一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法转让专利

申请号 : CN202211037683.9

文献号 : CN115261978B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 万能施辉王明渊田明束俊鹏陈若望

申请人 : 东南大学

摘要 :

本发明公开了一种通过化学气相沉积法制备具有铁电性的AB/ABC堆垛的多层氮化硼薄膜的方法,通过磁控溅射制备出(111)晶面的镍单晶薄膜,再沉积一层铁,获得(111)晶面的铁镍合金薄膜;将该薄膜作为催化衬底,置于石英舟中,放在管式炉中的恒温区域;以氨硼烷作为前驱体,置于钽舟中,再将钽舟放在所述石英舟上风口位置;对铁镍合金薄膜衬底进行退火处理;将钽舟放在石英管内,加热带裹在钽舟位置处的石英管管壁外,加热至100‑120℃,铁镍合金薄膜衬底上开始生长多层氮化硼;待管式炉降至室温后,取出具有铁电性的AB/ABC堆垛的多层氮化硼薄膜。通过此方法,最终能够实现大面积连续、单晶的、AB堆垛的、具有铁电性的氮化硼薄膜。

权利要求 :

1.一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法,其特征在于,该方法包括以下步骤:步骤1.通过磁控溅射制备出(111)晶面的镍单晶薄膜,使用的靶材为镍靶;

步骤2.通过热蒸发的方法在所述(111)晶面的镍单晶薄膜上沉积一层铁,获得(111)晶面的铁镍合金薄膜;沉积用的铁原料为纯度99%以上的铁丝或铁粒,所述热蒸发所用的蒸发舟为钨舟;

步骤3.以制得的(111)晶面的铁镍合金薄膜作为催化衬底,置于石英舟中,放在管式炉中的恒温区域,该恒温区长度5‑15cm;

步骤4.以氨硼烷作为前驱体,置于钽舟中,再将钽舟放在所述石英舟上风口位置;

步骤5.先将管式炉内气压抽至1‑5 Pa,再通氩气/氢气混合气将管式炉中气压恢复至一个大气压,此步骤5重复3遍以上;

步骤6.将所述管式炉升温至1000‑1050 ℃,维持5‑20分钟,对铁镍合金薄膜衬底进行退火处理;

步骤7.将钽舟放在石英管内,加热带裹在钽舟位置处的石英管管壁外,加热至100‑120 ℃,铁镍合金薄膜衬底上开始生长多层氮化硼;

步骤8.所述多层氮化硼生长10‑20分钟后,快速撤去加热带,管式炉快速降温;

步骤9.待管式炉降至室温后,取出具有铁电性的AB堆垛的多层氮化硼薄膜。

2.根据权利要求1所述的一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法,其特征在于,所述(111)晶面的镍单晶薄膜的制备,具体工艺参数为:溅射功率为50‑100 W,溅射速率为0.45‑1 Å/s,衬底温度为390‑410 ℃,(111)晶面的镍单晶薄膜厚度为200‑300 nm,溅射衬底为2英寸C面蓝宝石片。

3.根据权利要求1所述的一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法,其特征在于,所述(111)晶面的铁镍合金薄膜中,铁所占的原子比为30‑50%;铁含量通过控制铁薄膜和镍薄膜的厚度比例来实现。

4.根据权利要求1所述的一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法,其特征在于,所述管式炉的管径为50mm、气流量为500sccm时,氨硼烷重量为1‑2mg,若管径增大,要增大氨硼烷的量;若管径减小,要减少氨硼烷的量,若气流量增大,要增大氨硼烷的量,若气流量减小,要减少氨硼烷的量。

5.根据权利要求1所述的一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法,其特征在于,所述钽舟放在所述石英舟上风口,与石英舟的距离为10‑100cm位置。

6.根据权利要求1所述的一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法,其特征在于,所述氩气/氢气混合气中,氩气/氢气的流量比=1:1‑9:1,气流量500‑1000 sccm。

7.根据权利要求1所述的一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法,其特征在于,所述步骤6将管式炉升温至1000‑1050 ℃,其升温的速度为10‑15 ℃/min。

8.根据权利要求1所述的一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法,其特征在于,所述步骤8中,管式炉快速降温的速度为50‑100 ℃/min。

9.根据权利要求1所述的一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法,其特征在于,所述多层氮化硼,总厚度为10‑100nm。

10.根据权利要求1所述的一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法,其特征在于,所述氮化硼薄膜以AB堆垛为主,或有少量ABC堆垛,均属于平行堆垛方式。

说明书 :

一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法

技术领域

[0001] 本发明属于二维铁磁性材料制备技术领域,具体涉及一种通过化学气相沉积法制备具有铁电性的AB/ABC堆垛的氮化硼(或者称为bernal‑boron nitride/rhombohedral‑boron nitride, b‑BN/r‑BN)的生长方法。

背景技术

[0002] 二维材料的滑移铁电性近年来收到了广泛关注,因为将铁电体减薄到二维层面,也就是原子尺度,是实现非易失性存储器的重要步骤之一,因为这是提高存储密度和降低功耗的关键。同时,能够在外加电场下实现极化方向的翻转,这一现象在电子器件方面有着很可观的应用,包括非易失性存储器、机电执行器、热释电传感器等。目前,双层氮化硼的铁电性已经被实验证实,机理为平行堆垛的氮化硼在施加正向和方向电场时,会发生面内的滑移,从而实现AB和BA两种堆垛的相互转换,因为AB和BA 两种堆垛的极化方向是相反的,所以可以实现极化翻转,表现出铁电性。
[0003] 但是多层平行堆垛的氮化硼还没有被报道制备出来,因为目前已经报道的多层氮化硼多为多晶,即其堆垛方式相对杂乱而不一致,而2022年韩国Kyung Yeol Ma等人报道的大面积单晶三层氮化硼薄膜为AA’堆垛,并不满足二维铁电性所要求的平行堆垛的条件。所以如何制备出大面积单晶的具有平行堆垛进而可能具备铁电性的多层氮化硼薄膜是目前亟待解决的问题。
[0004] 硼、氮元素在铁中的溶解度高,有利于生长多层氮化硼,但是纯铁在912 ℃存在BCC‑FCC的相变,生长过程中衬底的相变无疑会引入应力,进而降低氮化硼薄膜的质量。参照铁镍相图,选择合适的铁镍比例,既能保证衬底稳定的FCC相,又能促进多层氮化硼的生长。

发明内容

[0005] 技术问题:针对上述问题,本发明提出一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法,通过化学气相沉积法在铁镍合金薄膜上制备出大面积、取向高度一致的、AB堆垛的、具有铁电性的氮化硼薄膜。并且认为通过此方法,最终能够实现大面积、单晶的、AB堆垛的、具有铁电性的氮化硼薄膜。该氮化硼薄膜能够在外加电场作用下实现极化翻转,这一现象在电子器件中具有很可观的应用前景。不但可以满足一些特殊的二维器件中的介电材料的要求,同时作为一种减薄到纳米尺度的铁电体,能够用于非易失性存储器、机电执行器、热释电传感器等铁磁性材料相关的应用方向。
[0006] 技术方案:本发明的一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法包括以下步骤:
[0007] 步骤1.通过磁控溅射制备出(111)晶面的镍单晶薄膜,使用的靶材为镍靶;
[0008] 步骤2.通过热蒸发的方法在所述(111)晶面的镍单晶薄膜上沉积一层铁,获得(111)晶面的铁镍合金薄膜;沉积用的铁原料为纯度99%以上的铁丝或铁粒,所述热蒸发所用的蒸发舟为钨舟;
[0009] 步骤3.以制得的(111)晶面的铁镍合金薄膜作为催化衬底,置于石英舟中,放在管式炉中的恒温区域,该恒温区长度5‑15cm;
[0010] 步骤4.以氨硼烷作为前驱体,置于钽舟中,再将钽舟放在所述石英舟上风口位置;
[0011] 步骤5.先将管式炉内气压抽至1‑5 Pa,再通氩气/氢气混合气将管式炉中气压恢复至一个大气压,此步骤5重复3遍以上;
[0012] 步骤6.将所述管式炉升温至1000‑1050 ℃,维持5‑20分钟,对铁镍合金薄膜衬底进行退火处理;
[0013] 步骤7.将钽舟放在石英管内,加热带裹在钽舟位置处的石英管管壁外,加热至100‑120 ℃,铁镍合金薄膜衬底上开始生长多层氮化硼;
[0014] 步骤8.所述多层氮化硼生长10‑20分钟后,快速撤去加热带,管式炉快速降温;
[0015] 步骤9.待管式炉降至室温后,取出具有铁电性的AB堆垛的多层氮化硼薄膜。
[0016] 其中:
[0017] 所述(111)晶面的镍单晶薄膜的制备,具体工艺参数为:溅射功率为50‑100 W,溅射速率为0.45‑1 Å/s,衬底温度为390‑410 ℃,(111)晶面的镍单晶薄膜厚度为200‑300 nm,溅射衬底为2英寸C面蓝宝石片。
[0018] 所述(111)晶面的铁镍合金薄膜中,铁所占的原子比为30‑50%。
[0019] 所述管式炉的管径为50mm、气流量为500sccm时,氨硼烷重量为1‑2mg,若管径增大,要增大氨硼烷的量;若管径减小,要减少氨硼烷的量,若气流量增大,要增大氨硼烷的量,若气流量减小,要减少氨硼烷的量。
[0020] 所述钽舟放在所述石英舟上风口,与石英舟的距离为10‑100cm位置。
[0021] 所述氩气/氢气混合气中,氩气/氢气的流量比=1:1‑9:1,气流量500‑1000 sccm。
[0022] 所述步骤6将管式炉升温至1000‑1050 ℃,其升温的速度为10‑15 ℃/min。
[0023] 所述步骤8中,管式炉快速降温的速度为50‑100 ℃/min。
[0024] 所述多层氮化硼,总厚度为10‑100nm。
[0025] 所述氮化硼薄膜以AB堆垛为主,或有少量ABC堆垛,均属于平行堆垛方式。
[0026] 有益效果:本发明提出的一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法相对现有技术具有以下优点:
[0027] 1.铁镍衬底上制得的氮化硼为多层氮化硼薄膜,且氮化硼取向高度一致,同向率最高达到87.79%,并且认为通过此方法可以进一步制得完全取向一致的多层单晶氮化硼薄膜。
[0028] 2.生长温度1050℃,与已报道的在铜衬底上制备氮化硼所需的温度一致,相比于其他在铁/镍衬底上生长氮化硼的报道,具有更低的生长温度,因此具有更低的应用成本。与半导体相关制程具有更好的工艺兼容性。
[0029] 3.使用该方法制得的多层氮化硼薄膜以AB堆垛为主,且具有铁电性,能够在外加电场下实现极化翻转。在铁电器件等领域具有重要应用前景。
[0030] 4.较大面积均匀制备多层氮化硼薄膜。当铁含量高于30%时,表面的氮化硼能够成功连接成膜。
[0031] 5.该氮化硼薄膜能够在外加电场作用下实现极化翻转,这一现象在电子器件中具有很可观的应用前景。不但可以满足一些特殊的二维器件中的介电材料的要求,同时作为一种减薄到纳米尺度的铁电体,能够用于非易失性存储器、机电执行器、热释电传感器等铁磁性材料相关的应用方向。

附图说明

[0032] 图1 是制得的多层氮化硼薄膜的X射线衍射图,其中a是总的衍射结果,b是(111)晶面的铁镍合金薄膜相关峰及其随铁含量(铁的原子比)的位移,c是(111)晶面的铁镍合金薄膜峰的峰位及其对应的晶面间距与铁含量(铁的原子比)的折线图;
[0033] 图2 是制得的多层氮化硼薄膜的形貌与基本表征,其中,(a)、(b)、(c)、(d)、(e)、(f)分别是铁含量(铁的原子比)为0%、17%、23%、31%、41%、51%的扫描电子显微镜图,(g)是铁含量(铁的原子比)为23%、31%、41%、51%的氮化硼尺寸统计结果,(h)是X射线衍射中氮化硼的峰,(i)是拉曼光谱中氮化硼E2g的峰,(j)是是铁含量(铁的原子比)为23%、31%、41%、51%的氮化硼尺寸和同向率的统计结果汇总;
[0034] 图3 是制得的多层氮化硼薄膜的透射电子显微镜形貌图及选区电子衍射,其中,(a)是2.2 mm⨯2 mm范围内选择了54个点进行选取电子衍射;其它图1、2、3、4、5、6、7、8、9、10是其中10个点的形貌图及衍射结果;
[0035] 图4是制得的多层氮化硼薄膜的典型选区电子衍射图及堆垛分析,其中,(a)是典型的选区电子衍射结果,(b)是(a)中框出的四个点的强度,(c)、(d)、(e)是对所有选区电子衍射的一阶和二阶衍射峰的强度比进行了统计分析(选择了三种不同的方式计算一阶与二阶衍射峰的强度比:(∑1st)/(∑2nd),(1st‑1)/(2nd‑1)和(1st‑2)/(2nd‑2))。
[0036] 图5 是制得的多层氮化硼薄膜的压电力显微镜测试结果图。

具体实施方式

[0037] 本发明提出的一种制备具有铁电性的AB堆垛的多层氮化硼薄膜的方法实例如下:
[0038] (1)通过磁控溅射制备出(111)晶面的镍单晶薄膜。具体工艺参数:溅射功率:50‑100 W,溅射速率:0.45‑1 Å/s,衬底温度:390‑410 ℃,镍薄膜厚度:200‑300 nm,溅射衬底:
2英寸C面蓝宝石片。
[0039] (2)通过热蒸发的方法在镍薄膜上沉积一层铁,制得的(111)晶面的铁镍合金薄膜,铁的蒸发量决定了铁镍合金薄膜中铁的含量,合适的铁含量为30‑50%(铁镍合金中铁所占的原子比)。
[0040] (3)以制得的(111)晶面的铁镍合金薄膜作为催化衬底,置于石英舟中,放在管式炉(管径:25‑500 mm)的恒温区域。
[0041] (4)以氨硼烷(1‑2mg)作为前驱体,置于钽舟中,放在石英舟上风口距离约10‑100 cm位置。
[0042] (5)先将管式炉内气压抽至1‑5 Pa,再通氩气/氢气混合气(氩气/氢气流量比=1:1‑9:1,气流量500‑1000 sccm)将管中气压恢复至一个大气压。将抽气和充气过程重复3‑5遍。
[0043] (6)管式炉升温至1000‑1050 ℃(10‑15 ℃/min),维持5‑20分钟,对铁镍衬底进行退火处理。
[0044] (7)将钽舟放在石英管内,加热带裹在钽舟位置处的石英管管壁外,加热至100‑120 ℃,开始在铁镍衬底上生长多层氮化硼。
[0045] (8)生长10‑20分钟后,快速撤去加热带,管式炉快速降温(50‑100 ℃/min)。
[0046] (9)待管式炉降至室温后,取出具有铁电性的AB堆垛的多层氮化硼薄膜样品。
[0047] 其中:
[0048] (1)使用Smartlab 3型X射线衍射仪,其配备Cu靶,功率为3 KW进行X射线衍射谱测试,对不同铁含量(铁镍合金中铁所占的原子比)(23%、31%、41%、51%)的样品测得(111)晶面的铁镍合金薄膜及氮化硼 (000l)的相对应的峰(图1)。
[0049] (2)使用Hitachi S‑4500e 型扫描电子显微镜对多层氮化硼薄膜的表面形貌进行观察(图2(a)‑(f)),并且对各铁含量下三角形(氮化硼)的尺寸和取向进行了统计(图2(g)(j)),氮化硼同向率在80%左右波动,最高达到了83.5%。
[0050] (3)使用激光波长为532 nm的HR800型拉曼光谱仪进行拉曼散射光谱测试(图2‑1 ‑1
(i)),多层氮化硼薄膜的拉曼散射光谱峰位在1366 cm 附近,半高宽为20 cm 左右,表现出较高的晶体质量(图2)。
[0051] (4)使用FEI公司型号为TECNAI 20的透射电子显微镜对多层氮化硼薄膜进行了表面形貌的观测以及选区电子衍射。对2.2 mm⨯2 mm的较大范围内随机选择了54个点进行电子衍射测试,得到了取向完全一致的衍射结果(图3),通过比较一阶与二阶衍射峰的强度比st nd(通过三种求强度比的方法:(∑1 )/(∑2 ),(1st‑1)/(2nd‑1)和(1st‑2)/(2nd‑2)),可以判断其以AB堆垛为主(图4)。
[0052] (5)使用Asylum Research压电力显微镜对多层氮化硼薄膜的铁电性进行测试,测得了典型的电滞回线,能够在外加电场下实现极化翻转(图5)。