一种结合溶蚀和图像配准的混凝土组分空间分布表征方法转让专利

申请号 : CN202210948948.4

文献号 : CN115326673B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 崔冬谢晓颖吴颖萱韩冠通张程

申请人 : 南京理工大学

摘要 :

本发明公开了一种结合溶蚀和图像配准的混凝土组分空间分布表征方法,包括:加工待测试样;将试样浸入酸性溶液,进行溶蚀;采用低速流动去离子水冲刷溶蚀试样;采用断层扫描成像设备对试样进行第一次扫描;将扫描后的试样进行烘干,采用与第一次相同的参数对试样进行第二次扫描;采用图像配准技术,从空间上匹配两次扫描成像结果;根据两次扫描成像结果中相同位置的灰度值变化,得出试样内部的局部孔隙率;根据局部孔隙率的结果,设定临界孔隙率,进行阈值分割,得出试样内部未溶蚀物相的空间分布。本发明采用上述结合溶蚀和图像配准的混凝土组分空间分布表征方法,能够解决现有的表征方法操作复杂、表征结果不准确的问题。

权利要求 :

1.一种结合溶蚀和图像配准的混凝土组分空间分布表征方法,其特征在于,包括以下步骤:S1、加工待测试样,待测试样为砂浆、普通混凝土或纤维增强混凝土;

S2、将试样浸入酸性溶液,酸性溶液为NH4Cl、NH4NO3腐蚀溶液,在磁力搅拌作用下对试样进行溶蚀,直至试样内部待分析区域溶蚀完全;

S3、采用低速流动去离子水,冲刷溶蚀试样,去除试样内部残余酸性溶液,得到饱水溶蚀试样;

S4、采用断层扫描成像设备对饱水溶蚀试样进行第一次扫描;

S5、将扫描后的试样放入真空干燥箱内进行烘干,待试样重量不再变化,采用与S4相同的参数,对试样进行第二次扫描;

S6、采用图像配准技术,从空间上匹配两次扫描成像结果;

S7、根据两次扫描成像结果中相同位置的灰度值变化,采用下列公式得出试样内部的局部孔隙率;

其中,Φ为试样的局部孔隙率(%);Gwet,Gdry分别为饱水溶蚀试样与干燥溶蚀试样相同位置的灰度值;Gwater,Gair分别为相同测试参数下水与空气的灰度值;

S8、根据局部孔隙率的结果,设定临界孔隙率,进行阈值分割,得出试样内部未溶蚀物相的空间分布,未溶蚀物相为细骨料、粗骨料或纤维。

2.根据权利要求1所述的一种结合溶蚀和图像配准的混凝土组分空间分布表征方法,其特征在于:所述S2中,溶蚀时间为20‑40天。

3.根据权利要求1所述的一种结合溶蚀和图像配准的混凝土组分空间分布表征方法,‑1其特征在于:所述S3中,去离子水的流速为0.2‑2m·s ,冲刷时间为10‑18天。

4.根据权利要求1所述的一种结合溶蚀和图像配准的混凝土组分空间分布表征方法,其特征在于:所述S4中,断层扫描成像设备的射线源为X射线、伽马射线或中子射线。

5.根据权利要求1所述的一种结合溶蚀和图像配准的混凝土组分空间分布表征方法,其特征在于:所述S5中,烘干温度为40‑50℃,烘干时间为10‑16天。

说明书 :

一种结合溶蚀和图像配准的混凝土组分空间分布表征方法

技术领域

[0001] 本发明涉及混凝土性能表征技术领域,尤其是涉及一种结合溶蚀和图像配准的混凝土组分空间分布表征方法。

背景技术

[0002] 混凝土是由粗骨料、细骨料、水泥浆体以及纤维等建筑材料组合而成的复合材料。因此,混凝土内部材料组成及其分布情况,是影响混凝土综合性能的重要因素。例如,细骨料在混凝土内部的体积分数及其空间分布,可以显著影响新拌混凝土的工作性能、硬化混凝土的力学性能及耐久性能。因此,准确表征混凝土内部各组分的含量及其空间分布,是预测混凝土性能,并准确开展混凝土安全服役寿命评估的基础。
[0003] 目前,表征混凝土内部骨料/纤维的方法主要分为数值模拟和实验表征两大类。数值模拟方法,通过软件自带或自行编写的随机投放程序,模拟骨料或纤维在混凝土内部的分布情况,进而研究混凝土的力学性能或破坏过程。然而,该方法缺乏真实实验结果作为对照,结果的可靠性无法保证。
[0004] 实验表征方法主要包括:显微镜法和断层扫描成像法。显微镜法的操作方法是:通过高倍率显微镜观察混凝土试样截面,再根据阈值分割方法,得出试样截面的骨料或纤维分布。然而,该方法需要对试样进行预处理(如干燥、抛光、喷金等),操作相对复杂。同时,该方法仅能表征试样截面处骨料或纤维的分布情况,即只能表征二维结果。
[0005] 断层扫描属于无损表征方法,该方法利用射线对试样进行多角度扫描,再重构出被扫描试样线吸收系数的空间分布。根据线吸收系数不同,可以区分混凝土内部的不同组分,如孔隙、骨料、硬化水泥浆体等。尽管该方法无需制样、能够无损观察,但由于混凝土内部部分组分的线吸收系数差异较小(如硬化水泥浆体与细骨料、PVA等有机纤维与孔隙等),该方法对上述组分的识别还不够准确。

发明内容

[0006] 本发明的目的是提供一种结合溶蚀和图像配准的混凝土组分空间分布表征方法,解决现有的表征方法操作复杂、表征结果不准确的问题。
[0007] 为实现上述目的,本发明提供了一种结合溶蚀和图像配准的混凝土组分空间分布表征方法,包括以下步骤:
[0008] S1、加工待测试样;
[0009] S2、将试样浸入酸性溶液,在磁力搅拌作用下对试样进行溶蚀,直至试样内部待分析区域溶蚀完全;
[0010] S3、采用低速流动去离子水,冲刷溶蚀试样,去除试样内部残余酸性溶液,得到饱水溶蚀试样;
[0011] S4、采用断层扫描成像设备对饱水溶蚀试样进行第一次扫描;
[0012] S5、将扫描后的试样放入真空干燥箱内进行烘干,待试样重量不再变化,采用与S4相同的参数,对试样进行第二次扫描;
[0013] S6、采用图像配准技术,从空间上匹配两次扫描成像结果;
[0014] S7、根据两次扫描成像结果中相同位置的灰度值变化,采用下列公式得出试样内部的局部孔隙率;
[0015]
[0016] 其中,Φ为试样的局部孔隙率(%);Gwet,Gdry分别为饱水溶蚀试样与干燥溶蚀试样相同位置的灰度值;Gwater,Gair分别为相同测试参数下水与空气的灰度值;
[0017] S8、根据局部孔隙率的结果,设定临界孔隙率,进行阈值分割,得出试样内部未溶蚀物相的空间分布。
[0018] 优选的,所述S1中,待测试样为砂浆、普通混凝土或纤维增强混凝土。
[0019] 优选的,所述S2中,酸性溶液为NH4Cl、NH4NO3腐蚀溶液。
[0020] 优选的,所述S2中,溶蚀时间为20‑40天。
[0021] 优选的,所述S3中,去离子水的流速为0.2‑2m·s‑1,冲刷时间为10‑18天。
[0022] 优选的,所述S4中,断层扫描成像设备的射线源为X射线、伽马射线或中子射线。
[0023] 优选的,所述S5中,烘干温度为40‑50℃,烘干时间为10‑16天。
[0024] 优选的,所述S8中,未溶蚀物相为细骨料、粗骨料或纤维。
[0025] 本发明所述的一种结合溶蚀和图像配准的混凝土组分空间分布表征方法的优点和积极效果是:
[0026] 1、本发明所述的表征方法可以获得混凝土内部组分的三维分布,本发明所述的表征方法更能反映混凝土内各组分的空间分布情况。
[0027] 2、本发明采用溶蚀实验,扩大了硬化水泥浆体与不溶蚀组分(细骨料、粗骨料、纤维)的微观结构差异,从而能够更准确的采用阈值分割方法,获得混凝土内部组分的空间分布情况,提高了混凝土组分空间分布的表征精度。
[0028] 3、本发明利用局部孔隙率来识别未溶蚀组分的空间分布,有利于准确的区分孔隙与不溶蚀纤维,提高纤维空间分布表征的精度。

附图说明

[0029] 图1为本发明一种结合溶蚀和图像配准的混凝土组分空间分布表征方法实施例的饱水溶蚀试样扫描结果;
[0030] 图2为本发明一种结合溶蚀和图像配准的混凝土组分空间分布表征方法实施例的干燥溶蚀试样扫描结果;
[0031] 图3为本发明一种结合溶蚀和图像配准的混凝土组分空间分布表征方法实施例的溶蚀试样二维孔隙率空间分布;
[0032] 图4为本发明一种结合溶蚀和图像配准的混凝土组分空间分布表征方法实施例的溶蚀试样一维孔隙率空间分布;
[0033] 图5为本发明一种结合溶蚀和图像配准的混凝土组分空间分布表征方法实施例的溶蚀试样细骨料三维空间分布;
[0034] 图6为本发明一种结合溶蚀和图像配准的混凝土组分空间分布表征方法实施例的溶蚀试样细骨料二维空间分布。

具体实施方式

[0035] 以下通过附图和实施例对本发明的技术方案作进一步说明。
[0036] 实施例
[0037] 一种结合溶蚀和图像配准的混凝土组分空间分布表征方法,包括以下步骤:
[0038] S1、加工待测试样。采用水泥、砂、水等制备砂浆。其中,水泥为P·II 52.5水泥,砂为标准砂,水灰比为0.3。试样采用杭州建研华测科技有限公司生产的混凝土3D打印机制3
备,试样尺寸为200×200×200mm。打印完成后,将试样置于标准养护条件下养护28天。
[0039] S2、将试样浸入酸性溶液,在磁力搅拌作用下对试样进行加速溶蚀,直至试样内部‑1待分析区域溶蚀完全。酸性溶液为6mol·L 的NH4Cl溶液,溶蚀时间为30天。
[0040] S3、采用低速流动去离子水,冲刷溶蚀试样,去除试样内部残余酸性溶液,得到饱‑1水溶蚀试样。低速去离子水的流速为1m·s ,冲刷时间为14天及以上。
[0041] S4、采用断层扫描成像设备对饱水溶蚀试样进行第一次扫描。使用断层扫描成像设备为天津三英精密仪器股份有限公司生产的multiscale voxel CT。设备的扫描电压是165kV,有效电流是0.1mA,有效分辨率为45μm。每个扫描投影时间为0.4s,每个投影重复次数为6次。图1为本发明一种结合溶蚀和图像配准的混凝土组分空间分布表征方法实施例的饱水溶蚀试样扫描结果,如图1所示。
[0042] S5、将扫描后的试样放入真空干燥箱内进行烘干,待试样重量不再变化,采用与S4相同的参数,对试样进行第二次扫描。烘干温度为45℃,烘干时间为14天及以上。图2为本发明一种结合溶蚀和图像配准的混凝土组分空间分布表征方法实施例的干燥溶蚀试样扫描结果,如图2所示。
[0043] S6、采用图像配准技术,从空间上匹配两次扫描成像结果。再在相同测试参数下对水和空气进行CT扫描,确定水和空气的灰度值。
[0044] S7、根据两次扫描成像结果中相同位置的灰度值变化,采用下列公式得出试样内部的局部孔隙率;
[0045]
[0046] 其中,Φ为试样的局部孔隙率(%);Gwet,Gdry分别为饱水溶蚀试样与干燥溶蚀试样相同位置的灰度值;Gwater,Gair分别为相同测试参数下水与空气的灰度值。图3为本发明一种结合溶蚀和图像配准的混凝土组分空间分布表征方法实施例的溶蚀试样二维孔隙率空间分布,图4为本发明一种结合溶蚀和图像配准的混凝土组分空间分布表征方法实施例的溶蚀试样一维孔隙率空间分布,如图3、图4所示。
[0047] S8、根据试样局部孔隙率的结果,设定临界孔隙率,对孔隙率空间分布结果进行阈值分割,定义临界孔隙率以下的区域为未溶蚀物相,得出试样内部未溶蚀物相的空间分布。未溶蚀物相即本发明需要表征的混凝土内部的组分。未溶蚀物相为混凝土内部的细骨料、粗骨料或纤维。图5为本发明一种结合溶蚀和图像配准的混凝土组分空间分布表征方法实施例的溶蚀试样细骨料三维空间分布,图6为本发明一种结合溶蚀和图像配准的混凝土组分空间分布表征方法实施例的溶蚀试样细骨料二维空间分布,如图5、图6所示。
[0048] 因此,本发明采用上述结合溶蚀和图像配准的混凝土组分空间分布表征方法,能够解决现有的表征方法操作复杂、表征结果不准确的问题。
[0049] 最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。