Ga基范德华室温铁磁晶体材料、制备与应用转让专利

申请号 : CN202210849612.2

文献号 : CN115354396B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 常海欣张高节武浩

申请人 : 华中科技大学

摘要 :

本发明公开了Ga基范德华室温铁磁晶体材料、制备与应用,属于纳米磁性材料制备技术领域。材料为Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)和Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)。Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)的生长方法是自助熔剂法,以过量的Ga和Te作为助熔剂来生长晶体。Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)的生长方法是化学气相输运法,以碘单质作为输运剂来生长晶体。本发明提供的Ga基范德华室温铁磁晶体Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)和Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)材料组分均匀,具有范德华结构,容易机械剥离,居里温度分别为330~367K和320~345K,饱和磁矩分别为50~57.2emu/g和80~88.5emu/g。其中,Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)单晶的垂直磁各项异性能高达3.25×105~4.79×105J/m3。

权利要求 :

1.Ga基范德华铁磁晶体材料,其特征在于,所述铁磁晶体材料为Fe3‑aGabTe2铁磁晶体,其中a=‑0.3~0.1,b=0.8~1.2;或者为Fe5‑cGeGadTe2铁磁晶体,其中c=‑0.2~0.2,d=

0.01~0.5;

所述Fe3‑aGabTe2铁磁晶体的Fe3‑aGabTe2化合物以及所述Fe5‑cGeGadTe2铁磁晶体的Fe5‑cGeGadTe2化合物均含有化合价为零价的铁原子;

所述Fe3‑aGabTe2铁磁晶体和所述Fe5‑cGeGadTe2铁磁晶体的居里温度分别为330‑367K和

320‑345K,所述Fe3‑aGabTe2铁磁晶体和所述Fe5‑cGeGadTe2铁磁晶体在各自居里温度以下表现出铁磁性。

2.如权利要求1所述的Ga基范德华铁磁晶体材料,其特征在于,所述Fe3‑aGabTe2铁磁晶体和Fe5‑cGeGadTe2铁磁晶体的饱和磁矩分别为50~57.2emu/g和80~88.5emu/g。

3.一种铁磁晶体的制备方法,其特征在于,包括以下步骤:(1)将Fe粉、Ga块和Te粉充分混匀,所述Fe粉和Ga块物质的量之和等于Te粉物质的量;

所述Fe粉物质的量占Fe粉和Ga块物质的量之和的40%‑60%;

(2)对装载步骤(1)得到的混合物的容器进行抽真空;

(3)对所述混合物进行加热,所述加热的温度为950~1050℃,然后降温,在结晶生长过程中以0.5~1.5℃/h的速度降温,即得到Fe3‑aGabTe2铁磁晶体,其中a=‑0.3~0.1,b=0.8~1.2。

4.如权利要求3所述的铁磁晶体的制备方法,其特征在于,所述加热的时间为24h‑48h。

5.如权利要求3所述的铁磁晶体的制备方法,其特征在于,所述降温为先以70‑170℃/h的速度快速降温至880℃,再以0.5~1.5℃/h的速度缓慢降温到780℃,然后自然冷却。

6.一种铁磁晶体的制备方法,其特征在于,包括以下步骤:(1)将Fe粉、Ge粉、Ga块、Te粉和I2粒充分混匀,所述Fe粉物质的量、Ge粉与Ga块物质的量之和以及Te粉物质的量三者之比为4:1:2,所述Ge粉物质的量占Ge粉和Ga块物质的量之和的40%‑60%;

(2)对装载步骤(1)得到的混合物的容器进行抽真空;

(3)将所述容器装载混合物的部分置于双温区管式炉内的高温原材料区,将所述容器没有装载混合物的部分置于双温区管式炉内的低温结晶区;所述高温原材料区的温度为

950~1050℃,所述低温结晶区的温度为600~700℃;所述I2粒作为输运剂,将混合物输送至低温结晶区反应得到Fe5‑cGeGadTe2铁磁晶体,其中c=‑0.2~0.2,d=0.01~0.5。

7.如权利要求6所述的铁磁晶体的制备方法,其特征在于,步骤(3)中,所述反应的时间为168h‑330h。

8.如权利要求6所述的铁磁晶体的制备方法,其特征在于,所述I2粒的质量比上容器的3

体积为3‑9mg/cm。

9.如权利要求1或2所述Ga基范德华铁磁晶体材料在二维量子器件中的应用。

10.如权利要求9所述的应用,其特征在于,所述二维量子器件为反常霍尔器件或电调控磁性器件。

说明书 :

Ga基范德华室温铁磁晶体材料、制备与应用

技术领域

[0001] 本发明属于纳米磁性材料制备技术领域,更具体地,涉及Ga基范德华室温铁磁晶体材料、制备与应用。

背景技术

[0002] 磁性起源于基本粒子的移动电荷和自旋,它革新了数据存储和生物医学成像等重要技术,并将继续在涌现材料和缩小尺寸方面带来新现象。虽然铁磁性材料在三维空间中能表现出铁磁有序态,但Mermin‑Wagner理论的限制,挡住了人们进一步在二维系统中寻找具有本征铁磁性材料的道路。该定理通过严格地证明指出,由于热力学涨落会破坏一切有序态,因此,在二维各向同性的海森堡自旋系统中是不可能存在长程磁有序的。直到最近,实验上关于二维铁磁材料的研究才取得了突破性的进展。仅在过去的几年中,铁磁有序现象就在CrI3,Cr2Ge2Te6,FenGeTe2(n=3,4,5)等具有范德华结构的二维范德华晶体中被观察到。这一系列的二维范德华铁磁晶体及其异质结构不仅蕴含了丰富的物理机制和有趣的电子性质,还有望提供多种奇特量子效应的研究平台,如量子反常霍尔效应、量子自旋霍尔效应和谷霍尔效应等,并为各种多功能量子器件的实现提供了材料基础。
[0003] 然而,尽管最近发现的二维范德华本征铁磁晶体推动了本征二维磁性和各种多功能自旋电子学器件如隧穿电子磁性探测、自旋量子传感器、巨隧穿磁阻、自旋隧穿场效应晶体管等的发展,但由于它们极低的居里温度,这些器件仍然只能在远低于室温的条件下工作。因此,制备具有超室温居里温度、大饱和磁矩和大垂直磁各向异性的本征二维范德华铁磁晶体,并以其为基础实现能在室温下工作的二维量子器件仍然面临着一定的困难。

发明内容

[0004] 本发明的目的是为了解决上述问题而提供的一类Ga基范德华室温铁磁晶体材料与制备方法,利用本发明可以制备出高质量的Ga基范德华室温铁磁晶体:Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)和Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)。本发明制备的Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)和Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)晶体均具有范德华结构,容易剥离到少层,居里温度都高于室温,分别为330~367K和320~
345K,饱和磁矩分别为50~57.2emu/g和80~88.5emu/g。其中,Fe3‑aGabTe2(a=‑0.3~0.1,b
5 5 3
=0.8~1.2)单晶的垂直磁各项异性能高达3.25×10~4.79×10J/m。此外,机械剥离得到的二维Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)和Fe5‑cGeGadTe2(c=‑0.2~0.2,d=
0.01~0.5)纳米片厚度在纳米量级,横向尺寸在微米量级,适用于当下的各种微纳加工工艺,可以用于制备各种多功能的二维量子器件。本发明所述的一类Ga基范德华室温铁磁晶体材料的制备方法工艺简单,成本低廉,工艺稳定性良好,这一发明有望推动基于Ga基二维范德华室温铁磁晶体的各种多功能二维量子器件的发展和实际应用。
[0005] 根据本发明第一方面,提供了一种Ga基范德华铁磁晶体材料,所述铁磁晶体材料为Fe3‑aGabTe2铁磁晶体,其中a=‑0.3~0.1,b=0.8~1.2;或者为Fe5‑cGeGadTe2铁磁晶体,其中c=‑0.2~0.2,d=0.01~0.5;
[0006] 所述Fe3‑aGabTe2铁磁晶体的Fe3‑aGabTe2化合物以及所述Fe5‑cGeGadTe2铁磁晶体的Fe5‑cGeGadTe2化合物均含有化合价为零价的铁原子;
[0007] 所述Fe3‑aGabTe2铁磁晶体和所述Fe5‑cGeGadTe2铁磁晶体的居里温度分别为330‑367K和320‑345K,所述Fe3‑aGabTe2铁磁晶体和所述Fe5‑cGeGadTe2铁磁晶体在各自居里温度以下表现出铁磁性。
[0008] 优选地,所述Fe3‑aGabTe2铁磁晶体和Fe5‑cGeGadTe2铁磁晶体的饱和磁矩分别为50~57.2emu/g和80~88.5emu/g。
[0009] 根据本发明另一方面,提供了一种铁磁晶体的制备方法,包括以下步骤:
[0010] (1)将Fe粉、Ga块和Te粉充分混匀,所述Fe粉和Ga块物质的量之和等于Te粉物质的量;所述Fe粉物质的量占Fe粉和Ga块物质的量之和的40%‑60%;
[0011] (2)对装载步骤(1)得到的混合物的容器进行抽真空;
[0012] (3)对所述混合物进行加热,所述加热的温度为950~1050℃,然后降温,在结晶生长过程中以0.5~1.5℃/h的速度降温,即得到Fe3‑aGabTe2铁磁晶体,其中a=‑0.3~0.1,b=0.8~1.2。
[0013] 优选地,所述加热的时间为24h‑48h。
[0014] 优选地,所述降温为先以70‑170℃/h的速度快速降温至880℃,再以0.5~1.5℃/h的速度缓慢降温到780℃,然后自然冷却。
[0015] 根据本发明另一方面,提供了一种铁磁晶体的制备方法,包括以下步骤:
[0016] (1)将Fe粉、Ge粉、Ga块、Te粉和I2粒充分混匀,所述Fe粉物质的量、Ge粉与Ga块物质的量之和以及Te粉物质的量三者之比为4:1:2,所述Ge粉物质的量占Ge粉和Ga块物质的量之和的40%‑60%;
[0017] (2)对装载步骤(1)得到的混合物的容器进行抽真空;
[0018] (3)将所述容器装载混合物的部分置于双温区管式炉内的高温原材料区,将所述容器没有装载混合物的部分置于双温区管式炉内的低温结晶区;所述高温原材料区的温度为950~1050℃,所述低温结晶区的温度为600~700℃;所述I2粒作为输运剂,将混合物输送至低温结晶区反应得到Fe5‑cGeGadTe2铁磁晶体,其中c=‑0.2~0.2,d=0.01~0.5。
[0019] 优选地,步骤(3)中,所述反应的时间为168h‑330h。
[0020] 优选地,所述I2粒的质量比上容器的体积为3‑9mg/cm3。
[0021] 根据本发明另一方面,提供了所述Ga基范德华铁磁晶体材料在二维量子器件中的应用。
[0022] 优选地,所述二维量子器件为反常霍尔器件或电调控磁性器件。
[0023] 总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
[0024] (1)利用自助熔剂法,在结晶温度附近缓慢降温生长的Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)块体单晶纯度高,容易剥离得到少层二维纳米片,其尺寸适合光刻等微纳加工工艺,适用于各种多功能二维量子器件的制备。
[0025] (2)利用化学气相输运法,以碘单质作为输运剂,以恒定温度在石英安瓿瓶的低温结晶区生长的Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)单晶纯度高,容易剥离得到少层二维纳米片,其尺寸适合光刻等微纳加工工艺,适用于各种多功能二维量子器件的制备。
[0026] (3)对于Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2),采用如权利要求书所述的原料用量比,是因为需要足够过量的Ga和Te作为助熔剂以熔化高熔点的Fe,而其中Ga起到更为关键的作用,所以进一步定义了原料中Fe和Ga的物质的量之间的关系。对于Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5),采用如权利要求书所述的原料用量比,是因为碘单质输运化合物中涉及到的四种元素的效率不同。比如与Ge相比,Ga更难以输运,所以即使化合物Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)中的Ga的物质的量远小于Ge,但在原料中仍需投入过量的Ga。
[0027] (4)本发明制备得到的一类Ga基范德华室温铁磁晶体Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)和Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)单晶的居里温度分别为330~367K和320~345K。这种超室温的铁磁性来自于两个材料中均含有的零价铁原子,Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)铁磁晶体的Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)化合物中有一个铁原子为零价,零价铁原子(即铁单质)的理论居里温度高达1043K,但是在化合物中,由于Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)和Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)单晶与铁单质的晶体结构上的差异,居里温度有所降低,但仍然高于300K,高于已知的绝大部分范德华铁磁晶体。
[0028] (5)本发明制备得到的一类Ga基范德华室温铁磁晶体均具有较大的饱和磁矩。具体地,Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)单晶的饱和磁矩为50~57.2emu/g,Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)单晶的饱和磁矩为80~88.5emu/g,高于已知的大部分二维范德华铁磁晶体。
[0029] (6)本发明制备得到的Ga基范德华室温铁磁晶体Fe3‑aGabTe2(a=‑0.3~0.1,b=5
0.8~1.2)具有较大的垂直磁各向异性,其在300K时的垂直磁各向异性能高达3.25×10 ~
5 3
4.79×10J/m,高于大部分广泛使用的铁磁薄膜材料。
[0030] (7)通过机械剥离Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)和Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)单晶,得到的二维纳米片尺寸在微米量级,厚度在纳米量级,有利于对材料进行光刻等微纳加工工艺,可以实现反常霍尔器件、电调控磁性器件等,在二维量子器件领域有广泛的应用前景。

附图说明

[0031] 图1是实施例1的Ga基二维范德华室温铁磁晶体Fe3GaTe2单晶的X射线衍射图谱。
[0032] 图2是实施例4的Ga基二维范德华室温铁磁晶体Fe5GeGa0.1Te2单晶的X射线衍射图谱。
[0033] 图3是实施例1的Ga基二维范德华室温铁磁晶体Fe3GaTe2纳米片的能谱元素分布图。
[0034] 图4是实施例4的Ga基二维范德华室温铁磁晶体Fe5GeGa0.1Te2纳米片的能谱元素分布图。
[0035] 图5是实施例1的Ga基二维范德华室温铁磁晶体Fe3GaTe2单晶的自发磁化曲线和面外磁场、不同温度下的磁滞回线。
[0036] 图6是实施例4的Ga基二维范德华室温铁磁晶体Fe5GeGa0.1Te2单晶的自发磁化曲线和面外磁场、不同温度下的磁滞回线。
[0037] 图7是实施例1的基于Ga基二维范德华室温铁磁晶体Fe3GaTe2纳米片的反常霍尔器件和超室温反常霍尔效应。
[0038] 图8是实施例4的基于Ga基二维范德华室温铁磁晶体Fe5GeGa0.1Te2纳米片的反常霍尔器件和超室温反常霍尔效应。
[0039] 图9是实施例1的基于Ga基二维范德华室温铁磁晶体Fe3GaTe2单晶的面内磁场、300K下的磁滞回线。
[0040] 图10是实施例4的基于Ga基二维范德华室温铁磁晶体Fe3GaTe2单晶的电调控磁性曲线图。

具体实施方式

[0041] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
[0042] 本发明一类Ga基范德华室温铁磁晶体材料与制备,所述材料制备方法如下:
[0043] 对于Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2):
[0044] 1)步骤一:将具有一定摩尔比的Fe粉(99.99%)、Ga块(99.999%)、Te粉(99.999%)放入石英安瓿瓶底部;一定摩尔比指的是Fe粉和Ga块物质的量之和等于Te粉物质的量;所述Fe粉物质的量占Fe粉和Ga块物质的量之和的40%‑60%;
[0045] 2)步骤二:将安瓿瓶抽真空并密封;
[0046] 3)步骤三:将安瓿瓶放置在马弗炉内,在1‑5小时内升温至950~1050℃并保温1~2天,然后快速降温至880℃并以0.5~1.5℃/h的速度缓慢降温到780℃。随后程序结束,安瓿瓶随炉自然冷却至室温;
[0047] 对于Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5):
[0048] 1)步骤一:将具有一定摩尔比的Fe粉(99.99%)、Ge粉(99.999%)、Ga块(99.999%)、Te粉(99.999%)和一定质量的I2粒(99.99%)放入石英安瓿瓶底部;一定摩尔比指的是所述Fe粉物质的量、Ge粉与Ga块物质的量之和以及Te粉物质的量三者之比为4:1:2,所述Ge粉物质的量占Ge粉和Ga块物质的量之和的40%‑60%;
[0049] 2)步骤二:将安瓿瓶抽真空并密封;
[0050] 3)步骤三:将安瓿瓶放置在双温区管式炉内,原料端为高温原材料区,另一端为低温结晶区;在1‑5小时内将高温区和低温区分别加热至950~1050℃和600~700℃,保温1~2周后自然降温至室温。
[0051] 一些实施例中,所述Ga块尺寸范围为1~10mm,体积为0.1~0.5cm3;所述I2粒直径3
范围为1~3mm,所述I2粒的质量比上容器的体积为3‑9mg/cm ,所述Fe,Ge,Te粉末尺寸范围为100~300目。
[0052] 一些实施例中,所述石英管的抽真空密封过程为:用机械泵抽真空到1Pa以下,然后用纯度为99.999%的氩气清洗3次以清除石英管里的氧气,最后用氢氧焰封管。
[0053] 一些实施例中,所述用于生长Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)的石英安瓿瓶管径2cm、长度10cm;所述用于生长Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)的石英安瓿瓶管径2~5cm、长度40cm。
[0054] 一些实施例中,所述Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)和Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)晶体材料尺寸分别为2~3×1~2×0.1~0.5mm和6×4×0.1~0.5mm。
[0055] 本发明一类Ga基范德华室温铁磁晶体材料与制备方法,所述Fe3‑aGabTe2(a=‑0.3~0.1,b=0.8~1.2)和Fe5‑cGeGadTe2(c=‑0.2~0.2,d=0.01~0.5)晶体材料都是高质量的室温铁磁化合物,具有范德华结构易于机械剥离,颜色为银白色,并可剥离为表面平整、较薄的片状二维纳米晶体,可用于制备各种多功能二维量子器件;所述的材料都是单晶。
[0056] 本发明一类Ga基范德华室温铁磁晶体材料与制备,现结合以下具体实施例和附图,对本发明作进一步的详细说明。
[0057] 实施例1
[0058] 1)称量摩尔比为1:1:2的高纯Fe粉、Ga块和Te粉,将其分别倒入石英安瓿瓶底部并抽真空密封。
[0059] 2)将密封好的安瓿瓶放置在马弗炉内。在1小时内升温至1000℃并保温1天,然后100℃/h快速降温至880℃并以1℃/h的速度缓慢降温到780℃。随后程序结束,安瓿瓶随炉自然冷却至室温,得到Fe3GaTe2单晶。
[0060] 实施例2
[0061] 1)称量摩尔比为0.8:1.2:2的高纯Fe粉、Ga块和Te粉,将其分别倒入石英安瓿瓶底部并抽真空密封。
[0062] 2)将密封好的安瓿瓶放置在马弗炉内。在1小时内升温至1000℃并保温1天,然后100℃/h快速降温至880℃并以1℃/h的速度缓慢降温到780℃。随后程序结束,安瓿瓶随炉自然冷却至室温,得到Fe2.9Ga1.2Te2单晶。
[0063] 实施例3
[0064] 1)称量摩尔比为1.2:0.8:2的高纯Fe粉、Ga块和Te粉,将其分别倒入石英安瓿瓶底部并抽真空密封。
[0065] 2)将密封好的安瓿瓶放置在马弗炉内。在1小时内升温至1000℃并保温1天,然后100℃/h快速降温至880℃并以1℃/h的速度缓慢降温到780℃。随后程序结束,安瓿瓶随炉自然冷却至室温,得到Fe3.3Ga0.8Te2单晶。
[0066] 实施例4
[0067] 1)称量摩尔比为8:1:1:4的高纯Fe粉、Ge粉、Ga块、Te粉和0.3g I2粒,将其分别倒入石英安瓿瓶底部并抽真空密封。
[0068] 2)将密封好的安瓿瓶放置在双温区管式炉内,原料端为高温原材料区,另一端为低温结晶区。在1小时内分别将高温区和低温区加热至1000℃和650℃,保温2周后自然降温至室温,在低温结晶区得到Fe5GeGa0.1Te2单晶。
[0069] 实施例5
[0070] 1)称量摩尔比为8:1.2:0.8:4的高纯Fe粉、Ge粉、Ga块、Te粉和0.3g I2粒,将其分别倒入石英安瓿瓶底部并抽真空密封。
[0071] 2)将密封好的安瓿瓶放置在双温区管式炉内,原料端为高温原材料区,另一端为低温结晶区。在1小时内分别将高温区和低温区加热至1000℃和650℃,保温2周后自然降温至室温,在低温结晶区得到Fe5.2GeGa0.01Te2单晶。
[0072] 实施例6
[0073] 1)称量摩尔比为8:0.8:1.2:4的高纯Fe粉、Ge粉、Ga块、Te粉和0.3g I2粒,将其分别倒入石英安瓿瓶底部并抽真空密封。
[0074] 2)将密封好的安瓿瓶放置在双温区管式炉内,原料端为高温原材料区,另一端为低温结晶区。在1小时内分别将高温区和低温区加热至1000℃和650℃,保温2周后自然降温至室温,在低温结晶区得到Fe4.8GeGa0.5Te2单晶。
[0075] 图1是Fe3GaTe2单晶的X射线衍射图谱,将其与理论的X射线衍射图谱对比后可知,Fe3GaTe2单晶的X射线衍射图谱中的等间距衍射峰对应(00l)晶面,且未观察到任何杂质峰,说明合成的Fe3GaTe2单晶具有较高的结晶质量和严格的生长取向。图2是Fe5GeGa0.1Te2单晶的X射线衍射图谱,将其与理论的X射线衍射图谱对比后可知,Fe5GeGa0.1Te2单晶的X射线衍射图谱中的等间距衍射峰对应(00l)晶面,且未观察到任何杂质峰,说明合成的Fe5GeGa0.1Te2单晶具有较高的结晶质量和严格的生长取向。图3是Fe3GaTe2纳米片的能谱元素分布图,能谱分析表明Fe、Ga、Te三个元素均匀地分布在Fe3GaTe2中。图4是Fe5GeGa0.1Te2纳米片的能谱元素分布图,能谱分析表明Fe、Ge、Ga、Te四个元素均匀地分布在Fe5GeGa0.1Te2中。图5是Fe3GaTe2单晶的自发磁化曲线和面外磁场、不同温度下的磁滞回线。表明了Fe3GaTe2单晶的本征超室温铁磁性和大饱和磁矩。图6是Fe5GeGa0.1Te2单晶的自发磁化曲线和面外磁场、不同温度下的磁滞回线。表明了Fe5GeGa0.1Te2单晶的本征超室温铁磁性和大饱和磁矩。图7是Fe3GaTe2纳米片的反常霍尔器件和超室温反常霍尔效应。表明了Fe3GaTe2单晶的易剥离特性、本征超室温铁磁性以及二维量子器件应用潜力。图8是Fe5GeGa0.1Te2纳米片的反常霍尔器件和超室温反常霍尔效应。表明了Fe5GeGa0.1Te2单晶的易剥离特性、本征超室温铁磁性以及二维量子器件应用潜力。图9是实施例1的基于Ga基二维范德华室温铁磁晶体Fe3GaTe2单晶的面内磁场、300K下的磁滞回线。由该图可以计算出Fe3GaTe2在300K下的垂5 3
直磁各向异性能高达4.79×10J/m 。图10是实施例1的基于Ga基二维范德华室温铁磁晶体Fe3GaTe2单晶的电调控磁性曲线图。表明流过器件的电流对样品的霍尔电阻有明显的调节效果,展示了其在二维量子器件领域的应用前景。
[0076] 本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。