一种防冻冷却液快速吸收材料及其制备方法转让专利

申请号 : CN202210774599.9

文献号 : CN115246953B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 孟祥福刘杰丁孝杰邢铭远耿诗宁

申请人 : 首都师范大学

摘要 :

本发明提供了一种防冻冷却液快速吸收材料及其制备方法,该方法是:首先将弹性多孔材料包覆一层亲水层,然后将其在改性剂、引发剂、交联剂和助剂溶液中浸渍,经过加热和干燥,即可得到能快速吸收防冻冷却液的吸收材料。所制备的吸收材料能在短时间内高倍率吸收防冻冷却液,同时将冷却液凝胶化,防止冷却液溢出渗流。该制备方法简单、高效,在防冻冷却液泄漏处理方面具有广泛的应用前景。

权利要求 :

1.一种防冻冷却液快速吸收材料,其特征在于:

首先将弹性多孔材料包覆一层亲水层,然后将其在改性剂、引发剂、交联剂和助剂溶液中浸渍,经过加热和干燥后得到;

其中,配制一定浓度的亲水修饰剂溶液,调节pH=8~8.5,将弹性多孔材料浸泡其中一段时间,取出干燥,得到包覆亲水层的弹性多孔材料;

所述的亲水修饰剂为多巴胺、单宁酸、邻苯二酚、没食子酸、儿茶酸、马来酸酐中的一种或几种的混合物;

所述的弹性多孔材料为聚氨酯海绵、三聚氰胺海绵、聚乙烯醇海绵、聚醚海绵、无纺布中的一种;

所述的改性剂为丙烯酸、丙烯酰胺、2‑丙烯酰胺‑2‑甲基丙磺酸、甲基丙烯酸缩水甘油酯、2‑(二甲氨基)甲基丙烯酸乙酯、2‑羟基乙基甲基丙烯酸酯、N‑(2‑羟乙基)丙烯酰胺、甲基丙烯酰氧乙基三甲基氯化铵中的一种或几种的混合物;

3 2

防冻冷却液快速吸收材料密度为0.01~3.5g/cm ,比表面积为100~1200m /g,对防冻冷却液的吸收倍率为10~120g/g。

2.权利要求1所述的防冻冷却液快速吸收材料的制备方法,其特征在于包括以下步骤:(1)配制一定浓度的亲水修饰剂溶液,调节pH=8~8.5,将弹性多孔材料浸泡其中一段时间,取出干燥,得到包覆亲水层的弹性多孔材料;

(2)将包覆亲水层的弹性多孔材料浸入改性剂、引发剂、交联剂和助剂的混合液中,取出并挤掉多余的溶液,然后置于烘箱中加热一段时间,干燥后得到快速吸收防冻冷却液的吸收材料。

3.根据权利要求2所述的制备方法,其特征在于,所述的引发剂为过硫酸铵、过硫酸钾中的一种。

4.根据权利要求2所述的制备方法,其特征在于,所述的交联剂为聚乙二醇二丙烯酸酯、N,N‑亚甲基双丙烯酰胺、二甲基丙烯酸甘油酯中的一种。

5.根据权利要求2所述的制备方法,其特征在于,所述的助剂为四甲基乙二胺、聚乙烯吡咯烷酮、聚乙烯醇、聚乙烯亚胺、羧甲基纤维素、壳聚糖、凹凸棒土、膨润土、硅藻土、海藻酸钠、可溶性淀粉中的一种或几种的混合物。

说明书 :

一种防冻冷却液快速吸收材料及其制备方法

技术领域

[0001] 本发明属于吸收材料制备及应用领域,涉及一种快速吸收材料的制备方法,具体涉及一种防冻冷却液快速吸收材料及其制备方法。

背景技术

[0002] 电池包作为新能源汽车的核心部件,安全问题至关重要。提高电池包的安全性,需要控制内部结构温度。目前,动力电池的冷却模式主要分为风冷、液冷和直冷三种方式。液冷一般使用独立的冷却液管路冷却动力电池,目前此种方式是冷却的主流。然而,车辆在道路行驶中,不可避免的要处于振动、冲击、高低温等比较严酷的工作环境,冷却液的泄漏将会成为一个非常严峻的安全问题。冷却液泄漏会造成电池短路引发火灾,给驾乘人员的生命财产带来巨大伤害。因此,在电池包内嵌入冷却液快速吸收材料,可以避免短路造成火灾,为驾乘人员逃生赢得宝贵时间。
[0003] 商品防冻冷却液主要由水、乙二醇、消泡剂、防锈剂、防垢剂和缓蚀剂组成,成分复杂,且含有多种离子。目前,市场上还没有专门用于快速吸收防冻冷却液的材料。传统的多孔海绵可以用作吸收材料,但是在外力挤压时吸收的液体又会释放出来,起不到防止电池短路的作用。因此,开发快速吸收防冻冷却液吸收材料,不但可以填补国内空白,还可提升新能源动力电池包的安全性。

发明内容

[0004] 本发明的目的在于提供一种防冻冷却液快速吸收材料及其制备方法。
[0005] 本发明解决上述技术问题所采用的技术方案包括如下:
[0006] 该防冻冷却液快速吸收材料是首先将弹性多孔材料包覆一层亲水层,然后将其在改性剂、引发剂、交联剂和助剂溶液中浸渍,经过加热和干燥后,即可得到能快速吸收防冻冷却液的吸收材料。
[0007] 该防冻冷却液快速吸收材料,其密度为0.01~3.5g/cm3,优选为1.5~2.5g/cm3,更3 2 2 2
优选为2.0g/cm ;比表面积为100~1200m/g,优选为500~800m/g,更优选为650m/g;对防冻冷却液的吸收倍率为10~120g/g,优选为70~120g/g,更优选为105g/g。
[0008] 一种快速吸收防冻冷却液的吸收材料,包括以下步骤:
[0009] (1)配制一定浓度的亲水修饰剂溶液,调节pH=8~8.5,将弹性多孔材料浸泡其中一段时间,取出干燥,得到包覆亲水层的弹性多孔材料;
[0010] (2)将包覆亲水层的弹性多孔材料浸入改性剂、引发剂、交联剂和助剂的混合液中,取出并挤掉多余的溶液,然后置于烘箱中加热一段时间,干燥后得到快速吸收防冻冷却液的吸收材料。
[0011] 作为本发明的一种优选方案,步骤(1)中所述的亲水修饰剂为多巴胺、单宁酸、邻苯二酚、没食子酸、儿茶酸、马来酸酐中的一种或几种的混合物。
[0012] 作为本发明的一种优选方案,步骤(1)中所述的弹性多孔材料为聚氨酯海绵、三聚氰胺海绵、聚乙烯醇海绵、聚醚海绵、无纺布中的一种。
[0013] 作为本发明的一种优选方案,步骤(2)中所述的改性剂为丙烯酸、丙烯酰胺、2‑丙烯酰胺‑2‑甲基丙磺酸、甲基丙烯酸缩水甘油酯、2‑(二甲氨基)甲基丙烯酸乙酯、2‑羟基乙基甲基丙烯酸酯、N‑(2‑羟乙基)丙烯酰胺、甲基丙烯酰氧乙基三甲基氯化铵中的一种或几种的混合物。
[0014] 作为本发明的一种优选方案,步骤(2)中所述的引发剂为过硫酸铵、过硫酸钾中的一种。
[0015] 作为本发明的一种优选方案,步骤(2)中所述的交联剂为聚乙二醇二丙烯酸酯、N,N‑亚甲基双丙烯酰胺、二甲基丙烯酸甘油酯中的一种。
[0016] 作为本发明的一种优选方案,步骤(2)中所述的助剂为四甲基乙二胺、聚乙烯吡咯烷酮、聚乙烯醇、聚乙烯亚胺、羧甲基纤维素、壳聚糖、凹凸棒土、膨润土、硅藻土、海藻酸钠、可溶性淀粉中的一种或几种的混合物。
[0017] 所制备的吸收材料能在短时间内高倍率吸收防冻冷却液,并可防止冷却液溢出渗流。该制备方法简单、高效,在防冻冷却液泄漏处理方面具有广泛的应用前景。

附图说明

[0018] 附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
[0019] 图1为实施例1得到的三聚氰胺海绵吸收材料对防冻冷却液吸收倍率/吸收时间曲线图;
[0020] 图2为实施例2得到的聚氨酯海绵吸收材料的扫描电镜图;
[0021] 图3为实施例3得到的聚乙烯醇海绵吸收材料改性前后对防冻冷却液吸收倍率对比图。具体实施例
[0022] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0023] 实施例1
[0024] (1)配制浓度为0.1%的多巴胺溶液,调节pH=8~8.5,将三聚氰胺海绵浸泡其中一段时间,取出干燥,得到包覆聚多巴胺亲水层的三聚氰胺海绵材料;
[0025] (2)将亲水修饰的三聚氰胺海绵浸入1g丙烯酸、0.01g过硫酸铵、0.015gN,N‑亚甲基双丙烯酰胺和0.1g壳聚糖的混合液中,取出并挤掉多余的溶液,然后置于烘箱中,70℃加3 2
热3h,干燥后得到快速吸收防冻冷却液的吸收材料,其密度为2.0g/cm ,比表面积为650m /g。
[0026] (3)将制得的三聚氰胺海绵吸收材料浸泡于防冻冷却液中30min,取出用100目网筛滤去多余冷却液,称量计算三聚氰胺海绵吸收材料对防冻冷却液的吸收倍率为105g/g。
[0027] 对实施例1得到吸收材料进行不同吸收时间的防冻冷却液吸收倍率测试,如图1所示。该吸收材料在5min后即可到达100g/g,而商品吸收树脂40min后吸收倍率仅为40g/g。
[0028] 实施例2
[0029] (1)配制浓度为10%的单宁酸溶液,调节pH=8~8.5,将聚氨酯海绵浸泡其中一段时间,取出干燥,得到包覆亲水层的聚氨酯海绵材料;
[0030] (2)将亲水修饰的聚氨酯海绵浸入2g丙烯酰胺、0.5g 2‑丙烯酰胺‑2‑甲基丙磺酸、0.01g过硫酸钾、0.015g聚乙二醇二丙烯酸酯和0.1g凹凸棒土的混合液中,取出并挤掉多余的溶液,然后置于烘箱中,80℃加热2h,干燥后得到快速吸收防冻冷却液的吸收材料,其密
3 2
度为2.8g/cm,比表面积为350m/g。
[0031] (3)将制得的聚氨酯海绵吸收材料浸泡于防冻冷却液中30min,取出用100目网筛滤去多余冷却液,称量计算聚氨酯海绵吸收材料对防冻冷却液的吸收倍率为80g/g。
[0032] 对实施例2得到吸收材料进行电子扫描显微镜测试,如图2所示,该吸收材料内部具有互联贯穿的网络多孔结构。
[0033] 实施例3
[0034] (1)配制浓度为10%的多巴胺溶液,调节pH=8~8.5,将聚乙烯醇海绵其中一段时间,取出干燥,得到包覆亲水层的聚乙烯醇海绵;
[0035] (2)将亲水修饰的聚乙烯醇海绵浸入2g丙烯酸、0.5g丙烯酰胺、0.1g甲基丙烯酰乙基磺基甜菜碱、0.05g过硫酸铵、0.01g二甲基丙烯酸甘油酯和0.1g壳聚糖的混合液中,取出并挤掉多余的溶液,然后置于烘箱中,750℃加热4h,干燥后得到快速吸收防冻冷却液的吸3 2
收材料,其密度为1.8g/cm,比表面积为750m/g。
[0036] (3)将制得的聚乙烯醇海绵吸收材料浸泡于防冻冷却液中30min,取出用100目网筛滤去多余冷却液,称量计算无纺布吸收材料对防冻冷却液的吸收倍率为50g/g。
[0037] 将实施例3得到聚乙烯醇海绵吸收材料进行改性前后对防冻冷却液吸收倍率对比测试,如图3所示,改性后的聚乙醇海绵对防冻冷却液的吸收倍率提高了10倍左右。
[0038] 实施例4
[0039] (1)配制浓度为50%的儿茶酸溶液,调节pH=8~8.5,将无纺布浸泡其中一段时间,取出干燥,得到包覆亲水层的无纺布材料;
[0040] (2)将亲水修饰的无纺布浸入3g丙烯酸、0.5g甲基丙烯酰氧乙基三甲基氯化铵、0.02g过硫酸铵、0.02g二甲基丙烯酸甘油酯和0.1g羧甲基纤维素的混合液中,取出并挤掉多余的溶液,然后置于烘箱中,60℃加热5h,干燥后得到快速吸收防冻冷却液的吸收材料,
3 2
其密度为3.2g/cm,比表面积为100m/g。
[0041] (3)将制得的无纺布吸收材料浸泡于防冻冷却液中30min,取出用100目网筛滤去多余冷却液,称量计算无纺布吸收材料对防冻冷却液的吸收倍率为30g/g。
[0042] 本发明未尽事宜为公知技术。
[0043] 上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。