一种超疏水织物及其制备方法转让专利

申请号 : CN202210831981.9

文献号 : CN115262211B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 徐政和刘一张文彬

申请人 : 南方科技大学

摘要 :

本发明公开的一种超疏水织物及其制备方法,所述超疏水织物的制备方法通过采用两次PLASMA工艺对织物表面进行处理,第一次等离子体处理涉及物理改性,细微的改变表面结构,增加高分子材料与织物之间的结合力;第二次等离子体处理为化学改性,引入亲水基团加快反应效率,增加织物疏水性的改性效率;结合无机纳米颗粒产生应力集中效应,引发粒子周围的树脂基体屈服,产生韧性,并且无机纳米颗粒在改性后极大程度的提高织物的粗糙度和疏水材料的性能。

权利要求 :

1.一种超疏水织物的制备方法,其特征在于,包括步骤:提供织物,并对所述织物进行第一次等离子体处理;

提供高分子材料、无机纳米颗粒和有机溶剂的混合液;

将经第一次等离子体处理的织物浸渍在所述混合液中,取出、进行第一次干燥处理,然后进行第二次等离子体处理;

提供改性溶液;

将经第二次等离子体处理的织物浸渍在所述改性溶液中,取出、进行第二次干燥处理,制得所述超疏水织物;

其中,采用惰性气体进行所述第一次等离子体处理,所述第一次等离子体处理为物理改性;采用活性气体进行所述第二次等离子体处理,所述第二次等离子体处理为化学改性;

所述第一次干燥处理为在温度60‑100℃下,干燥8‑12小时;所述第二次干燥处理为在温度80‑120℃下,干燥8‑12小时;

所述无机纳米颗粒选自二氧化钛、三氧化二铝、氧化锆中的一种或多种;

所述高分子材料选自聚碳酸酯、聚偏氟乙烯、聚四氟乙烯、聚丙烯、聚酰胺、纤维素酯、聚砜、聚丙烯腈、聚醚砜中的一种;

所述活性气体选自氧气、CF4、水蒸气、氢气中的一种;

所述改性溶液由低表面能处理剂、溶剂和草酸进行混合制得;所述低表面能处理剂选自十七氟癸基三乙氧基硅烷、十八烷基三氯硅烷、十八烷基三乙氧基硅烷中的一种。

2.根据权利要求1所述的超疏水织物的制备方法,其特征在于,所述惰性气体选自氖气、氩气、氦气中的一种。

3.根据权利要求1所述的超疏水织物的制备方法,其特征在于,所述有机溶剂为N‑甲基吡咯烷酮溶液、二甲基乙酰胺溶液、N,N‑二甲基甲酰胺溶液、二甲亚砜溶液中的一种;所述溶剂选自无水乙醇、甲酮、甲苯、异丙醇、正己烷、乙酸乙酯中的一种。

4.根据权利要求3所述的超疏水织物的制备方法,其特征在于,所述低表面能处理剂与所述溶剂的体积比为1:50 1:10。

~

5.根据权利要求3所述的超疏水织物的制备方法,其特征在于,制备所述混合液,具体包括步骤:将高分子材料溶解于N‑甲基吡咯烷酮溶液中,搅拌混匀,静置后,加入所述无机纳米颗粒,进行超声处理后,继续搅拌制得所述混合液。

6.根据权利要求5所述的超疏水织物的制备方法,其特征在于,所述高分子材料与所述无机纳米颗粒的体积比为100:1 5:1。

~

7.一种超疏水织物,其特征在于,所述超疏水织物采用如权利要求1‑6任一所述的超疏水织物的制备方法制备得到。

说明书 :

一种超疏水织物及其制备方法

技术领域

[0001] 本发明涉及超疏水涂层技术领域,尤其涉及一种超疏水织物及其制备方法。

背景技术

[0002] 等离子体用于制备超疏水的技术目前已经相对成熟。等离子处理不仅可以对表面进行清洗,还能改变表面的结构或成分。等离子处理最为常见的两种方式:一种为物理改性,即在平滑表面进行刻蚀,在宏观及微观上构建一定粗糙结构,随后再进行低表面能的修饰,得到超疏水涂层,其常见的使用气体Ar、He等进行处理;另一种为化学改性,低表面能修饰和结构改造同时进行,存在直接获得超疏水表面的可能,其常见的是使用气体CF4、O2等进行处理。
[0003] 但目前已知的技术会存在以下常见的问题:1.制备工艺复杂,等离子处理只能作为其中的一步,还需多步处理才能达到超疏水的效果。2.处理成本高,使用某些气体的成本过高,或者控制条件不够准确无法节约其他试剂或者物质的加入量,从而无法减少成本。3.制备得到的超疏水织物的性能不够稳定,无法用于实际生产。
[0004] 因此,现有技术还有待于改进和发展。

发明内容

[0005] 鉴于上述现有技术的不足,本发明的目的在于提供一种超疏水织物及其制备方法,旨在解决现有技术在制备超疏水织物时,制备工艺复杂、处理成本高以及所制备的超疏水织物的性能稳定性差的问题。
[0006] 本发明的技术方案如下:
[0007] 一种超疏水织物的制备方法,包括步骤:
[0008] 提供织物,并对所述织物进行第一次等离子体处理;
[0009] 提供高分子材料、无机纳米颗粒和有机溶剂的混合液;
[0010] 将经第一次等离子体处理的织物浸渍在所述混合液中,取出、进行第一次干燥处理,然后进行第二次等离子体处理;
[0011] 提供改性溶液;
[0012] 将经第二次等离子体处理的织物浸渍在所述改性溶液中,取出、进行第二次干燥处理,制得所述超疏水织物。
[0013] 所述的超疏水织物的制备方法,其中,采用惰性气体进行所述第一次等离子体处理;采用活性气体进行所述第二次等离子体处理;所述惰性气体选自氖气、氩气、氦气、氮气中的一种;所述活性气体选自氧气、CF4、水蒸气、氢气中的一种。
[0014] 所述的超疏水织物的制备方法,其中,所述有机溶剂为N‑甲基吡咯烷酮溶液、二甲基乙酰胺溶液、N,N‑二甲基甲酰胺溶液、二甲亚砜溶液中的一种;所述改性溶液由低表面能处理剂、溶剂和草酸进行混合制得;所述低表面能处理剂选自十七氟癸基三乙氧基硅烷、十八烷基三氯硅烷、十八烷基三乙氧基硅烷中的一种,所述溶剂选自无水乙醇、甲酮、甲苯、异丙醇、正己烷、乙酸乙酯中的一种。
[0015] 所述的超疏水织物的制备方法,其中,所述低表面能处理剂与所述溶剂的体积比为1:50~1:10。
[0016] 所述的超疏水织物的制备方法,其中,制备所述混合液,具体包括步骤:
[0017] 将高分子材料溶解于N‑甲基吡咯烷酮溶液中,搅拌混匀,静置后,加入所述无机纳米颗粒,进行超声处理后,继续搅拌制得所述混合液。
[0018] 所述的超疏水织物的制备方法,其中,所述高分子材料与所述无机纳米颗粒的体积比为100:1~5:1。
[0019] 所述的超疏水织物的制备方法,其中,所述高分子材料选自聚碳酸酯、聚偏氟乙烯、聚四氟乙烯、聚丙烯、聚酰胺、纤维素酯、聚砜、聚丙烯腈、聚醚砜中的一种。
[0020] 所述的超疏水织物的制备方法,其中,所述无机纳米颗粒选自二氧化硅、二氧化钛、三氧化二铝、氧化锆中的一种或多种。
[0021] 所述的超疏水织物的制备方法,其中,所述第一次干燥处理为在温度60‑100℃下,干燥8‑12小时;所述第二次干燥处理为在温度80‑120℃下,干燥8‑12小时。
[0022] 一种超疏水织物,所述超疏水织物采用上述的超疏水织物的制备方法制备得到。
[0023] 有益效果:本发明提供一种超疏水织物及其制备方法,所述制备方法包括步骤:提供织物,并对所述织物进行第一次等离子体处理;提供高分子材料、无机纳米颗粒和有机溶剂的混合液;将经第一次等离子体处理的织物浸渍在所述混合液中,取出、进行第一次干燥处理,然后进行第二次等离子体处理;提供改性溶液;将经第二次等离子体处理的织物浸渍在所述改性溶液中,取出、进行第二次干燥处理,制得所述超疏水织物。本发明通过采用两次PLASMA工艺对织物表面进行处理,第一次等离子体处理涉及物理改性,对织物表面进行清洗,细微的改变表面结构,实现清洗整理织物表面,增加高分子材料与织物之间的结合力;第二次等离子体处理为化学改性,引入亲水基团加快反应效率,增加织物疏水性的改性效率以及节约成本;结合无机纳米颗粒产生应力集中效应,引发粒子周围的树脂基体屈服,产生韧性,并且无机纳米颗粒在改性后极大程度的提高织物的粗糙度和疏水材料的性能。

附图说明

[0024] 图1为本发明一种超疏水织物的制备方法的工艺流程图;
[0025] 图2为本发明实施例1制备超疏水织物的演示图;
[0026] 图3为织物处理前与采用本发明超疏水织物的制备方法处理后的形貌对比图。

具体实施方式

[0027] 本发明提供一种超疏水织物及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
[0028] 在实施方式和申请专利范围中,除非文中对于冠词有特别限定,否则“一”、“一个”、“所述”和“该”也可包括复数形式。若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
[0029] 本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
[0030] 请参考图1,本发明提供一种超疏水织物的制备方法,包括步骤:
[0031] 步骤S10:提供织物,并对所述织物进行第一次等离子体处理;
[0032] 步骤S20:提供高分子材料、无机纳米颗粒和有机溶剂的混合液;
[0033] 步骤S30:将经第一次等离子体处理的织物浸渍在所述混合液中,取出、进行第一次干燥处理,然后进行第二次等离子体处理;
[0034] 步骤S40:提供改性溶液;
[0035] 步骤S50:将经第二次等离子体处理的织物浸渍在所述改性溶液中,取出、进行第二次干燥处理,制得所述超疏水织物。
[0036] 本发明选用最为简单的浸渍法配合等离子体处理实现制备超疏水织物制备方法的简便化,采用两次PLASMA(等离子体清洗),第一次等离子体处理为物理改性,对织物表面进行清洗,实现细微的改变表面结构,增加织物与高分子材料之间的结合力;第二次等离子体处理为化学改性,实现亲水基团的引入,增加改性效率节约成本。而无机纳米颗粒的存在会在变形中产生应力集中效应,引发粒子周围的树脂基体屈服(空化、银纹、剪切带),这种基体的屈服将吸收大量变形功,产生韧性;且刚性无机纳米颗粒的存在能阻碍裂纹的扩展或钝化,终止裂纹,应力集中产生的屈服和界面脱粘都需要消耗更多的能力,从而对超疏水织物起到增韧的作用。采用本发明所述超疏水织物的制备方法制备得到的超疏水织物,制备方法简单,各项性能温度,可在200℃的高温下维持超疏水性能,在pH 1‑14下性能不会受到影响;在254nm个365nm的波长下,近距离照射下可维持一个月的疏水稳定性,且机械性能方面,具有较强的粘结力(强力胶带30多个循环)和耐磨性(线性耐磨60速1200循环)以及可进行水洗。
[0037] 在一些实施方式中,采用惰性气体进行所述第一次等离子体处理;采用活性气体进行所述第二次等离子体处理。利用惰性气体对所述织物进行第一次等离子体处理,实现清洗整理织物表面,增加高分子材料与织物之间的结合力的效果;所述活性气体包括疏水的活性气体和亲水的活性气体,采用活性气体对织物进行第二次等离子体处理,可在织物表面引入亲水基团,增加改性效率和节约成本。
[0038] 在一种优选地实施方式中,所述惰性气体选自氖气、氩气、氦气、氮气中的一种;所述活性气体选自氧气、CF4、水蒸气、氢气中的一种。所述惰性气体与所述活性气体之间可以随意组合,例如惰性气体为氩气时,活性气体为氧气或CF4;惰性气体为氦气时,所述活性气体为氧气或CF4。利用惰性气体不参与反应的特点,实现织物表面的清洁,以及利用活性气体可参与反应的特点,实现织物表面的化学改性,从而引入亲水基团。
[0039] 需要说明的是,当在高温高压条件下时,所述氮气可以作为活性气体,其在高温高压下具有一定的活性。
[0040] 在一些实施方式中,所述混合液中,所述有机溶剂为N‑甲基吡咯烷酮溶液、二甲基乙酰胺溶液、N,N‑二甲基甲酰胺溶液、二甲亚砜溶液中的一种;具体地,将所述N‑甲基吡咯烷酮溶液作为溶剂,所述高分子材料与所述无机纳米颗粒作为溶质,且所述高分子材料与所述无机纳米颗粒的体积比为100:1~5:1。当所述无机纳米颗粒过多时,会导致在织物表面发生团聚,影响整体效果,而过少的无机纳米颗粒会导致含量过少,同样也会影响使用效果;利用该混合液可以在织物的表面形成一层保护膜。
[0041] 在一种优选地实施方式中,所述高分子材料与所述无机纳米颗粒的体积比为7:1。
[0042] 在一些实施方式中,所述高分子材料选自聚碳酸酯、聚偏氟乙烯、聚四氟乙烯、聚丙烯、聚酰胺、纤维素酯、聚砜、聚丙烯腈、聚醚砜中的一种。所述高分子材料易溶于溶剂,可采用相分离法或者溶剂蒸发法将其分离出来,同时保障性能稳定,且性能可通过材料本身或者参入其他组分混合或者改性得到稳定材料,使其具有性能稳定且容易附着于表面的特性,且此处所选取的高分子材料容易获取,成本较低,有利于节省超疏水织物的生产成本。
[0043] 在一种优选地实施方式中,所述高分子材料为聚偏氟乙烯。
[0044] 在一些实施方式中,所述无机纳米颗粒包括但不限于选自二氧化硅、二氧化钛、三氧化二铝、氧化锆中的一种或多种,除此之外,所述无机纳米颗粒还可以选自金纳米颗粒、银及其氧化物的纳米颗粒、四氧化三铁、氮化铝中的一种。在变形中,无机纳米颗粒的存在会产生应力集中效应,引发粒子周围的树脂基体屈服(空化、银纹、剪切带),这种基体的屈服将吸收大量变形功,产生韧性;且刚性无机纳米颗粒的存在能够阻碍裂纹的扩展或钝化,终止裂纹,纳米颗粒钝化或终止裂纹的原因在于无机纳米颗粒不会产生过大的伸长变形,在较大的拉应力作用下,基体和无机粒子的界面部分脱粘形成空穴,使裂纹钝化,防止发展形成破坏性裂缝,并且应力集中产生屈服和界面脱粘都需要消耗更多的能量,从而起到增韧作用。
[0045] 另外,由于无机纳米颗粒的比表面积大,表面的物理和化学缺陷越多,无机纳米颗粒与高分子链发生物理或化学结合的机会越多,因而与基体接触面积增大,当材料受到冲击时,会产生更多的微开裂,吸收更多的冲击能,从而使得所述超疏水织物具有较强的韧性,提高其使用寿命。
[0046] 在一些实施方式中,所述改性溶液由低表面能处理剂、溶剂和草酸进行混合制得;所述低表面能处理剂选自十七氟癸基三乙氧基硅烷、十八烷基三氯硅烷、十八烷基三乙氧基硅烷中的一种,所述溶剂选自无水乙醇、甲酮、甲苯、异丙醇、正己烷、乙酸乙酯中的一种;
所述改性溶液中,所述草酸作为催化剂,起到催化的作用,而所述低表面能处理剂与溶剂的体积比为1:50~1:10。该比例下,可以使得所述超疏水织物在达到性能要求的同时,尽可能地降低生产成本。
[0047] 在一种优选地实施方式中,所述十七氟癸基三乙氧基硅烷与无水乙醇的体积比为1:10。
[0048] 在一些实施方式中,所述步骤S20中制备所述混合液,具体包括步骤:将高分子材料在一定温度下溶解于N‑甲基吡咯烷酮溶液中,搅拌混匀,静置后,加入所述无机纳米颗粒,进行超声处理后,继续搅拌制得所述混合液。后加入的无机纳米颗粒可以增强高分子聚合物(高分子材料)的韧性,并且由于无机纳米颗粒能够提供一定的纳米结构,提高表面的粗糙度,从而无机纳米颗粒还可以提高织物的疏水性。
[0049] 在一些实施方式中,所述第一次干燥处理为在温度60‑100℃下,干燥8‑12小时;所述第二次干燥处理为在温度80‑120℃下,干燥8‑12小时。
[0050] 在一些实施方式中,将经第一次等离子体处理的织物浸渍在所述混合液中,浸渍20‑40分钟,取出后进行第一次干燥处理;然后对其表面进行活性气体PLASMA,得到表面含有大量亲水基团的织物,后将其放入配置的改性溶液(低表面能处理溶液)中,浸渍1小时,取出后进行第二次干燥处理,得到所述超疏水织物。
[0051] 除此之外,本发明还提供一种超疏水织物,所述超疏水织物采用上述的超疏水织物的制备方法制备得到。
[0052] 采用本发明所述超疏水织物的制备方法制备得到的超疏水织物,制备方法简单,各项性能温度,可在200℃的高温下维持超疏水性能,在pH 1‑14下性能不会受到影响;在254nm个365nm的波长下,近距离照射下可维持一个月的疏水稳定性,且机械性能方面,具有较强的粘结力(强力胶带30多个循环)和耐磨性(线性耐磨60速1200循环)以及可进行水洗。
[0053] 下面进一步举例实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。
[0054] 实施例1
[0055] 采用所述超疏水织物的制备方法对织物进行处理,其演示图如图2所示,包括步骤:
[0056] 步骤S1:提供织物,并采用氩气对所述织物进行第一次等离子体处理;
[0057] 步骤S2:溶质为PVDF(聚偏二氟乙烯)和纳米二氧化钛,溶剂为N‑甲基吡咯烷酮溶液(NMP),将PVDF在一定温度下(在75‑90℃下)溶解于NMP中,搅拌6‑8小时,静置后,加入纳米二氧化钛,然后进行超声处理,继续搅拌得到混合液;
[0058] 步骤S3:将经第一次等离子体处理的织物立即放入所述混合液中,浸渍20‑40分钟,取出后在60℃的烘箱中干燥12小时;然后将干燥后的织物采用氧气进行第二次等离子体处理,得到表面好友大量亲水基团的织物;
[0059] 步骤S4:将十七氟癸基三乙氧基硅烷、无水乙醇和草酸进行混匀制得改性溶液;
[0060] 步骤S5:将经第二次等离子体处理的织物浸渍在所述改性溶液中,浸渍1小时,取出后在80℃的真空烘箱中干燥12小时,最终制得所述超疏水织物。
[0061] 本实施所述超疏水织物制备方法对织物处理后(超疏水织物)的形貌图与织物处理前的形貌图如图3所示,可以看到织物进行超疏水处理后的表面褶皱感消失,这是由于在织物表面包裹了一层PVDF,且表面呈现大量颗粒,这些颗粒则是纳米二氧化钛颗粒,为织物表面提供一定的纳米结构,提高表面的粗糙度,从而提高疏水性。
[0062] 以下是通过控制制备过程中的单一变量(第二次等离子体处理的处理流量、处理时间、处理功率以及改性溶液中17FAS与无水乙醇的体积比),研究各自对超疏水织物的疏水性能的影响,具体如下:
[0063] 1、调节氧气PLASMA的处理流量,适当增加流量可以提高表面的处理,使其更为干净,同时引入更多的亲水基团,加强后续改性处理。此过程中,保证PLASMA的时间为30s,功率为80W,17FAS与无水乙醇的体积比为0.06,所述超疏水织物的接触角随氧气PLASMA处理流量的变化如表1所示:
[0064]
[0065] 2、调节PLASMA的处理时间,选择正确的时间,在不损坏表面的同时,引入亲水基‑2 ‑1团。此过程中,保证PLASMA的处理流量为80kg×m ×h ,功率为80W,17FAS与无水乙醇的体积比为0.06,所述超疏水织物的接触角随氧气PLASMA处理时间的变化如表2所示:
[0066]
[0067] 3、调节PLASMA的处理功率,选择合适的功率,节约成本的同时,还可提高处理效‑2 ‑1率。此过程中,保证PLASMA的处理时间为30s,处理流量为80kg×m ×h ,17FAS与无水乙醇的体积比为0.06,所述超疏水织物的接触角随氧气PLASMA处理功率的变化如表3所示:
[0068]
[0069] 4、调节改性溶液中17FAS与无水乙醇的体积比也可以提高织物的超疏水效果,0.06为最佳比的原因是可以节约成本。此过程中,保证PLASMA的处理时间为30s,处理流量‑2 ‑1
为80kg×m ×h ,处理功率为80W,所述超疏水织物的接触角随17FAS与无水乙醇的体积比的变化如表4所示:
[0070]
[0071] 综上所述,本发明提供一种超疏水织物及其制备方法,所述制备方法包括步骤:提供织物,并对所述织物进行第一次等离子体处理;将高分子材料、无机纳米颗粒和有机溶剂进行混匀,得到混合液;将经第一次等离子体处理的织物浸渍在所述混合液中,取出、进行第一次干燥处理,然后进行第二次等离子体处理;提供改性溶液;将经第二次等离子体处理的织物浸渍在所述改性溶液中,取出、进行第二次干燥处理,制得所述超疏水织物。本发明通过采用两次PLASMA工艺对织物表面进行处理,第一次等离子体处理涉及物理改性,对织物表面进行清洗,细微的改变表面结构,实现清洗整理织物表面,增加高分子材料与织物之间的结合力;第二次等离子体处理为化学改性,引入亲水基团加快反应效率,增加织物疏水性的改性效率以及节约成本;结合无机纳米颗粒产生应力集中效应,引发粒子周围的树脂基体屈服,产生韧性,并且无机纳米颗粒在改性后极大程度的提高织物的粗糙度和疏水材料的性能。
[0072] 应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。