去离子水的混合溶液,混合均匀后,在150℃下水热反应12h,离心、洗涤,干燥。
[0088] 对比例
[0089] 对比例1:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,下层膜中PBAT的质量百分比为90%,生物淀粉的质量百分比为10%。
[0090] 对比例2:一种高透明醋酸纤维素生物降解复合膜,与实施例1的区别在于,上层膜由质量百分比为80%的Flex‑262型PLA和质量百分比为20%的Flex‑64D型PBAT混合,挤出母料后吹膜制成。
[0091] 对比例3:一种碳酸钙填充PBAT/PLA生物降解塑料薄膜,按重量份数计,包括如下组分:
[0092] PBAT 60份,PLA 20份,碳酸钙40nm 30份,铝酸酯偶联剂1份,增容剂A 10份,PEG400 1份,芥酸酰胺0.6份,抗氧剂1010 0.6份,2‑(2‑羟基‑5‑甲基苯基)苯并三唑0.5份,ADR44680.1份,增容剂A用量配方:聚乳酸75份、甲基丙烯酸缩水甘油酯25份和过氧化异丙苯0.6份;
[0093] 制备方法为:
[0094] S1.聚乳酸化学改性:将聚乳酸(含水量低于0.1%),甲基丙烯酸缩水甘油酯和过氧化异丙苯干燥,按比例称料,常温条件下,使用高速搅拌机,以50rpm转速搅拌5min,混合均匀,再经双螺杆挤出机熔融挤出、拉条、风冷、造粒,干燥后,即得增容剂A,双螺杆挤出机温度110℃,螺杆转速200rpm,喂料频率2Hz;
[0095] S2.制备碳酸钙填充PBAT/PLA复合材料:将聚对苯二甲酸‑己二酸‑丁二醇酯、聚乳酸、碳酸钙微粉、其他助剂和步骤S1制备的增容剂A,按比例称料,常温条件下,使用高速搅拌机,以300rpm转速搅拌15min,再经双螺杆挤出机熔融挤出、拉条、风冷、造粒,干燥后,即得碳酸钙填充PBAT/PLA复合材料,双螺杆挤出机温度130℃,螺杆转速200rpm,喂料频率2Hz;
[0096] S3.吹膜:将步骤S2制备的复合材料投入单螺杆吹膜机中,吹制成膜,挤出机温度140℃,即得碳酸钙填充PBAT/PLA生物降解塑料薄膜。
[0097] 性能检测试验
[0098] 一、按照实施例和对比例中方法制备复合膜,并参照以下方法检测复合膜的性能,将检测结果记录于表1中。
[0099] 1、上层膜的抑菌率:按照GB/T31402‑2015《塑料塑料薄膜抗菌性能试验方法》进行检测;
[0100] 2、上层膜与水的接触角:使用上海梭伦C602型接触角测量仪进行检测;
[0101] 3、复合膜的氧气透过率:按照GB/T19789‑2005《包装材料塑料薄膜和薄片氧气透过性试验库伦计检测法》进行检测;
[0102] 4、复合膜的水蒸气透过率:按照GB/T21529‑2008《塑料薄膜和薄片水蒸气透光率的测定》进行检测;
[0103] 5、力学性能:按照GB/T1040‑2006《塑料拉伸性能的测定》进行检测;
[0104] 6、透明度:按照GB/T2410‑2008《透明塑料透光率和雾度的测定》进行检测。
[0105] 表1高透明醋酸纤维素生物降解复合膜的性能检测
[0106]
[0107]
[0108] 实施例1和实施例2中分别使用制备例1和制备例2制成的稀土掺杂纳米二氧化钛,由表1内数据可以看出,实施例1‑2制成的复合膜的透明度高,表面疏水自洁性好,抑菌性强,对水蒸气和氧气的阻隔效果好。
[0109] 实施例3中使用制备例3制成的稀土掺杂纳米二氧化钛,与制备例1相比,稀土掺杂二氧化钛中未添加银纳米线和氧化石墨烯,表1内显示,实施例3制成的复合膜的抑菌率下降,透明度改善不是很明显,对于水蒸气和氧气的阻隔性减弱。
[0110] 实施例4中使用制备例4制成的稀土掺杂纳米二氧化钛,与制备例1相比,未添加氧化石墨烯,与实施例1相比,实施例4制成的复合膜的抗菌性显著降低,阻隔性减弱,与实施例3相比,抗菌性有所增加,说明银纳米线能改善复合膜的抗菌性。
[0111] 实施例5中采用制备例5制成的稀土掺杂纳米二氧化钛,与实施例1相比,实施例5制成的复合膜的透明度有所降低,且上层膜的抗菌性减弱,力学强度下降。
[0112] 实施例6中使用掺入氧化石墨烯和银纳米线制成的稀土掺杂纳米二氧化钛,但并为使用葡萄糖和氨水对氧化石墨烯进行还原,表1内显示,复合膜的透明度有所下降。
[0113] 实施例7与实施例1的区别在于,采用聚苯乙烯溶液与醋酸纤维素溶液、稀土掺杂二氧化钛等直接混合后作为铸膜液,经流延涂布制成上层膜,由表1中数据可以看出,实施例7制备的复合膜的上层膜与水的接触角下降,疏水性降低,且对水蒸气和氧气的透过率增大,阻隔性减弱。
[0114] 实施例8与实施例1的区别在于,未在中间体膜上涂覆聚苯乙烯溶液,以中间体膜作为上层膜,表1内显示,实施例8制成的复合膜与水的接触角比实施例7更小,且水蒸气和氧气的透过率比实施例7大,说明在中间体膜上涂覆聚苯乙烯能改善复合膜与水的接触角,增大复合膜的阻隔性。
[0115] 实施例9与实施例1相比,上层膜中未添加稀土掺杂纳米二氧化钛,表1内显示,实施例9制备的复合膜对大肠杆菌和金黄色葡萄球菌的抑菌率比实施例3‑5更低,说明稀土掺杂纳米二氧化钛能改善复合膜的抑菌率,同时
[0116] 实施例10中使用醋酸纤维素溶液作为铸膜液,经流延涂布制成上层膜,表1内数据显示,实施例10制备的复合膜的阻隔性下降,抗菌性不佳。
[0117] 实施例11与实施例1相比,未在下层膜上设置阻隔加强层,表1内数据显示,实施例11制备的复合膜对于水蒸气和氧气的透过率有所降低,阻隔性减弱,透明度有一定的升高,但改善不明显。
[0118] 实施例12与实施例1相比,未在中间体膜上涂覆聚苯乙烯溶液,也未在下层膜上设置阻隔加强层,与实施例8和实施例11相比,实施例12制备的复合膜中上层膜与水的接触角减小,阻隔性显著降低。
[0119] 实施例13与实施例1相比,使用乙酸锌、硝酸银等对生物淀粉进行了预处理,表1内显示,实施例13制备的复合膜对于水蒸气和氧气的阻隔性进一步提高,且透明度不受影响。
[0120] 对比例1与实施例1相比,下层膜中PBAT的占比增多,生物淀粉用量减少,表1内显示,复合膜的阻隔性有所改善,力学强度有所增大,但透明度下降。
[0121] 对比例2与实施例1相比,使用PLA和PBAT共混吹塑制成上层膜,表1内显示,对比例2制成的复合膜阻隔性降低,表面疏水性减弱。
[0122] 对比例3为现有技术制备的复合膜,其透明度较差,且复合膜的抗菌性和疏水性不佳。
[0123] 二、按照实施例1、实施例13‑14中方法制备复合膜,并按照GB/T31402‑2015《塑料塑料薄膜抗菌性能试验方法》对实施例1、实施例13和实施例14中下层膜的抗菌性进行检测,检测结果如表2所示。
[0124] 表2实施例1和实施例13‑14制备的复合膜中下层膜的抗菌检测
[0125]下层膜抑菌率/% 实施例1 实施例13 实施例14
大肠杆菌 18.1 84.5 78.1
金黄色葡萄球菌 17.2 82.1 76.4
[0126] 由表2内数据可以看出,实施例1内下层膜使用PBAT和生物淀粉制成,其对大肠杆菌和金黄色葡萄球菌的抑菌率不佳,但实施例13中使用乙酸锌等成分对生物淀粉进行预处理,制成的复合膜内下层膜的抑菌率有明显改善;实施例14与实施例13相比,预处理生物淀粉时,未添加硝酸银,表2内显示,实施例14制备的复合膜内下层膜对大肠杆菌和金黄色葡萄球菌的抑菌率有所下降。
[0127] 本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。