一种测定高温合金晶粒转动角度的方法转让专利

申请号 : CN202210954477.8

文献号 : CN115372135B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张红菊孙泽明吴磊邱鹏曹东东肖新蕊李成林赵帅

申请人 : 国标(北京)检验认证有限公司

摘要 :

本发明涉及一种测定高温合金晶粒转动角度的方法,属于材料介观尺度力学性能评价技术领域。首先将高温合金材料制备成拉伸测试样品;利用原位拉伸试验机对待测样品进行逐步加载;采用图像采集装置获取待测样品在不同载荷下的实时组织图像;将图像导入数字图像处理软件中,获取待测样品原位组织图像的全场任意位置的位移量场;标识待测样品中感兴趣晶粒的特征边界点及相应的位移量;计算晶粒的旋转角度。本发明方法样品制备简单,无需电解抛光,晶粒形貌可直接观察。本发明方法观测区域大,可达到毫米数量级,相对于EBSD微区电子背散射衍射方法,本发明提供的数据更具代表性。

权利要求 :

1.一种测定高温合金晶粒转动角度的方法,包括如下步骤:(1)样品制备:将高温合金材料制备成拉伸测试样品;

(2)高温合金显微组织跟踪观察:利用原位拉伸试验机对待测样品进行逐步加载;采用图像采集装置获取待测样品在不同载荷下的实时组织图像;

(3)采用数字图像相关法采集和处理图像,计算晶粒旋转角度:将图像导入数字图像处理软件中,获取待测样品原位组织图像的全场任意位置的位移量场;标识待测样品中感兴趣晶粒的特征边界点及相应的位移量;计算晶粒的旋转角度;

晶粒旋转角度的计算方法包括:

1)将采集的照片导入到数字图像相关性软件中,并以原始未加载照片作为参考;

2)对原始未加载照片感兴趣的区域ROI,用选取多个点获取孪晶晶粒区域;

3)对选取ROI进行质量评估,相关性>90%,可以进行数字图像相关性计算;

4)点选其他照片,作为将要进行相关性计算的照片;

5)获得ROI区域内所有点计算结果,包括了位移场、应变场;

6)标识出晶粒A特征边界点,代入到公式中,得到不同应力或载荷下旋转角度;

包括以下具体步骤:

i)定义X,Y分别表示晶粒周围点坐标的x,y值的向量集合,U,V分别表示晶粒周围点的x和y方向的位移,构造矩阵MXY=(X,Y,1)和MUV=(U,V),于是变换矩阵f满足:MXYf=MUV                               (1)‑1

f=MXY MUV                               (2)MXY是超定矩阵,其矩阵的逆是通过最小二乘法求解出的伪逆矩阵;设仿射矩阵F为参考图上点到变形图上的投影矩阵,通过变换矩阵f的转置和单位矩阵加和获得,即:

2)对仿射矩阵F使用SVD分解:

T

F=UΣV                                  (4)得出奇异矩阵U,V,则秩为2的基础矩阵R为:

T

R=UV                                    (5)

3)计算旋转角度θ:

θ=arcsin(R(1,0))                             (6)。

2.根据权利要求1中所述的测定高温合金晶粒转动角度的方法,其特征在于:将高温合金材料制备成拉伸测试样品,包括如下步骤:

1)对高温合金材料进行机械加工,制备板状拉伸试样;

2)对试样进行砂纸粗磨、细磨和抛光;

3)采用腐蚀剂对高温合金试样进行腐蚀、清洗和干燥。

3.根据权利要求2中所述的测定高温合金晶粒转动角度的方法,其特征在于:所述的机械加工为线切割和/或铣;所述的试样是片状试样,两端宽、中间窄,包括夹持端、过渡圆弧和平行段,所述的试样厚度为0.98mm~1.20mm,平行段宽度为0.90~1.10mm,夹持端宽度是平行段宽度的20倍以上;所述的试样晶粒尺寸大小在50μm至150μm范围内;所述的抛光包括粗砂纸抛光和细砂纸抛光。

4.根据权利要求1中所述的测定高温合金晶粒转动角度的方法,其特征在于:通过原位拉伸实验,对试样进行中心点不变地加载、保载观察和继续加载的阶梯加载方式拉伸,采用数字图像相关方法对未变形和变形后组织图像进行采集。

5.根据权利要求1中所述的测定高温合金晶粒转动角度的方法,其特征在于:所述的原位拉伸试验机为金属材料力学拉伸试验机;所述的图像采集装置为光学金相显微镜。

6.根据权利要求5中所述的测定高温合金晶粒转动角度的方法,其特征在于:所述的图像采集装置设置在原位拉伸试验机上,能够观测到样品整个测试区域。

7.根据权利要求6中所述的测定高温合金晶粒转动角度的方法,其特征在于:所述的原位拉伸试验机具有单轴双向或双轴双向加载模式、应力控制或位移控制方式以及手动逐步加载功能,并可记录载荷‑位移曲线;拉伸过程中具有中心点不变的功能,其偏移量不大于

0.5mm;拉伸过程中具有载荷保持功能,时间为1s~30s。

8.根据权利要求7中所述的测定高温合金晶粒转动角度的方法,其特征在于:所述的图像采集装置为光学金相显微镜,包括光学显微镜和CCD相机;光学显微镜,光学放大倍数不低于5倍;所述的图像采集装置中CCD相机的像素点不低于500万,CCD相机的色彩格式为彩色,镜头具有连续变焦功能。

9.根据权利要求1中所述的测定高温合金晶粒转动角度的方法,其特征在于:采用数字图像处理软件对图像完成全场测量并计算出全部像素点的位移,然后利用晶粒周围像素点的位移求解仿射矩阵,随后利用SVD分解仿射矩阵从而求解晶粒的旋转角度。

10.根据权利要求1中所述的测定高温合金晶粒转动角度的方法,其特征在于:所述的数字图像相关法是微观/介观尺度的DIC;数字图像相关法对感兴趣区域位移量数值提取具有点、线和面功能;数字图像相关法计算晶粒旋转按顺时针方向转动时数值为正,逆时针方向数值为负。

说明书 :

一种测定高温合金晶粒转动角度的方法

技术领域

[0001] 本发明涉及一种测定高温合金晶粒转动角度的方法,在金属材料原位拉伸过程中,采用光学显微镜与数字图像相关性(DIC)软件,测量晶粒旋转角度,属于材料介观尺度力学性能评价技术领域。

背景技术

[0002] 机械性能是材料研究和开发最基础的参数指标,而材料组织与性能息息相关,如何从材料组织角度提高材料的性能以满足行业需求是一直以来的研究热点。近年来学者多从以下两个尺度进行深入研究,一方面从微观尺度出发,集中在单个晶粒内部,如晶格、位错、析出相、晶体结构等显微组织对性能的影响,多从现象出发推测断裂机理,研究尺度过于局部化,结论属于偶发性,不具有代表性;另一方面从宏观尺度考虑,多关注材料的冶金缺陷、制备工艺、表面状态及热处理制度等对力学性能的影响,这些信息又忽略了材料内部组织结构的某些特征细节。众所周知,大多数金属材料都是多晶体,在材料失效断裂过程中,试样内部晶粒与晶粒之间的变形运动方式及对力学性能的影响是研究的重点和难点,也是材料塑性变形机理学科的延续和深化。介观尺度正是基于此理论,研究晶粒群的塑性变形行为,且认为最基础的力学行为是承载晶粒群的平移→转动所形成的涡流所致。材料断裂失效一般发生在晶粒群平移转动涡流平衡态遭遇破坏的最后阶段,也就是晶粒群产生的转动和周围基体的逆向调节转动平衡达到了极限值,导致材料裂纹产生。在介观尺度上,材料强度、塑性性能是其晶粒群抵抗变形涡流旋转度的能力。因此,有必要从介观尺度开展晶粒或晶粒群变形转动角度的连续监测,以期深入地预测材料断裂机理,发现金属材料室温下触发失效的微观机制。
[0003] 介观尺度晶粒旋转角度的计算通常在原位拉伸过程中借助光学显微镜(OM)与数字图像相关性(DIC)计算软件手段。目前国内外文献报道的多采用微观尺度的电子背散射衍射(EBSD)方法与数字图像相关方法结合,虽然可以对材料进行织构和晶粒间取向差分析,但是不能直观捕获加载过程中的滑移线活动和晶格旋转变化。

发明内容

[0004] 本发明的目的在于,针对高温合金材料研发及失效机理探究的技术需求,提供了一种原位、在线、连续测量晶粒旋转角度的方法。本发明的方法采用散斑跟踪技术,利用集成光学显微镜和拉伸试验机的显微组织原位观测平台,对高温合金进行原位拉伸试验,对其拉伸过程中的显微组织进行跟踪,通过公式计算,从而获得晶粒旋转角度。
[0005] 本发明测定高温合金晶粒转动角度的试验方法包含高温合金样品制备、显微组织预案为观测平台搭建、高温合金显微组织跟踪观察及晶粒旋转角度计算等流程;待测晶粒为材料的金相组织,光学显微镜与DIC相结合,在光学显微分辨率下进行原位变形实验,可以直接比较同一区域金相组织演变及映射的旋转角度场关系。
[0006] 一种测定高温合金晶粒转动角度的方法,包括如下步骤:
[0007] (1)样品制备:将高温合金材料制备成拉伸测试样品;
[0008] (2)高温合金显微组织跟踪观察:利用原位拉伸试验机对待测样品进行逐步加载;采用图像采集装置获取待测样品在不同载荷下的实时组织图像;
[0009] (3)采用数字图像相关法(DIC)采集和处理图像,计算晶粒旋转角度:将图像导入数字图像处理软件中,获取待测样品原位组织图像的全场任意位置的位移量场;标识待测样品中感兴趣晶粒的特征边界点及相应的位移量;采用公式(6),计算晶粒的旋转角度。
[0010] 步骤(1)中,将高温合金材料制备成拉伸测试样品,包括如下步骤:
[0011] 1)对高温合金材料进行机械加工,制备板状拉伸试样;机械加工为线切割和/或铣,优选采用线切割机床进行电火花切割;所述的试样是片状试样,两端宽、中间窄,包括夹持端、过渡圆弧和平行段(测试区域),所述的试样厚度为0.98mm~1.20mm,平行段宽度为0.90~1.10mm,夹持端宽度是平行段宽度的20倍以上;所述的试样晶粒尺寸大小在50μm至
150μm范围内;
[0012] 2)对线切割后试样进行砂纸粗磨、细磨和抛光;所述的抛光包括粗砂纸抛光和细砂纸抛光;
[0013] 3)采用腐蚀剂对高温合金试样进行腐蚀、清洗和干燥。
[0014] 步骤(2)中,通过原位拉伸实验,对试样进行中心点不变地加载、保载观察、继续加载等阶梯加载方式拉伸,采用数字图像相关方法对未变形和变形后组织图像进行采集。
[0015] 所述的原位拉伸试验机为金属材料力学拉伸试验机;所述的图像采集装置为光学金相显微镜。利用金属材料力学拉伸试验机与金相显微镜相结合获得原位金相组织图像。
[0016] 所述的原位拉伸试验机具有单轴双向或双轴双向加载模式;所述的拉伸试验机具有手动逐步加载功能,并记录载荷‑位移曲线;所述的拉伸试验机具有应力控制或位移控制方式;所述的试验机拉伸过程中具有中心点不变的功能,其偏移量不大于0.5mm;所述的试验机拉伸过程中具有载荷保持功能,时间为1s~30s;
[0017] 所述的图像采集装置可设置在原位拉伸试验机上(集成图像采集装置的原位拉伸试验机),能够观测到样品整个测试区域。
[0018] 所述的图像采集装置可为光学金相显微镜,包括光学显微镜和CCD相机;光学显微镜,观察倍数不低于5倍光学放大倍数。所述的图像采集装置中CCD相机的像素点不低于500万;所述的图像采集装置中CCD相机的色彩格式为彩色,镜头具有连续变焦功能。
[0019] 步骤(3)中,采用数字图像处理软件对图像完成全场测量并计算出全部像素点的位移,然后利用晶粒周围像素点的位移求解仿射矩阵,随后利用SVD分解(奇异值分解)仿射矩阵从而求解晶粒的旋转角度。
[0020] 本发明采用的数字图像相关法(DIC)是微观/介观尺度的DIC。数字图像相关法(DIC)对感兴趣区域(ROI)位移量数值提取具有点、线和面功能;数字图像相关法(DIC)计算晶粒旋转按顺时针方向转动时数值为正,逆时针方向数值为负。
[0021] 本发明方法中,所述的高温合金金相组织中晶粒尺寸范围为50μm~150μm,晶粒度级别为2~3级。
[0022] 与现有技术相比,本发明方法采用显微组织原位观测平台进行获取高温合金晶粒旋转角度,具有以下优点:
[0023] 1、本发明提供的晶粒旋转角度试验方法相对于EBSD观察方法,样品制备较简单,无需电解抛光,晶粒形貌可直接观察。
[0024] 2、本发明提供的晶粒旋转角度试验方法观测区域大,可达到毫米数量级,相对于EBSD微区电子背散射衍射方法,本发明提供的数据更具代表性。
[0025] 3、本发明获得的晶粒旋转角度能够直观地分析出晶粒在材料塑性变形过程中转动方向及与周围相邻晶粒协调运动情况,为材料断裂失效机理提供直接证据。

附图说明

[0026] 图1为实施例中高温合金原位拉伸样品尺寸图;
[0027] 图2为实施例中高温合金原位拉伸逐级加载—保载示意图;
[0028] 图3为实施例中高温合金原位拉伸试验过程中晶粒变化情况;
[0029] 图4为实施例中高温合金原位拉伸试验过程中晶粒旋转角度曲线图。

具体实施方式

[0030] 为进一步了解本发明,下面根据附图和具体实施例为详细说明。
[0031] 下面以镍铁基高温合金,牌号为GH4169D为例,测量高温合金材料原位拉伸过程中晶粒旋转角度。
[0032] (1)原位拉伸试件准备
[0033] 利用电火花加工(EDM)沿着高温合金薄板轧制方向(RD)加工成连续过渡狗骨形拉伸试样,高温合金原位拉伸试样的尺寸示意图如图1所示,其中标距宽度为1mm,标距长度为2mm,厚度为1mm。
[0034] 1)在金相制样前,首先用400#粒度金相SiC水砂纸去除拉伸试样平行段切割边缘的痕迹,以确保试样边缘无毛刺,用游标卡尺测量试样原始宽度W。
[0035] 2)接着,将拉伸试样一面两端用502胶水平整地粘贴在专用磨样块上,依次用250#、600#、1000#、2500#粒度SiC砂纸将拉伸试样另一面进行打磨;然后用抛光膏抛光至镜面光洁度;用配比为20ml盐酸(密度1.19g/mL),20ml无水乙醇和1.5g五水硫酸铜配成的混合腐蚀液,侵蚀1~3min,对晶界进行化学腐蚀。
[0036] 3)用工具将试样两端轻轻翘起,注意不要用力过大免得试样发生扭转。
[0037] 4)最后,用千分尺或螺旋测微器测量金相原位拉伸试样的厚度T。
[0038] (2)原位拉伸试验参数设置
[0039] 1)首先,在双向拉伸试验机中,定义样品编号并输入试样原始宽度和厚度尺寸,分别为1.02mm、0.990mm。
[0040] 2)采用手动逐级加载‑保载模式进行原位测试,测试程序见图2所示。设置一系列应力点,以Ri表示,其中i从0、1、2‑‑‑‑‑11。其中R0为原始状态。
[0041] 3)根据试样原始宽度与厚度,可以计算出试样横截面积S0。应力Ri与横截面积S0乘积得到每步保载的力值Fi。拍摄原位保载下晶粒组织的照片,力值点见表1。
[0042] 表1为实施例中高温合金原位拉伸过程中逐级保载载荷点
[0043]
[0044] (3)图像采集镜头倍数选择
[0045] 试样观察区域宽度为1.02mm,长度为2.00mm。图像采集装置为光学显微镜,图像采集装置用CCD相机感光面积大小为1英寸,宽度为12.7mm,高度为9.6mm。CCD宽度/试样长度≈6倍;CCD高度/试样宽度≈9倍;因此,可选用5倍的光学放大物镜。
[0046] (4)原位拉伸试样安装
[0047] 1)用记号笔在试样非观察两夹持端标记中心线;
[0048] 2)开启试验机,载荷和位移调零点;
[0049] 3)先夹持试样上端,使得试样中心线与夹具楔形夹块“0”刻度线重合,保证试样同轴;
[0050] 4)再夹持试样下端,同样保持对中;
[0051] 5)转动XYZ平台中微距旋钮,使得试样图像左右、前后和上下移动,确保试样平行段区域处于图像中间。
[0052] 6)拍摄未加载前试样原始组织照片,见图3中“0MPa”
[0053] (5)原位拉伸测试过程
[0054] 1)首先手动输入表1中第一个保载点“707N”,以0.2mm/min试验速率进行加载,当试验力达到707N时,保载5s,此时拍摄组织照片,得到图3中“700MPa”。
[0055] 2)然后输入第二个保载点“757N”,以上述速率加载,到载荷后拍摄组织照片,同样得到图3中“750MPa”。
[0056] 3)以此类推,直至完成表1中所有设置的保载点。
[0057] (6)晶粒旋转角度计算
[0058] 1)将采集的12张照片导入到数字图像相关性软件中,并以原始未加载照片作为参考;
[0059] 2)对原始未加载照片感兴趣的区域(ROI),见图3中孪晶晶粒,用选取多个点获取孪晶晶粒区域;
[0060] 3)对选取ROI进行质量评估,相关性>90%,说明可以进行数字图像相关性计算;
[0061] 4)点选其他11张照片,作为将要进行相关性计算的照片;
[0062] 5)获得ROI区域内所有点计算结果,包括了位移场、应变场等;
[0063] 6)标识出晶粒A(如图3所示)特征边界点,代入到公式中,得到不同应力或载荷下旋转角度;
[0064] 包括如下具体步骤:
[0065] i)定义X,Y分别表示晶粒周围点坐标的x,y值的向量集合,U,V分别表示晶粒周围点的x和y方向的位移,构造矩阵MXY=(X,Y,1)和MUV=(U,V),于是变换矩阵f满足:
[0066] MXYf=MUV                               (1)
[0067] f=MXY‑1MUV                              (2)
[0068] 需要注意的是MXY是超定矩阵,其矩阵的逆是通过最小二乘法求解出的伪逆矩阵;设仿射矩阵F为参考图上点到变形图上的投影矩阵,它可以通过变换矩阵f的转置和单位矩阵加和获得,即:
[0069]
[0070] 2)对仿射矩阵F使用SVD分解:
[0071] F=UΣVT                                 (4)
[0072] 得出奇异矩阵U,V,则秩为2的基础矩阵R为:
[0073] R=UVT                                   (5)
[0074] 3)计算旋转角度θ:
[0075] θ=arcsin(R(1,0))                            (6)
[0076] 表2实施例高温合金中晶粒A在不同保载载荷点下的旋转角度
[0077]
[0078] 7)同样,标识出晶粒B(如图3所示)特征边界点,代入到公式中,得到不同应力或载荷下旋转角度;
[0079] 表3实施例高温合金中晶粒B在不同保载载荷点下的旋转角度
[0080]
[0081]
[0082] 8)绘制晶粒A和晶粒B旋转角度随应力变化曲线图,见图4。
[0083] 本发明是一种基于DIC方法的金属材料晶粒旋转角度的测量方法,首先获取待测金属材料在拉伸不同阶段的显微组织图像,用数字图像计算软件对图像完成全场测量并计算出全部像素点的位移,然后利用晶粒周围像素点的位移求解仿射矩阵,随后利用SVD分解仿射矩阵从而求解晶粒的旋转角度。