一种超薄涂层的泡沫陶瓷的制备方法及其制备的钯催化剂转让专利

申请号 : CN202211020078.0

文献号 : CN115353374B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 史国普魏郁林冀珺王志李庆刚梁福鑫王红磊

申请人 : 济南大学

摘要 :

本申请属于催化剂载体领域,具体涉及一种超薄涂层的泡沫陶瓷的制备方法及其制备的钯催化剂。通过去除残余浆料过程中的气流交替工艺,获得无堵孔,超高孔隙率,表面足够粗糙,易容纳涂层的泡沫氧化铝陶瓷,实现催化载体的优化;通过新的涂层配比和工艺,解决钯催化剂活性组分和改性涂层用量大,需要额外使用添加粘结剂工艺的问题,获得具有优良助催化性能的超薄涂层。

权利要求 :

1.一种超薄涂层的泡沫陶瓷的制备方法,其特征在于,包括以下步骤:

(1)改性聚氨酯的制备:以有机泡沫为模板,先后经过强碱溶液和聚乙烯醇溶液改性,干燥;

(2)陶瓷浆料的配置:以氧化铝微粉、聚乙烯醇、聚丙烯酰胺、聚丙烯酸胺为原料,混合配制而成;

(3)泡沫陶瓷的制备:将步骤(1)的改性聚氨酯浸泡在步骤(2)的陶瓷浆料中5‑30s;取出后使陶瓷坯体被温热缓气流包裹,使浆料初步粘附在聚氨酯的有机网络表面,避免堵孔的浆料干结;然后通过常温气流将堵塞通孔的浆料去除,可调整角度确保无堵孔现象;再通过温热气流,快速使有机网络上的浆料干燥,获得表面粗糙的全通孔坯体;烧结,最终得到泡沫陶瓷;

(4)涂层浆液的制备:以γ型氧化铝为涂层主体,先后添加去离子水,磷酸,稀土元素硝酸盐或碱土金属元素硝酸盐,每次添加需要持续搅拌和超声;

(5)超薄涂层的泡沫陶瓷的制备:将步骤(3)的泡沫陶瓷浸渍于搅动的步骤(4)的涂层浆料中,时间为20‑60s,取出,干燥焙烧,即得。

2.根据权利要求1所述的超薄涂层的泡沫陶瓷的制备方法,其特征在于,所述步骤(1)的聚氨酯为孔隙密度为15‑60PPI的聚氨酯海绵;所述的强碱溶液为:浓度为10wt.%‑20wt.%的NaOH。

3.根据权利要求1或2所述的超薄涂层的泡沫陶瓷的制备方法,其特征在于,所述步骤(1)的过程为:以有机泡沫为模板,先后经过浓度为10wt.%‑20wt.%的NaOH溶液和5 wt.%‑10 wt.%的聚乙烯醇溶液改性;所述的有机泡沫为孔隙密度为15‑60PPI的聚氨酯海绵。

4.根据权利要求1所述的超薄涂层的泡沫陶瓷的制备方法,其特征在于,所述步骤(2)的氧化铝微粉、聚乙烯醇、聚丙烯酰胺、聚丙烯酸胺的加入量为:25wt.%‑60wt.%、0.3wt.%‑

1wt.%、0.3wt.%‑1wt.%、0.5wt.%‑2wt.%,其余为水。

5.根据权利要求1所述的超薄涂层的泡沫陶瓷的制备方法,其特征在于,步骤(3)所述的温热缓气流的条件为:流速为1‑7 m/s,温度为60‑100℃;所述的常温气流的条件为:流速为15‑60 m/s,温度为15‑30℃;所述的温热气流的条件为:流速为15‑60 m/s,温度为60‑100℃。

6.根据权利要求1所述的超薄涂层的泡沫陶瓷的制备方法,其特征在于,步骤(3)所述的烧结过程为:将坯体从室温以升温速率为5℃/min升温到200℃;再以1℃/min 升温到500℃为,500℃保温1h,再以5℃/min升温到1400℃;保温2h,最后以5℃/min降温。

7.根据权利要求1所述的超薄涂层的泡沫陶瓷的制备方法,其特征在于,步骤(4)的过程为:以10wt.%‑40wt.%的γ型氧化铝为涂层主要原料,先后添加去离子水,6wt.%‑15wt.%磷酸,6wt.%‑15wt.%硝酸铈稀土元素或碱土金属元素硝酸盐,每次添加需要超声并持续搅拌。

8.根据权利要求1所述的超薄涂层的泡沫陶瓷的制备方法,其特征在于,步骤(5)干燥焙烧的条件为:110℃干燥2‑6h,600℃焙烧6‑8h。

9.采用权利要求1所述的制备方法制备得到的超薄涂层的泡沫陶瓷作为载体制备的钯催化剂。

10.一种权利要求9所述的钯催化剂的制备方法,其特征在于,包括以下步骤:以氨水稀释硝酸钯溶液,氨水体积与泡沫陶瓷孔隙体积相等,钯含量为陶瓷质量的0.1‑0.6%,摇晃后超声分散,放入超薄涂层的泡沫陶瓷,以70℃水浴加热反应,静置后干燥,焙烧。

说明书 :

一种超薄涂层的泡沫陶瓷的制备方法及其制备的钯催化剂

技术领域

[0001] 本申请属于催化剂载体领域,具体涉及一种超薄涂层的泡沫陶瓷的制备方法及其制备的钯催化剂。

背景技术

[0002] 除了常见的粉末状和颗粒状催化剂载体,整体式载体能适应更多的实际应用,如天燃气燃料汽车尾气处理。整体式载体多为挤压成型(CN200710034512.X),或带有蜂窝模具挤压而成的蜂窝陶瓷(CN201611234267.2),而以有机泡沫作为模板制备的泡沫陶瓷具备更优的流体力学性能和反应接触面积(CN201811005071.5)。
[0003] 然而,泡沫陶瓷所用原料往往为比表面积很小的非活性原料,如堇青石,碳化硅,氧化铝等,倘若直接在其表面添加催化活性组分,则需要喷淋或浸渍大量活性组分(CN201210033426.8、CN202010993893.X、CN00105854.1),尤其对于贵金属催化剂来说将极大增加成本,且活性组分不能充分利用。因此CN00136037.X、CN201711289741.6在泡沫陶瓷表面先添加一层比表面积大的涂层再添加活性组分,但涂层的添加往往需要较大质量比例,且需要粘结剂的粘附才能避免脱落。CN201711289741.6的涂层中除了具有大比表面积的改性氧化铝外,添加了稀土氧化物来使涂层获得助催化性能,但仍然避免不了添加粘结剂才能粘附。同时,泡沫陶瓷粗糙的表面得不到很好的利用,甚至在直接添加活性组分时被看作缺点。
[0004] 泡沫陶瓷制备工艺中,CN202110944778.8将有机泡沫浸在陶瓷浆料中取出成型,这样会有很多三维网络的通孔被堵塞,CN201811348927.9利用挤压的方法将多余浆料挤出,CN201810885523.7利用离心的方法去除多余浆料,但这些方法对浆料固含量和粘性要求较高,且都难以确保无堵塞通孔,不能稳定得到气孔率达到90%的泡沫陶瓷,对涂层的添加没有促进作用,且需要额外的干燥步骤。

发明内容

[0005] 针对现阶段泡沫陶瓷钯催化剂中存在的问题,本发明通过去除残余浆料过程中的气流交替工艺,获得无堵孔,超高孔隙率,表面足够粗糙,易容纳涂层的泡沫氧化铝陶瓷,实现催化载体的优化;通过新的涂层配比和工艺,解决钯催化剂活性组分和改性涂层用量大,需要额外使用添加粘结剂工艺的问题,获得具有优良助催化性能的超薄涂层。
[0006] 本发明的技术方案如下:
[0007] 一种超薄涂层的泡沫陶瓷的制备方法,包括以下步骤:
[0008] (1)改性聚氨酯的制备:以有机泡沫为模板,先后经过强碱溶液和聚乙烯醇溶液改性,干燥;
[0009] (2)陶瓷浆料的配置:以氧化铝微粉、聚乙烯醇、聚丙烯酰胺、聚丙烯酸胺为原料,混合配制而成;
[0010] (3)泡沫陶瓷的制备:将步骤(1)的改性聚氨酯浸泡在步骤(2)的陶瓷浆料中5‑30s;取出后使陶瓷坯体被温热缓气流包裹,使浆料初步粘附在聚氨酯的有机网络表面,避免堵孔的浆料干结;然后通过常温气流将堵塞通孔的浆料去除,可调整角度确保无堵孔现象;再通过温热气流,快速使有机网络上的浆料干燥,获得表面粗糙的全通孔坯体;,烧结,最终得到泡沫陶瓷;
[0011] (4)涂层浆液的制备:以γ型氧化铝为涂层主体,先后添加去离子水,磷酸,稀土元素硝酸盐或碱土金属元素硝酸盐,每次添加需要持续搅拌和超声;
[0012] (5)超薄涂层的泡沫陶瓷的制备:将步骤(3)的泡沫陶瓷浸渍于搅动的步骤(4)的涂层浆料中,时间为20‑60s,取出,干燥焙烧,即得。
[0013] 进一步地,所述步骤(1)的聚氨酯为孔隙密度为15‑60PPI的聚氨酯海绵;所述的强碱溶液为:浓度为10wt.%‑20wt.%的NaOH。
[0014] 进一步地,所述步骤(1)的过程为:以有机泡沫为模板,先后经过浓度为10wt.%‑20wt.%的NaOH溶液和5 wt.%‑10 wt.%的聚乙烯醇溶液改性;所述的有机泡沫为孔隙密度为
15‑60PPI的聚氨酯海绵。
[0015] 进一步地,所述步骤(2)的氧化铝微粉、聚乙烯醇、聚丙烯酰胺、聚丙烯酸胺的加入量为:25wt.%‑60wt.%、0.3wt.%‑1wt.%、0.3wt.%‑1wt.%、0.5wt.%‑2wt.%,其余为水。
[0016] 进一步地,步骤(3)所述的温热缓气流的条件为:流速为1‑7 m/s,温度为60‑100℃;所述的常温气流的条件为:流速为15‑60 m/s,温度为15‑30℃;所述的温热气流的条件为:流速为15‑60 m/s,温度为60‑100℃。
[0017] 进一步地,步骤(3)所述的烧结过程为:将坯体从室温以升温速率为5℃/min升温到200℃;再以1℃/min 升温到500℃为,500℃保温1h,再以5℃/min升温到1400℃;保温2 h,最后以5℃/min降温。
[0018] 进一步地,步骤(4)的过程为:以10wt.%‑40wt.%的γ型氧化铝为涂层主要原料,先后添加去离子水,6wt.%‑15wt.%磷酸,6wt.%‑15wt.%硝酸铈等稀土元素或碱土金属元素硝酸盐,每次添加需要超声并持续搅拌。
[0019] 进一步地,步骤(5)干燥焙烧的条件为:110℃干燥2‑6h,600℃焙烧6‑8h。
[0020] 上述制备方法制备得到的超薄涂层的泡沫陶瓷作为载体制备的钯催化剂。
[0021] 上述钯催化剂的制备方法,其特征在于,包括以下步骤:以氨水稀释硝酸钯溶液,氨水体积与泡沫陶瓷孔隙体积相等,钯含量为陶瓷质量的0.1‑0.6%,摇晃后超声分散,放入超薄涂层的泡沫陶瓷,以70℃水浴加热反应,静置后干燥,焙烧。
[0022] 本发明的有益效果:
[0023] (1)去除残余浆料过程中,本专利使用冷、热,快、慢气流交替,能通过调整泡沫角度实现对全部三维网络通孔的处理,确保无堵塞高质量泡沫的工业化生产,能通过调整气体流速,吹制次数来接受浆料固含量的大范围波动,能在去除残余浆料的同时完成坯体的干燥成型,可直接进行烧结,这都是挤压、离心等方法难以做到的。
[0024] (2)由于去除残余浆料过程中冷热交替气流对坯体的冲击,泡沫陶瓷表面具有极高的粗糙度,可以更好容纳改性涂层,充分利用了泡沫陶瓷表面粗糙的特性,结合后面涂层的配比工艺,可实现超薄涂层催化剂的制备,相比于厚涂层,涂层超薄意味着更加稳定,不易脱附。
[0025] (3)以磷酸改性高比表面积材料并添加稀土元素的配方使少量涂层就能实现对CO、甲烷、氢气等催化氧化反应的高促进作用,且改性成分磷酸为涂层浆料提供了粘性,磷酸高温产物同样可粘结涂层,直接避免了额外添加剂的使用,且在较短的时间内便能完成超薄涂层的添加。这和先浸渍水解液获得表面粘性再添加大量厚涂层的工艺相比,减少了工艺步骤,生产时间和昂贵涂层原料的使用量,显著降低了生产成本。

附图说明

[0026] 图1 左为泡沫陶瓷多孔三维网络结构形貌图;右为表面涂层截面图,红色双箭头表示涂层厚度;
[0027] 图2为催化剂表面能谱图,显示各元素分布情况。

具体实施方式

[0028] 实施例1
[0029] (1)以孔隙密度为30PPI的聚氨酯海绵为模板,浸泡在浓度为20wt.%的NaOH溶液中改性12h,然后用5 wt.%的聚乙烯醇溶液改性12h,60℃干燥;
[0030] (2)陶瓷浆料的配置:以3.5kg氧化铝微粉和6.3kg去离子水为原料,额外添加0.05kg聚乙烯醇0.05kg聚丙烯酰胺、0.1kg聚丙烯酸胺,混合配制而成;
[0031] (3)泡沫陶瓷的制备:将步骤(1)的改性聚氨酯浸泡在步骤(2)的陶瓷浆料中20s;取出后使陶瓷坯体各面通过流速为5 m/s,温度为80℃的温热缓气流,使浆料初步粘附在聚氨酯的有机网络表面,时间为15s,避免堵孔的浆料干结;然后通过流速为40 m/s,温度为24℃的高速常温气流将堵塞通孔的浆料去除,可调整角度确保无堵孔现象;再通过流速为40 m/s,温度为80℃的高速温热气流,快速使有机网络上的浆料干燥,获得表面粗糙的全通孔坯体;将坯体放入高温箱式烧结炉中,从室温以升温速率为5℃/min升温到200℃,再以1℃/min 升温到500℃,500℃保温1h;然后以5℃/min升温到1400℃,1400℃保温2h,以5℃/min降温,最终得到泡沫陶瓷,经阿基米德排水法测量孔隙率为90%;
[0032] (4)涂层浆液的制备:以3.0kgγ型氧化铝为涂层主要原料,先后添加5.4kg去离子水、0.8kg磷酸, 0.8kg硝酸铈,每次添加需要超声2分钟并持续搅拌30分钟;
[0033] (5)超薄涂层的泡沫陶瓷的制备:将步骤(3)的泡沫陶瓷浸渍于搅动的步骤(4)的涂层浆料中30秒,取出,110℃干燥2h,600℃焙烧6h,得到的薄涂层泡沫陶瓷经阿基米德排水法测量孔隙率为84%。
[0034] 实施例2
[0035] (1)改性聚氨酯的制备:以孔隙密度为15PPI的聚氨酯海绵为模板,浸泡在浓度为10wt.%的NaOH溶液中改性12h,然后用10 wt.%的聚乙烯醇溶液改性12h,60℃干燥;
[0036] (2)陶瓷浆料的配置:以2.5kg氧化铝微粉和7.39kg去离子水为原料,额外添加0.03kg聚乙烯醇、0.03kg聚丙烯酰胺、0.05kg聚丙烯酸胺,混合配制而成;
[0037] (3)泡沫陶瓷的制备:将步骤(1)的改性聚氨酯浸泡在步骤(2)的陶瓷浆料中30s;取出后使陶瓷坯体各面通过流速为3 m/s,温度为100℃的温热缓气流,使浆料初步粘附在聚氨酯的有机网络表面,时间为10s,避免堵孔的浆料干结;然后通过流速为15 m/s,温度为
20℃的高速常温气流将堵塞通孔的浆料去除,可调整角度确保无堵孔现象;再通过流速为
60 m/s,温度为100℃的高速温热气流,快速使有机网络上的浆料干燥,获得表面粗糙的全通孔坯体;将坯体放入高温箱式烧结炉中,从室温以升温速率为5℃/min升温到200℃,再以
1℃/min 升温到500℃,500℃保温1h;然后以升温速率为5℃/min升温到1400℃,保温2 h;
以5℃/min降温,最终得到泡沫陶瓷,经阿基米德排水法测量孔隙率为87%;
[0038] (4)涂层浆液的制备:以2kg的γ型氧化铝为涂层主要原料,先后添加6.8kg去离子水,0.6kg磷酸,0.6kg硝酸铈,每次添加需要超声2分钟并持续搅拌30分钟;
[0039] (5)超薄涂层的泡沫陶瓷的制备:将步骤(3)的泡沫陶瓷浸渍于搅动的步骤(4)的涂层浆料中60秒,取出,110℃干燥2h,600℃焙烧6h,得到的薄涂层泡沫陶瓷经阿基米德排水法测量孔隙率为84%。
[0040] 实施例3
[0041] (1)改性聚氨酯的制备:以孔隙密度为60PPI的聚氨酯海绵为模板,浸泡在浓度为10wt.%的NaOH溶液中改性12h,然后用5 wt.%的聚乙烯醇溶液改性12h,60℃干燥;
[0042] (2)陶瓷浆料的配置:以6kg氧化铝微粉和3.6kg去离子水为原料,额外添加0.1kg聚乙烯醇、0.1kg聚丙烯酰胺、0.2kg聚丙烯酸胺,混合配制而成;
[0043] (3)泡沫陶瓷的制备:将步骤(1)的改性聚氨酯浸泡在步骤(2)的陶瓷浆料中30s;取出后使陶瓷坯体各面通过流速为7 m/s,温度为60℃的温热缓气流,使浆料初步粘附在聚氨酯的有机网络表面,时间为10s,避免堵孔的浆料干结;然后通过流速为60 m/s,温度为20℃的高速常温气流将堵塞通孔的浆料去除,可调整角度确保无堵孔现象;再通过流速为60 m/s,温度为60℃的高速温热气流,快速使有机网络上的浆料干燥,获得表面粗糙的全通孔坯体;将坯体放入高温箱式烧结炉中,从室温以升温速率为5℃/min升温到200℃,再以1℃/min 升温到500℃,500℃保温1h;然后以升温速率为5℃/min升温到1400℃,保温2 h;以5℃/min降温,最终得到泡沫陶瓷,经阿基米德排水法测量孔隙率为85%;
[0044] (4)涂层浆液的制备:以4kg的γ型氧化铝为涂层主要原料,先后添加3kg去离子水,1.5kg磷酸,1.5kg硝酸钡每次添加需要超声2分钟并持续搅拌30分钟;
[0045] (5)超薄涂层的泡沫陶瓷的制备:将步骤(3)的泡沫陶瓷浸渍于搅动的步骤(4)的涂层浆料中20秒,取出,110℃干燥2h,600℃焙烧6h,得到的薄涂层泡沫陶瓷经阿基米德排水法测量孔隙率为75%。
[0046] 实施例4
[0047] 采用实施例1的超薄涂层的泡沫陶瓷制备钯催化剂,包括以下步骤:以氨水稀释硝酸钯溶液,氨水体积与泡沫陶瓷孔隙体积相等。钯含量为陶瓷质量的0.3%,摇晃后超声分散10分钟,放入步骤(5)的超薄涂层泡沫陶瓷,以70℃水浴加热40分钟,静置12h, 110℃干燥
3h,500℃焙烧2h。
[0048] 实施例5
[0049] 采用实施例2的超薄涂层的泡沫陶瓷制备钯催化剂,包括以下步骤:以氨水稀释硝酸钯溶液,氨水体积与泡沫陶瓷孔隙体积相等,钯含量为陶瓷质量的0.1%,摇晃后超声分散10分钟,放入步骤(5)的超薄涂层泡沫陶瓷,以70℃水浴加热40分钟,静置12h, 110℃干燥
2h,500℃焙烧2h。
[0050] 实施例6
[0051] 采用实施例1的超薄涂层的泡沫陶瓷制备钯催化剂,包括以下步骤:以氨水稀释硝酸钯溶液,氨水体积与泡沫陶瓷孔隙体积相等,钯含量为陶瓷质量的0.6%,摇晃后超声分散10分钟,放入步骤(5)的超薄涂层泡沫陶瓷,以70℃水浴加热40分钟,静置12h, 110℃干燥
2h,500℃焙烧2h。
[0052] 实施效果例
[0053]样品种类 实施例4 实施例 5 实施例6
1%CO氧化率 100% 100% 100%
10%CO氧化率 93% 85% 90%
[0054] 实施例4‑6制备的钯催化剂的催化活性考察,以CO氧化为例,考察催化性能。实验条件:反应在石英管式常压流通固定床反应器中进行,反应气体体积比CO:O2:N2分别为1: ‑1
10:89和10:20:70,气体总流量为 50 mL∙min ,考察温度为130℃,考察时长为80天。