一种基于阈值分割的污水检测方法及系统转让专利

申请号 : CN202211098473.0

文献号 : CN115170574B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 杨志文李梦迪

申请人 : 南通市赛孚环保科技有限公司

摘要 :

本发明涉及图像处理技术领域,具体涉及一种基于阈值分割的污水检测方法及系统,包括:获取搅拌前后待检测污水的差值图像;根据搅拌前后待检测污水的差值图像中的每个像素点的灰度值,确定差值图像中的各个噪声像素点,获取去噪处理后的差值图像对应的边缘图像及边缘图像中的各连接域,判断边缘图像是否存在悬浮颗粒的像素点,确定去噪处理后的差值图像对应的二值图像;根据去噪处理后的差值图像对应的二值图像以及搅拌前和搅拌后的待检测污水图像,确定搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量,判断待检测污水是否满足污水排放标准。本发明有效提高了污水检测结果的准确性,主要应用于污水检测相关领域。

权利要求 :

1.一种基于阈值分割的污水检测方法,其特征在于,包括以下步骤:

获取搅拌前和搅拌后的待检测污水图像,进而获取搅拌前后待检测污水的差值图像;

获取差值图像中的每个像素点对应的滑窗区域;根据每个像素点对应的滑窗区域内的各个像素点的灰度值,确定每个像素点对应的滑窗区域的灰度差值均值和灰度方差;

根据每个像素点对应的滑窗区域的灰度差值均值和灰度方差,确定每个像素点对应的噪声程度指标,所述噪声程度指标的计算公式为:其中, 为每个像素点对应的噪声程度指标, 为每个像素点对应的滑窗区域的灰度差值均值, 为每个像素点对应的滑窗区域的灰度方差,为每个像素点对应的滑窗区域的灰度差值均值组成的序列, 为每个像素点对应的滑窗区域的灰度方差组成的序列,max( )为求最大值函数,数值 和 为预设权重,255为像素点的最大灰度值;

根据每个像素点对应的噪声程度指标,确定差值图像中的各个噪声像素点,所述噪声像素点为噪声程度指标大于预设噪声程度阈值的像素点;

根据差值图像中的各个噪声像素点,确定去噪处理后的差值图像;获取去噪处理后的差值图像对应的边缘图像及边缘图像中的各连接域;

以各连接域的每个连接像素点为圆心,建立坐标系和多个不同半径的圆区域,坐标系的坐标轴将每个圆区域分割为多个子区域,根据每个子区域的位置和面积确定每个子区域对应的权重;根据所有子区域对应的权重以及所有子区域内连接像素点的个数,确定每个圆心对应的连接像素点的连接值,所述连接值为圆心的多个子区域对应的权重和连接像素点的个数的乘积的累加值,进而确定各连接域对应的连接值序列,所述连接值序列由各连接域的连接像素点的连接值组成;

获取悬浮颗粒对应的标准连接值序列,所述标准连接值序列为悬浮颗粒污水边缘图像对应的连接值序列,根据悬浮颗粒对应的标准连接值序列和各连接域对应的连接值序列,判断边缘图像是否存在悬浮颗粒的像素点;若边缘图像存在悬浮颗粒的像素点,则根据去噪处理后的差值图像,确定去噪处理后的差值图像对应的二值图像;

根据去噪处理后的差值图像对应的二值图像、搅拌前的待检测污水图像以及搅拌后的待检测污水图像,确定搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量,进而判断待检测污水是否满足污水排放标准。

2.根据权利要求1所述的一种基于阈值分割的污水检测方法,其特征在于,建立多个不同半径的圆区域的步骤包括:以每个圆心的最大半径为初始半径,根据每个圆心的圆心位置和初始半径,确定每个圆心对应的第一圆区域,所述每个圆心的最大半径为每个圆心与对应连接域内距离圆心最远的连接像素点之间的距离;

判断初始半径的一半是否小于预设半径阈值,若初始半径的一半不小于预设半径阈值,将初始半径的一半作为新的初始半径,根据每个圆心的圆心位置和新的初始半径,确定每个圆心对应的第二园区域,不断重复确定圆区域的步骤,直至初始半径的一半小于预设半径阈值,得到多个不同半径的圆区域。

3.根据权利要求1所述的一种基于阈值分割的污水检测方法,其特征在于,根据每个子区域的位置和面积确定每个子区域对应的权重的步骤包括:根据每个子区域的位置确定每个子区域对应的象限;

获取每个子区域对应的象限权重,将每个子区域对应的象限权重与面积相乘,得到每个子区域对应的权重。

4.根据权利要求1所述的一种基于阈值分割的污水检测方法,其特征在于,获取去噪处理后的差值图像对应的边缘图像中的各连接域的步骤包括:边缘图像中的第一连接域的确定步骤包括:以去噪处理后的差值图像对应的边缘图像中的任意一个边缘像素点为初始像素点,判断该初始像素点对应的3*3区域内是否存在其他边缘像素点,若该初始像素点对应的3*3区域内存在其他边缘像素点,则判定该初始像素点与其对应的其他边缘像素点属于第一连接域,并以其他边缘像素点为新的初始像素点,判断该新的初始像素点对应的3*3区域内是否存在其他边缘像素点,若存在,则判定该新的初始像素点与其对应的其他边缘像素点属于第一连接域,不断重复初始像素点对应的3*3区域判断步骤,直至初始像素点对应的3*3区域内不存在其他边缘像素点,得到边缘图像中的第一连接域;

判断去噪处理后的差值图像对应的边缘图像中是否存在没有连接域的边缘像素点,若存在,则以没有连接域的任意一个边缘像素点为初始像素点,重复边缘图像中的第一连接域的确定步骤,直至去噪处理后的差值图像对应的边缘图像中的各个边缘像素点均有其对应的连接域,得到边缘图像中的各连接域。

5.根据权利要求1所述的一种基于阈值分割的污水检测方法,其特征在于,确定去噪处理后的差值图像对应的二值图像的步骤包括:获取去噪处理后的差值图像中的每个像素点对应的滑窗区域的灰度差值均值,根据每个像素点对应的滑窗区域的灰度差值均值,确定每个像素点对应的滑窗区域的灰度差值均值中的最大值和最小值;

根据每个像素点对应的滑窗区域的灰度差值均值中的最大值和最小值,确定去噪处理后的差值图像对应的灰度指标值,进而确定去噪处理后的差值图像对应的二值图像。

6.根据权利要求5所述的一种基于阈值分割的污水检测方法,其特征在于,进而确定去噪处理后的差值图像对应的二值图像的步骤包括:根据去噪处理后的差值图像中的每个像素点的灰度值以及去噪处理后的差值图像对应的灰度指标值,使去噪处理后的差值图像中的每个像素点的灰度值与灰度指标值作对比;

若去噪处理后的差值图像中的任意一个像素点的灰度值小于灰度指标值,则将去噪处理后的差值图像中的该像素点标记为0,否则,将去噪处理后的差值图像中的该像素点标记为1,从而得到去噪处理后的差值图像对应的二值图像。

7.根据权利要求1所述的一种基于阈值分割的污水检测方法,其特征在于,进而获取搅拌前后待检测污水的差值图像的步骤包括:将搅拌前和搅拌后的待检测污水图像进行灰度化处理,获取搅拌前和搅拌后的待检测污水对应的灰度图像;

使搅拌前的待检测污水的灰度图像与搅拌后的待检测污水的灰度图像相减,得到搅拌前后待检测污水的差值图像。

8.根据权利要求1所述的一种基于阈值分割的污水检测方法,其特征在于,确定搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量的步骤包括:根据搅拌前和搅拌后的待检测污水图像以及去噪处理后的差值图像对应的二值图像,将搅拌前和搅拌后的待检测污水图像分别与二值图像相乘,从而确定搅拌前和搅拌后的待检测污水图像对应的相乘图像;

根据搅拌前和搅拌后的待检测污水图像对应的相乘图像中每个像素的灰度值,确定搅拌前和搅拌后的待检测污水图像的相乘图像对应的分割阈值;

根据搅拌前和搅拌后的待检测污水图像的相乘图像对应的分割阈值以及搅拌前和搅拌后的待检测污水图像的相乘图像,确定搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量。

9.根据权利要求8所述的一种基于阈值分割的污水检测方法,其特征在于,进而判断待检测污水是否满足污水排放标准的步骤包括:根据搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量,确定待检测污水的排放指标值;

将待检测污水的排放指标值与污水排放阈值作比较,若待检测污水的排放指标值小于污水排放阈值,则判定待检测污水满足污水排放标准。

10.一种基于阈值分割的污水检测系统,其特征在于,包括处理器和存储器,所述处理器用于处理存储在所述存储器中的指令,以实现如权利要求1‑9中任一项所述的一种基于阈值分割的污水检测方法。

说明书 :

一种基于阈值分割的污水检测方法及系统

技术领域

[0001] 本发明涉及图像处理技术领域,具体涉及一种基于阈值分割的污水检测方法及系统。

背景技术

[0002] 随着社会的发展,对于各种类型的生产工厂的需求量越来越多,这些工厂在建立后快速发展的同时,也产生了大量的有害产物,该有害产物不仅破坏我们的生活环境,而且对于人体健康也造成一定程度的影响。为了避免有害产物对生活环境的破坏,相关单位严格把控工厂中有害产物的排放,其中污水排放是有害产物排放的关键问题之一,污水排放也就是检测污水排放中悬浮颗粒的浓度是否满足污水排放标准。
[0003] 现有技术中检测排放污水中的悬浮颗粒的浓度是否满足污水排放标准的方法中大多数是利用光电检测技术或者超声波检测技术,该技术会受到污水温度、悬浮颗粒大小等原因的影响造成污水浓度检测结果不准确。随着图像处理技术的发展,现有提出了基于图像处理的污水检测方法,该方法基于污水图像的图像特征信息,对污水图像进行分析,确定污水图像中的污水污染程度,该方法忽略了污水图像中存在的多种干扰因素,导致污水图像的图像信息并不准确,进一步造成污水检测结果不准确。

发明内容

[0004] 为了解决上述现有污水检测结果不准确的技术问题,本发明的目的在于提供一种基于阈值分割的污水检测方法及系统。
[0005] 本发明提供了一种基于阈值分割的污水检测方法,包括以下步骤:
[0006] 获取搅拌前和搅拌后的待检测污水图像,进而获取搅拌前后待检测污水的差值图像;
[0007] 获取差值图像中的每个像素点对应的滑窗区域;根据每个像素点对应的滑窗区域内的各个像素点的灰度值,确定每个像素点对应的噪声程度指标,进而确定差值图像中的各个噪声像素点;
[0008] 根据差值图像中的各个噪声像素点,确定去噪处理后的差值图像;获取去噪处理后的差值图像对应的边缘图像及边缘图像中的各连接域;
[0009] 以各连接域的每个连接像素点为圆心,建立坐标系和多个不同半径的圆区域,坐标系的坐标轴将每个圆区域分割为多个子区域,根据每个子区域的位置和面积确定每个子区域对应的权重;根据所有子区域对应的权重以及所有子区域内连接像素点的个数,确定每个圆心对应的连接像素点的连接值,进而确定各连接域对应的连接值序列;
[0010] 获取悬浮颗粒对应的标准连接值序列,根据悬浮颗粒对应的标准连接值序列和各连接域对应的连接值序列,判断边缘图像是否存在悬浮颗粒的像素点;若边缘图像存在悬浮颗粒的像素点,则根据去噪处理后的差值图像,确定去噪处理后的差值图像对应的二值图像;
[0011] 根据去噪处理后的差值图像对应的二值图像、搅拌前的待检测污水图像以及搅拌后的待检测污水图像,确定搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量,进而判断待检测污水是否满足污水排放标准。
[0012] 进一步的,建立多个不同半径的圆区域的步骤包括:
[0013] 以每个圆心的最大半径为初始半径,根据每个圆心的圆心位置和初始半径,确定每个圆心对应的第一圆区域,所述每个圆心的最大半径为每个圆心与对应连接域内距离圆心最远的连接像素点之间的距离;
[0014] 判断初始半径的一半是否小于预设半径阈值,若初始半径的一半不小于预设半径阈值,将初始半径的一半作为新的初始半径,根据每个圆心的圆心位置和新的初始半径,确定每个圆心对应的第二园区域,不断重复确定圆区域的步骤,直至初始半径的一半小于预设半径阈值,得到多个不同半径的圆区域。
[0015] 进一步的,根据每个子区域的位置和面积确定每个子区域对应的权重的步骤包括:
[0016] 根据每个子区域的位置确定每个子区域对应的象限;
[0017] 获取每个子区域对应的象限权重,将每个子区域对应的象限权重与面积相乘,得到每个子区域对应的权重。
[0018] 进一步的,获取去噪处理后的差值图像对应的边缘图像中的各连接域的步骤包括:
[0019] 边缘图像中的第一连接域的确定步骤包括:以去噪处理后的差值图像对应的边缘图像中的任意一个边缘像素点为初始像素点,判断该初始像素点对应的3*3区域内是否存在其他边缘像素点,若该初始像素点对应的3*3区域内存在其他边缘像素点,则判定该初始像素点与其对应的其他边缘像素点属于第一连接域,并以其他边缘像素点为新的初始像素点,判断该新的初始像素点对应的3*3区域内是否存在其他边缘像素点,若存在,则判定该新的初始像素点与其对应的其他边缘像素点属于第一连接域,不断重复初始像素点对应的3*3区域判断步骤,直至初始像素点对应的3*3区域内不存在其他边缘像素点,得到边缘图像中的第一连接域;
[0020] 判断去噪处理后的差值图像对应的边缘图像中是否存在没有连接域的边缘像素点,若存在,则以没有连接域的任意一个边缘像素点为初始像素点,重复边缘图像中的第一连接域的确定步骤,直至去噪处理后的差值图像对应的边缘图像中的各个边缘像素点均有其对应的连接域,得到边缘图像中的各连接域。
[0021] 进一步的,确定去噪处理后的差值图像对应的二值图像的步骤包括:
[0022] 获取去噪处理后的差值图像中的每个像素点对应的滑窗区域的灰度差值均值,根据每个像素点对应的滑窗区域的灰度差值均值,确定每个像素点对应的滑窗区域的灰度差值均值中的最大值和最小值;
[0023] 根据每个像素点对应的滑窗区域的灰度差值均值中的最大值和最小值,确定去噪处理后的差值图像对应的灰度指标值,进而确定去噪处理后的差值图像对应的二值图像。
[0024] 进一步的,进而确定去噪处理后的差值图像对应的二值图像的步骤包括:
[0025] 根据去噪处理后的差值图像中的每个像素点的灰度值以及去噪处理后的差值图像对应的灰度指标值,使去噪处理后的差值图像中的每个像素点的灰度值与灰度指标值作对比;
[0026] 若去噪处理后的差值图像中的任意一个像素点的灰度值小于灰度指标值,则将去噪处理后的差值图像中的该像素点标记为0,否则,将去噪处理后的差值图像中的该像素点标记为1,从而得到去噪处理后的差值图像对应的二值图像。
[0027] 进一步的,进而获取搅拌前后待检测污水的差值图像的步骤包括:
[0028] 将搅拌前和搅拌后的待检测污水图像进行灰度化处理,获取搅拌前和搅拌后的待检测污水对应的灰度图像;
[0029] 使搅拌前的待检测污水的灰度图像与搅拌后的待检测污水的灰度图像相减,得到搅拌前后待检测污水的差值图像。
[0030] 进一步的,确定搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量的步骤包括:
[0031] 根据搅拌前和搅拌后的待检测污水图像以及去噪处理后的差值图像对应的二值图像,将搅拌前和搅拌后的待检测污水图像分别与二值图像相乘,从而确定搅拌前和搅拌后的待检测污水图像对应的相乘图像;
[0032] 根据搅拌前和搅拌后的待检测污水图像对应的相乘图像中每个像素的灰度值,确定搅拌前和搅拌后的待检测污水图像的相乘图像对应的分割阈值;
[0033] 根据搅拌前和搅拌后的待检测污水图像的相乘图像对应的分割阈值以及搅拌前和搅拌后的待检测污水图像的相乘图像,确定搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量。
[0034] 进一步的,进而判断待检测污水是否满足污水排放标准的步骤包括:
[0035] 根据搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量,确定待检测污水的排放指标值;
[0036] 将待检测污水的排放指标值与污水排放阈值作比较,若待检测污水的排放指标值小于污水排放阈值,则判定待检测污水满足污水排放标准。
[0037] 本发明还提供了一种基于阈值分割的污水检测系统,包括处理器和存储器,所述处理器用于处理存储在所述存储器中的指令,以实现一种基于阈值分割的污水检测方法。
[0038] 本发明具有如下有益效果:
[0039] 本发明基于图像数据处理分析技术,对搅拌前后待检测污水的差值图像进行图像处理分析,基于污水图像中噪声像素点的特征信息,确定差值图像中的各个噪声像素点通过对差值图像中的各个噪声像素点的分析,其可以提高差值图像的图像信息准确性,有助于后续得到搅拌前和搅拌后的待检测污水图像中更准确的悬浮颗粒的像素点数量;根据去噪处理后的差值图像对应的边缘图像及边缘图像中的各连接域,确定各连接域对应的连接值序列,根据各连接域对应的连接值序列判断边缘图像是否存在悬浮颗粒的像素点,基于污水图像中悬浮颗粒的图像特征信息,所确定的待检测污水是否存在悬浮颗粒的判断结果会更准确,其有效提高了污水检测的准确性,同时其有助于提高污水处理的效率;基于去噪处理后的差值图像对应的二值图像、搅拌前的待检测污水图像以及搅拌后的待检测污水图像,统计悬浮颗粒的像素点数量,进而判断待检测污水是否满足污水排放标准,其提高待检测污水检测结果的准确性,使最终得到的判断结果更具有可参考性。

附图说明

[0040] 为了更清楚地说明本发明实施例或现有技术中的技术方案和优点,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
[0041] 图1为本发明一种基于阈值分割的污水检测方法的流程图。

具体实施方式

[0042] 为了更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的技术方案的具体实施方式、结构、特征及其功效,详细说明如下。在下述说明中,不同的“一个实施例”或“另一个实施例”指的不一定是同一个实施例。此外,一个或多个实施例中的特定特征、结构或特点可由任何合适形式组合。
[0043] 除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。
[0044] 本实施例针对的应用场景为:在污水处理过程中,检测污水中的悬浮颗粒物浓度是否满足污水排放标准。针对该应用场景,本实施例提供了一种基于阈值分割的污水检测方法,如图1所示,该方法的步骤包括:
[0045] (1)获取搅拌前和搅拌后的待检测污水图像,进而获取搅拌前后待检测污水的差值图像。
[0046] 获取搅拌前和搅拌后的待检测污水图像,在本实施例中,使用图像采集设备拍摄搅拌前和搅拌后的待检测污水的图像,如使用相机在合适的角度采集搅拌前和搅拌后的待检测污水的图像。需要说明的是,待检测污水搅拌后,其悬浮物颗粒会发生移动,通过获取搅拌前和搅拌后的待检测污水图像,有助于后续得到更准确的待检测污水图像中悬浮颗粒的像素点数量。另外需要强调的是,这里的图像针对的是同一个区域的污水所得到的图像。
[0047] 根据搅拌前和搅拌后的待检测污水图像,确定搅拌前后待检测污水的差值图像,其步骤包括:
[0048] (1‑1)将搅拌前和搅拌后的待检测污水图像进行灰度化处理,获取搅拌前和搅拌后的待检测污水对应的灰度图像。
[0049] 在本实施例中,为了方便后续计算,利用加权平均法对搅拌前和搅拌后的待检测污水图像进行灰度化处理,从而得到搅拌前和搅拌后的待检测污水对应的灰度图像,加权平均法为现有技术,不在本发明保护范围内,此处不再进行详细阐述,当然,在其他实施例中可以使用其他方法对图像进行灰度化处理。
[0050] (1‑2)使搅拌前的待检测污水的灰度图像与搅拌后的待检测污水的灰度图像相减,确定搅拌前后待检测污水的差值图像。
[0051] 在本实施例中,将搅拌前的待检测污水的灰度图像记为 ,搅拌后的待检测污水的灰度图像记为 ,其灰度图像的大小均为n×m,使搅拌前的待检测污水的灰度图像 减去搅拌后的待检测污水的灰度图像 ,得到搅拌前后待检测污水的差值图像,记为 ,其计算公式如下:
[0052]
[0053] 其中, 为搅拌前后待检测污水的差值图像, 为搅拌前的待检测污水的灰度图像, 为搅拌后的待检测污水的灰度图像。
[0054] 需要说明的是,由于灰度图像的像素灰度规定在[0,255]内,在差值图像的计算公式中使用绝对值函数将差值图像的灰度值固定在正数范围内。
[0055] (2)获取差值图像中的每个像素点对应的滑窗区域;根据每个像素点对应的滑窗区域内的各个像素点的灰度值,确定每个像素点对应的噪声程度指标,进而确定差值图像中的各个噪声像素点。
[0056] 获取差值图像中的每个像素点对应的滑窗区域,在本实施例中,以差值图像中的每个像素点为滑动窗口的中心像素点,设定一个大小为3×3的滑动窗口,得到差值图像中的每个像素点对应的尺寸为3×3的滑窗区域。构建滑动窗口的过程为现有技术,不在本发明保护范围内,此处不再进行详细阐述。
[0057] 根据每个像素点对应的滑窗区域内的各个像素点的灰度值,确定每个像素点对应的噪声程度指标,进而确定差值图像中的各个噪声像素点,其步骤包括:
[0058] (2‑1)根据每个像素点对应的滑窗区域内的各个像素点的灰度值,确定每个像素点对应的噪声程度指标,其步骤包括:
[0059] (2‑1‑1)根据每个像素点对应的滑窗区域内的各个像素点的灰度值,确定每个像素点对应的滑窗区域的灰度差值均值和灰度方差。
[0060] 在本实施例中,为了便于后续确定差值图像中的每个像素点对应的噪声程度指标,基于差值图像中噪声像素点的相关图像特征,根据差值图像中的每个像素点对应的滑窗区域内所有像素点的灰度值,利用数据建模的相关知识,计算每个像素点对应的滑窗区域的灰度差值均值和灰度方差。
[0061] 首先,计算每个像素点对应的滑窗区域的灰度差值均值,灰度差值均值是指每个像素点对应的滑窗区域内的中心像素点与滑窗区域内的其他像素点之间差值绝对值的平均值,其他像素点是指滑窗区域内的包含中心像素点的各个像素点,每个像素点对应的滑窗区域均有其对应的灰度差值均值,其计算公式如下:
[0062]
[0063] 其中, 为每个像素点对应的滑窗区域的灰度差值均值, 为每个像素点对应的滑窗区域内的第 行、第 列所对应的中心像素点的灰度值, 为每个像素点对应的滑窗区域内的第i行、第j列所对应的像素点的灰度值,9为每个像素点对应的滑窗区域内像素点的个数。
[0064] 然后,计算每个像素点对应的滑窗区域的灰度均值,根据每个像素点对应的滑窗区域内的各个像素点的灰度值以及滑窗区域的灰度均值,确定每个像素点对应的滑窗区域的灰度方差,其计算公式为:
[0065]
[0066] 其中, 为每个像素点对应的滑窗区域的灰度方差, 为每个像素点对应的滑窗区域内的第i行、第j列所对应的像素点的灰度值, 为每个像素点对应的滑窗区域的灰度均值,9为每个像素点对应的滑窗区域内像素点的个数。
[0067] 需要说明的是,将每个像素点对应的滑窗区域的灰度差值均值和灰度方差组成两个序列,记为: 和 ,序列中的为差值图像中像素点的个数,两个序列中的灰度差值均值与灰度方差一一对照。
[0068] (2‑1‑2)根据每个像素点对应的滑窗区域的灰度差值均值和灰度方差,确定每个像素点对应的噪声程度指标。
[0069] 首先,需要说明的是,在差值图像中像素点可以分为污水像素点、噪声像素点和颗粒像素点,受污水图像性质的影响,污水像素点和颗粒像素点的灰度值偏小,而噪声像素点一般是由图像突变形成的,故噪声像素点的灰度值偏大。基于对噪声像素点的分析可知,需要基于每个像素点对应的滑窗区域的灰度差值均值和灰度方差,确定每个像素点对应的噪声程度指标。
[0070] 在本实施例中,为了便于计算每个像素点对应的噪声程度指标,提高后续所确定的差值图像中的各个噪声像素点的准确性,对每个像素点对应的滑窗区域的灰度差值均值和灰度方差进行归一化处理,基于归一化处理后的每个像素点对应的滑窗区域的灰度差值均值和灰度方差,计算每个像素点对应的噪声程度指标,其计算公式为:
[0071]
[0072] 其中, 为每个像素点对应的噪声程度指标, 为每个像素点对应的滑窗区域的灰度差值均值, 为每个像素点对应的滑窗区域的灰度方差, 为每个像素点对应的滑窗区域的灰度差值均值组成的序列, 为每个像素点对应的滑窗区域的灰度方差组成的序列,max( )为求最大值函数,数值 和 为预设权重,255为像素点的最大灰度值。
[0073] 需要说明的是,灰度方差和灰度差值均值与噪声程度指标为正相关,差值图像中的某个像素点对应的灰度方差和灰度差值均值越大,该像素点对应的噪声程度指标就会越大,说明该像素点越有可能是噪声像素点。
[0074] (2‑2)根据每个像素点对应的噪声程度指标,确定差值图像中的各个噪声像素点。
[0075] 在本实施例中,获取预设噪声程度阈值,预设噪声程度阈值的大小可根据具体实际场景由实施者自行设置,根据每个像素点对应的噪声程度指标和预设噪声程度阈值,判断差值图像中的每个像素点是否为噪声像素点,将预设噪声程度阈值记为P,若差值图像中的任意一个像素点对应的噪声程度指标大于预设噪声程度阈值P,则判定差值图像中的该像素点为噪声像素点,并将噪声像素点进行标记处理,否则,则判定差值图像中的该像素点不为噪声像素点,通过不断的判断,本实施例得到了差值图像中的各个噪声像素点。
[0076] (3)根据差值图像中的各个噪声像素点,确定去噪处理后的差值图像;获取去噪处理后的差值图像对应的边缘图像及边缘图像中的各连接域,其步骤包括:
[0077] (3‑1)根据差值图像中的各个噪声像素点,确定去噪处理后的差值图像。
[0078] 在本实施例中,为了提高污水检测的准确性,根据差值图像中的各个噪声像素点的位置,对差值图像进行去噪处理,也就是针对差值图像中的各个噪声像素点进行滤波处理,得到去噪处理后的差值图像。滤波处理的过程为现有技术,不在本发明保护范围内,此处不再进行详细阐述。
[0079] (3‑2)获取去噪处理后的差值图像对应的边缘图像及边缘图像中的各连接域。
[0080] 需要说明的是,现有方法大多为使用大津阈值直接对污水图像进行分割处理,没有考虑到待检测污水中不存在悬浮颗粒的情况,若待检测污水中不存在悬浮颗粒,整张污水图像中均为污水像素点,利用大津阈值分割法会造成分割不准确的问题,导致最终的污水检测结果不准确。为了克服污水检测不准确的缺陷,本实施例在得到去噪处理后的差值图像后,对去噪处理后的差值图像进行边缘检测,得到去噪处理后的差值图像对应的边缘图像,边缘检测的过程的为现有技术,不在本发明保护范围内,此处不再进行详细阐述。对去噪处理后的差值图像对应的边缘图像进行分析,判断边缘图像中是否存在悬浮颗粒的像素点,首先,获取去噪处理后的差值图像对应的边缘图像及边缘图像中的各连接域,其步骤包括:
[0081] 在本实施例中,边缘图像中的第一连接域的确定步骤包括:以去噪处理后的差值图像对应的边缘图像中的任意一个边缘像素点为初始像素点,判断该初始像素点对应的3*3区域内是否存在其他边缘像素点,若该初始像素点对应的3*3区域内存在其他边缘像素点,则判定该初始像素点与其对应的其他边缘像素点属于第一连接域,并以其他边缘像素点为新的初始像素点,判断该新的初始像素点对应的3*3区域内是否存在其他边缘像素点,若存在,则判定该新的初始像素点与其对应的其他边缘像素点属于第一连接域,不断重复初始像素点对应的3*3区域判断步骤,直至初始像素点对应的3*3区域内不存在其他边缘像素点,得到边缘图像中的第一连接域。
[0082] 判断去噪处理后的差值图像对应的边缘图像中是否存在没有连接域的边缘像素点,若存在,则以没有连接域的任意一个边缘像素点为初始像素点,重复边缘图像中的第一连接域的确定步骤,直至去噪处理后的差值图像对应的边缘图像中的各个边缘像素点均有其对应的连接域,得到边缘图像中的各连接域。
[0083] (4)以各连接域的每个连接像素点为圆心,建立坐标系和多个不同半径的圆区域,坐标系的坐标轴将每个圆区域分割为多个子区域,根据每个子区域的位置和面积确定每个子区域对应的权重;根据所有子区域对应的权重以及所有子区域内连接像素点的个数,确定每个圆心对应的连接值,进而确定各连接域对应的连接值序列,其步骤包括:
[0084] (4‑1)以各连接域的每个连接像素点为圆心,建立坐标系和多个不同半径的圆区域,坐标系的坐标轴将每个圆区域分割为多个子区域,根据每个子区域的位置和面积确定每个子区域对应的权重。
[0085] 在本实施例中,为了计算每个子区域对应的权重,基于边缘图像中的各连接域的每个连接像素点,以各连接域的每个连接像素点为圆心,建立坐标系和多个不同半径的圆区域,建立坐标系的过程为现有技术,不在本发明保护范围内,此处不再进行详细阐述。其中,建立多个不同半径的圆区域的步骤包括:
[0086] (4‑1‑1)以每个圆心的最大半径为初始半径,根据每个圆心的圆心位置和初始半径,确定每个圆心对应的第一圆区域,每个圆心的最大半径为每个圆心与对应连接域内距离圆心最远的连接像素点之间的距离。
[0087] (4‑1‑2)在得到每个圆心对应的第一圆区域后,判断第一圆区域对应的初始半径的一半是否小于预设半径阈值,若初始半径的一半不小于预设半径阈值,将初始半径的一半作为新的初始半径,根据每个圆心的圆心位置和新的初始半径,确定每个圆心对应的第二园区域,不断重复确定圆区域的步骤,直至初始半径的一半小于预设半径阈值,得到多个不同半径的圆区域,每个圆心均会对应多个不同半径的圆区域。
[0088] 在得到每个圆心对应的多个不同半径的圆区域后,利用坐标系的坐标轴将每个圆区域分割为多个子区域,圆区域会被分割为4个子区域。根据每个子区域的位置和面积,确定每个子区域对应的权重,其步骤包括:
[0089] 根据每个子区域的位置确定每个子区域对应的象限。获取每个子区域对应的象限权重,将每个子区域对应的象限权重与面积相乘,得到每个子区域对应的权重。
[0090] 由于各连接域内存在多个圆心,且每个圆心的位置不同,故本实施例将坐标系的不同象限设置不同的权重,将第一象限的权重设置为1,将第二象限的权重设置为2,将第三象限的权重设置为3,将第四个象限的权重色设置为4,每个子区域对应的权重受子区域面积和象限权重的影响,故基于每个子区域对应的象限权重和面积,计算每个子区域对应的权重,其计算公式为:
[0091]
[0092] 其中,z为每个子区域对应的权重,S为每个子区域对应的面积,c为每个子区域对应的象限权重。
[0093] 需要说明的是,子区域对应的象限权重和面积与子区域对应的权重为正相关关系,子区域对应的象限权重和面积越大,该子区域对应的权重就会越大。
[0094] (4‑2)根据所有子区域对应的权重以及所有子区域内连接像素点的个数,确定每个圆心对应的连接像素点的连接值,进而确定各连接域对应的连接值序列。
[0095] 在本实施例中,统计所有子区域内连接像素点的个数,基于所有子区域对应的权重以及所有子区域内连接像素点的个数,计算每个圆心的多个子区域对应的权重和连接像素点个数的乘积的累加值,将该乘积的累加值作为对应的圆心对应的连接像素点的连接值,将各连接域的连接像素点的连接值组成序列,得到各连接域对应的连接值序列。
[0096] (5)获取悬浮颗粒对应的标准连接值序列,根据悬浮颗粒对应的标准连接值序列和各连接域对应的连接值序列,判断边缘图像是否存在悬浮颗粒的像素点;若边缘图像存在悬浮颗粒的像素点,则根据去噪处理后的差值图像,确定去噪处理后的差值图像对应的二值图像,其步骤包括:
[0097] (5‑1)获取悬浮颗粒对应的标准连接值序列,根据悬浮颗粒对应的标准连接值序列和各连接域对应的连接值序列,判断边缘图像是否存在悬浮颗粒的像素点。
[0098] 在本实施例中,人为获取存在悬浮颗粒的污水边缘图像,参考各连接域对应的连接值序列的确定步骤,计算悬浮颗粒对应的标准连接值序列,将该标准连接值序列作为模板。利用DTW(Dynamic Time Warping,动态时间规整)相似程度计算方法,计算各连接域对应的连接值序列与悬浮颗粒对应的标准连接值序列之间的相似程度,若相似程度大于预设相似程度阈值,则判定边缘图像存在悬浮颗粒的像素点,否则,判定边缘图像不存在悬浮颗粒的像素点。本实施例将预设相似程度阈值设置为70%,预设相似程度阈值的大小可由实施者根据具体实际情况自行设定。当边缘图像不存在悬浮颗粒的像素点时,说明待检测污水是满足污水排放标准,可以直接排放待检测污水。DTW相似程度计算方法的实现过程为现有技术,不在本发明保护范围内,此处不再进行详细阐述。
[0099] (5‑2)若边缘图像存在悬浮颗粒的像素点,则根据去噪处理后的差值图像,确定去噪处理后的差值图像对应的二值图像,其步骤包括:
[0100] (5‑2‑1)获取去噪处理后的差值图像中的每个像素点对应的滑窗区域的灰度差值均值,根据每个像素点对应的滑窗区域的灰度差值均值,确定每个像素点对应的滑窗区域的灰度差值均值中的最大值和最小值。
[0101] 在本实施例中,若边缘图像存在悬浮颗粒的像素点,为了便于后续确定去噪处理后的差值图像对应的灰度指标值,根据去噪处理后的差值图像中的每个像素点对应的滑窗区域的灰度差值均值,构建灰度差值均值序列, , 中的o为去噪处理后的差值图像中像素点的个数,确定每个像素点对应的滑窗区域的灰度差值均值中的最大值和最小值,其计算公式如下:
[0102]
[0103]
[0104] 其中, 为每个像素点对应的滑窗区域的灰度差值均值中的最大值, 为每个像素点对应的滑窗区域的灰度差值均值中的最小值, 为去噪处理后的差值图像中的每个像素点对应的滑窗区域的灰度差值均值构成的序列,max( )为求最大值函数,min( )为求最小值函数。
[0105] (5‑2‑2)根据每个像素点对应的滑窗区域的灰度差值均值中的最大值和最小值,确定去噪处理后的差值图像对应的灰度指标值,进而确定去噪处理后的差值图像对应的二值图像。
[0106] 在本实施例中,计算去噪处理后的差值图像对应的灰度指标值的计算公式可以为:
[0107]
[0108] 其中,t为去噪处理后的差值图像对应的灰度指标值, 为每个像素点对应的滑窗区域的灰度差值均值中的最大值, 为每个像素点对应的滑窗区域的灰度差值均值中的最小值。
[0109] 根据去噪处理后的差值图像对应的灰度指标值,确定去噪处理后的差值图像对应的二值图像,其步骤包括:
[0110] 根据去噪处理后的差值图像中的每个像素点的灰度值以及去噪处理后的差值图像对应的灰度指标值,使去噪处理后的差值图像中的每个像素点的灰度值与灰度指标值作对比,具体为:若去噪处理后的差值图像中的任意一个像素点的灰度值小于灰度指标值,则将去噪处理后的差值图像中的该像素点标记为0,否则,将去噪处理后的差值图像中的该像素点标记为1,从而得到去噪处理后的差值图像对应的二值图像,也就是掩码图,记为 。
[0111] (6)根据去噪处理后的差值图像对应的二值图像、搅拌前的待检测污水图像以及搅拌后的待检测污水图像,确定搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量,进而判断待检测污水是否满足污水排放标准,其步骤包括:
[0112] (6‑1)根据去噪处理后的差值图像对应的二值图像、搅拌前的待检测污水图像以及搅拌后的待检测污水图像,确定搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量,其步骤包括:
[0113] (6‑1‑1)根据搅拌前和搅拌后的待检测污水图像以及去噪处理后的差值图像对应的二值图像,将搅拌前和搅拌后的待检测污水图像分别与二值图像相乘,从而确定搅拌前和搅拌后的待检测污水图像对应的相乘图像。
[0114] 本实施例将去噪处理后的差值图像对应的二值图像分别与搅拌前的待检测污水的灰度图像 和搅拌后的待检测污水的灰度图像 相乘,得到精简之后两个相乘图像,其计算公式如下:
[0115]
[0116]
[0117] 其中, 为搅拌前的待检测污水图像对应的相乘图像, 为搅拌后的待检测污水图像对应的相乘图像, 为搅拌前的待检测污水的灰度图像, 为搅拌后的待检测污水的灰度图像, 为去噪处理后的差值图像对应的二值图像。
[0118] (6‑1‑2)根据搅拌前和搅拌后的待检测污水图像对应的相乘图像中每个像素的灰度值,确定搅拌前和搅拌后的待检测污水图像的相乘图像对应的分割阈值。
[0119] 在本实施例中,根据搅拌前的待检测污水图像对应的相乘图像的像素灰度,利用大津阈值确定搅拌前的待检测污水图像的相乘图像的分割阈值,根据搅拌后的待检测污水图像对应的相乘图像的像素灰度,利用大津阈值确定搅拌后的待检测污水图像的相乘图像的分割阈值。利用大津阈值确定图像的分割阈值的过程为现有技术,不在本发明保护范围内,不再进行详细阐述。
[0120] (6‑1‑3)根据搅拌前和搅拌后的待检测污水图像的相乘图像对应的分割阈值以及搅拌前和搅拌后的待检测污水图像的相乘图像,确定搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量。
[0121] 在本实施例中,利用搅拌前的待检测污水图像的相乘图像的分割阈值将搅拌前的待检测污水图像的相乘图像进行分割,也就是将搅拌前的该污水图像中的悬浮颗粒区域和污水区域分割开,从而确定搅拌前的该污水图像中的悬浮颗粒区域中悬浮颗粒的像素点数量。参考搅拌前的待检测污水图像中悬浮颗粒的像素点数量的确定方式,得到搅拌后的待检测污水图像中悬浮颗粒的像素点数量。
[0122] (6‑2)根据搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量,判断待检测污水是否满足污水排放标准,其步骤包括:
[0123] (6‑2‑1)根据搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量,确定待检测污水的排放指标值。
[0124] 在本实施例中,将搅拌前的待检测污水图像中悬浮颗粒的像素点数量记为a,搅拌后的待检测污水图像中悬浮颗粒的像素点数量记为b,搅拌前和搅拌后的待检测污水图像中像素点的数量均为 ,根据a、b以及 ,确定搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量在整个待检测污水图像中的占比值,也就是搅拌前和搅拌后的待检测污水中悬浮颗粒的浓度,其计算公式如下:
[0125]
[0126]
[0127] 其中, 为搅拌前的待检测污水图像中悬浮颗粒的像素点数量在整个待检测污水图像中的占比值,a为搅拌前的待检测污水图像中悬浮颗粒的像素点数量, 为搅拌后的待检测污水图像中悬浮颗粒的像素点数量在整个待检测污水图像中的占比值,b为搅拌后的待检测污水图像中悬浮颗粒的像素点数量, 为待检测污水图像中像素点的数量。
[0128] 需要说明的是,在实验场景下,搅拌前和搅拌后的待检测污水图像中悬浮颗粒的像素点数量在整个待检测污水图像中的占比值是相等的,但是在实际污水检测过程中,由于污水密度或搅拌力度等因素的影响,导致 和 不相等,因此,本实施例在确定待检测污水的排放指标值时通过权重进行平衡,以增强待检测污水的排放指标值的准确度,, ,其计算公式如下:
[0129]
[0130] 为待检测污水的排放指标值, 为搅拌前的待检测污水图像中悬浮颗粒的像素点数量在整个待检测污水图像中的占比值, 为搅拌后的待检测污水图像中悬浮颗粒的像素点数量在整个待检测污水图像中的占比值,为搅拌前的待检测污水图像中悬浮颗粒的像素点数量在整个待检测污水图像中的占比值的权重,为搅拌后的待检测污水图像中悬浮颗粒的像素点数量在整个待检测污水图像中的占比值的权重。
[0131] (6‑2‑2)将待检测污水的排放指标值与污水排放阈值作比较,若待检测污水的排放指标值小于污水排放阈值,则判定待检测污水满足污水排放标准。
[0132] 在本实施例中,根据步骤(6‑2‑1)中的待检测污水的排放指标值以及预设的污水排放阈值,判断待检测污水是否满足污水排放标准,将待检测污水的排放指标值 与预设的污水排放阈值 作比较,比较内容包括:
[0133] 若待检测污水的排放指标值 小于污水排放阈值 ,则判定待检测污水满足污水排放标准,也就是待检测污水中的悬浮颗粒浓度满足污水排放标准,待检测污水可以进行排放。污水排放阈值 可由实施者根据具体实际情况自行设定,这里不做具体要求。
[0134] 若待检测污水的排放指标值 大于等于污水排放阈值 ,则判定待检测污水不满足污水排放标准,也就是待检测污水中的悬浮颗粒浓度不满足污水排放标准,待检测污水不可以进行排放。
[0135] 至此,本发明通过搅拌前和搅拌后的待检测污水的灰度图像作差,确定差值图像,通过差值图像的灰度值确定差值图像中的各个噪声像素点,得到去噪处理后的差值图像对应的二值图像,进而确定搅拌前和搅拌后的待检测污水中悬浮颗粒的像素点数量,从而得到搅拌前和搅拌后的待检测污水中悬浮颗粒浓度,判断待检测污水是否满足污水排放标准。本发明通过去噪处理后的差值图像对应的二值图像,得到了更加准确的搅拌前和搅拌后的待检测污水的悬浮颗粒浓度,其有效提高了污水检测结果的准确性。
[0136] 本实施例还提供了一种基于阈值分割的污水检测系统,包括处理器和存储器,所述处理器用于处理存储在所述存储器中的指令,以实现一种基于阈值分割的污水检测方法,该方法是以上所描述的内容,这里不再作详细阐述。
[0137] 以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,均应包含在本申请的保护范围之内。