一种Tb掺杂ZnS光催化降解材料的制备方法转让专利

申请号 : CN202211196804.4

文献号 : CN115414951B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 洪春水杨雷李效平邹玥

申请人 : 永州市湘江稀土有限责任公司

摘要 :

本发明公开了一种Tb掺杂ZnS光催化降解材料的制备方法。包括以下步骤1:将可溶性锌盐、可溶性铽盐溶于去离子水,搅拌充分溶解后加入分散剂、溶剂,最后用去离子水定容,制得溶液A;步骤2:将Na2S2O3·5H2O溶于去离子水,搅拌充分溶解后加入分散剂、溶剂,最后用去离子水定容,制得溶液B;步骤3:将溶液A与溶液B经超声混合均匀,制得溶液C;步骤4:溶液C在75℃‑85℃温度下进行蒸发,水分蒸干后的固体用去离子水反复清洗,最后过滤分离得到固体D;步骤5,将固体D加热干燥即得。该方法简单可控,制得的材料催化降解率高。

权利要求 :

1.一种Tb掺杂ZnS光催化降解材料的制备方法,其特征在于,包括以下步骤1:将可溶性锌盐、可溶性铽盐溶于去离子水,铽元素与锌元素的摩尔比为(1‑3):100,搅拌充分溶解后加入分散剂、溶剂,最后用去离子水定容,制得溶液A,所述分散剂、溶剂分别为十二烷基磺酸钠和正辛烷,所述十二烷基磺酸钠的加入量的浓度控制在0.01‑0.02g/ml,所述正辛烷的体积百分比浓度控制在1‑2%;

步骤2:将Na2S2O3·5H2O溶于去离子水,搅拌充分溶解后加入十二烷基磺酸钠和正辛烷,最后用去离子水定容,制得溶液B;

步骤3:将溶液A与溶液B经超声混合均匀,制得溶液C;

步骤4:溶液C在75℃‑85℃温度下进行蒸发,水分蒸干后的固体用去离子水反复清洗,最后过滤分离得到固体D;

步骤5:将固体D加热干燥即得。

2.根据权利要求1所述的一种Tb掺杂ZnS光催化降解材料的制备方法,其特征在于,所述可溶性锌盐为ZnSO4·7H2O。

3.根据权利要求1所述的一种Tb掺杂ZnS光催化降解材料的制备方法,其特征在于,所述可溶性铽盐为六水硝酸铽。

4.根据权利要求1所述的一种Tb掺杂ZnS光催化降解材料的制备方法,其特征在于,在

80℃干燥。

说明书 :

一种Tb掺杂ZnS光催化降解材料的制备方法

技术领域

[0001] 本发明涉及化学领域,具体涉及一种Tb掺杂ZnS光催化降解材料的制备方法。

背景技术

[0002] 光催化降解技术,能耗低,环境友好,是一种理想的环境降解技术。光催化材料包括TiO2基,ZnO基,ZnS基等多种类型,ZnS是最早被人们发现并使用的半导体材料之一,其作为Ⅱ‑Ⅵ族半导体材料,有着出色的物理特性,如能带隙宽,高折射率,高透光率等,在可见光范围内有着巨大的潜力应用于光学。硫化锌主要以闪锌矿(带隙宽度为3.54eV)和纤锌矿(带隙宽度为3.71eV)两种晶体形态存在,具有无毒、化学稳定性好、环境友好及独特的光电性能等特点,被认为是最具发展潜力的光催化材料之一。为了提高ZnS光催化材料的光催化效果,人们一般采取两种途径,一方面是减少ZnS的粒径,增加光催化剂的接触比表面,在此同时,增加ZnS粒径的均匀性,另一方面是促进ZnS纳米材料中导电电子与价带空穴的分离。从而采用了很多方法。一般将ZnS做成纳米材料,减小ZnS的粒径,促进ZnS电荷分离一般采用掺杂的方式,如公开号为CN104667949A、名称为以离子液体为模板制备Bi掺杂ZnS光催化剂的方法中公开的Bi掺杂ZnS纳米球光催化剂。ZnS光催化剂在光催化过程中光生电子和空穴容易复合,催化效率低。因此,如何拓宽ZnS光催化剂光谱响应范围、提高其光量子效率成为光催化学科研究的重点和难点。
[0003] ZnS制备方法较多,有模板法、固相反应法、均匀沉淀法、水热法/溶剂热法、微乳液法、溶胶‑凝胶法、化学气相沉积法等。在均匀沉淀法反应过程中,因硫化锌的溶度积常数‑23Ksp=1.20×10 ,比较小,产生的硫离子会迅速与锌离子反应,从而容易使硫化锌快速长大,或者使硫化锌颗粒大小不均匀,不易产生均相沉淀,导致掺杂的稀土元素少,影响最终产品的光催化能力。

发明内容

[0004] 本发明提供一种Tb掺杂ZnS光催化降解材料的制备方法,对ZnS:Tb的粒径、均匀性、缺陷能级和杂质能级的位置和数量的实现有效控制,从而得到高催化降解活性的ZnS:Tb纳米颗粒。
[0005] 为了解决上述技术问题,本发明的技术方案如下:
[0006] 一种Tb掺杂ZnS光催化降解材料的制备方法,包括如下步骤:
[0007] 步骤1:将可溶性锌盐、可溶性铽盐溶于去离子水,搅拌充分溶解后加入分散剂、溶剂,最后用去离子水定容,制得溶液A;
[0008] 步骤2:将Na2S2O3·5H2O溶于去离子水,搅拌充分溶解后加入分散剂、溶剂,最后用去离子水定容,制得溶液B;
[0009] 步骤3:将溶液A与溶液B经超声混合均匀,制得溶液C;
[0010] 步骤4:溶液C在75℃‑85℃温度下进行蒸发,水分蒸干后的固体用去离子水反复清洗,最后过滤分离得到固体D;
[0011] 步骤5,将固体D在80℃的温度下干燥即得。
[0012] 进一步的,所述可溶性锌盐为ZnSO4·7H2O。
[0013] 进一步的,所述可溶性铽盐为六水硝酸铽。
[0014] 进一步的,所述分散剂、溶剂分别为十二烷基磺酸钠和正辛烷。
[0015] 进一步的,所述铽元素与锌元素的摩尔比为(1‑3):100。
[0016] 进一步的,所述十二烷基磺酸钠的加入量的浓度控制在0.01‑0.02g/ml。
[0017] 进一步的,所述正辛烷的体积百分比浓度控制在1‑2%。
[0018] 实验原理
[0019] ZnS:Tb催化剂的形成机理过程如下:当ZnSO4和DBS溶解到水中时,溶液中DBS的浓2+ 2– 2–
形成胶束,大量Zn 扩散进胶束里面。超声过程使ZnS2O3分解产生S 离子。在微乳液中,S 离
2+ 3+
子和Zn 离子、Tb 离子结合生成ZnS:Tb,这是成核过程。新生成的ZnS容易形成近似球形结构,颗粒很小,处于纳米级,因为这种结构表面能最小。由于超声过程的能量比较均匀,硫代硫酸钠释放硫离子的速度合适,因此ZnS:Tb颗粒在掺杂比较均匀,颗粒的大小比较均匀。
[0020] DBS和正辛烷在材料形成均匀纳米颗粒的过程中至关重要,DBS一端有十二烷基构成的疏水长链,一端有璜酸纳构成的亲水基团,在这种浓度下,溶液中DBS的浓度形成胶束,正辛烷的加入,在超声条件下,能够在水溶液中形成油水微乳液,在这种超声和微乳液条件下,可以促进小型近球形胶束的形成,促进ZnS:Tb沉淀的产生,并且控制ZnS:Tb颗粒的形貌。由于表面活性剂的浓度合适,因此在超声的过程中,表面活性剂包敷着刚刚形成的ZnS:Tb晶核,使ZnS:Tb晶核分散。而在水和正庚烷同时存在的微乳液中,表面活性剂将维持球形的囊泡形状。有助于形成ZnS:Tb纳米光催化剂。
[0021] 与现有技术相比,本发明实施例的有益效果是:
[0022] 铽掺杂ZnS大大拓宽ZnS的光谱响应范围,使ZnS在可见光区域有良好的吸收,提高了太阳能的利用率;铽掺杂ZnS能够有效减小光生电子和空穴的复合概率,提高ZnS的光催化活性;本发明的铽掺杂ZnS的光催化剂的制备方法简单,易于控制。

具体实施方式

[0023] 应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
[0024] 结合具体实例对本发明作进一步的说明,以下实例仅是为了解释本发明,并不对其内容进行限定。
[0025] 除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等,均可通过市场购买获得或者可通过现有方法获得。
[0026] 实施例1
[0027] 1)在配料中心,在1号配料池通过1号加水口,加入30升去离子水,在2号加料口投入718.96克ZnSO4·7H2O粉体,不停的搅拌,使ZnSO4·7H2O溶解。在5号加料口投入10.88克六水硝酸铽,不断的搅拌,溶解。在3号投料口加入500克十二烷基磺酸钠(DBS),在4号投料口加入500ml正辛烷,不断搅拌。在搅拌的过程中加入一定量的去离子水,在配料池中形成50升溶液,搅拌均匀,获得分散液A。分散液A中ZnSO4的摩尔浓度为0.05M,Tb元素与锌元素的摩尔比为1%,十二烷基磺酸的浓度为0.01g/ml,正辛烷的浓度为0.01ml/ml。
[0028] 2)在配料中心,在2号配料池通过1号加水口,加入30升去离子水,在2号加料口投入744.54克五水合硫代硫酸钠颗粒,不停的搅拌,使硫代硫酸钠溶解。在3号投料口加入500克十二烷基磺酸钠(DBS),在4号投料口加入500ml正辛烷,不断搅拌。在搅拌的过程中加入一定量的去离子水,在配料池中形成50升溶液,搅拌均匀,获得分散液B。分散液B中硫代硫酸钠的摩尔浓度为0.06M,十二烷基磺酸的浓度为0.01g/ml,正辛烷的浓度为0.01ml/ml。为了把锌离子完全沉淀下来,硫代硫酸钠的量存在一些过量。
[0029] 3)将1号和2号配料池中的分散液A和分散液B分别通过管道,引入到封闭的超声反应池混合形成100升混合液,先将混合液搅拌分散均匀。混合后溶液稀释了,硫化锌的浓度为0.025M和硫代硫酸钠的浓度为0.03M,十二烷基磺酸的浓度为仍然为0.01g/m,正辛烷的浓度仍为0.01ml/ml。然后再在反应池中进行超声处理,超声器超声总功率为2kw,超声时间30分钟,形成略带淡黄色的混合液C。
[0030] 4)将混合液C通过管道引入到蒸发池,混合液C在蒸发池中80℃,直至水分完全干,形成黄色固体D。在80℃下将水分蒸干。
[0031] 5)倾倒蒸发池,用机械铲子把固体D取出来,把固体放置在过滤池中,过滤器的滤布过滤精度为0.5微米厚度2mm。用去离子水反复清洗,然后过滤分离。
[0032] 6)在干燥机中,在80℃下,干燥ZnS:Tb纳米颗粒。
[0033] 实施例2
[0034] 1)在配料中心,在1号配料池通过1号加水口,加入30升去离子水,在2号加料口投入1437.91克ZnSO4·7H2O粉体,不停的搅拌,使七水硫酸锌溶解。在5号加料口投入43.50克六水硝酸铽,不断的搅拌,溶解。在3号投料口加入750克十二烷基磺酸钠(DBS),在4号投料口加入750ml正辛烷,不断搅拌。在搅拌的过程中加入一定量的去离子水,在配料池中形成50升溶液,搅拌均匀,获得分散液A。分散液A中ZnSO4的摩尔浓度为0.1M,Tb元素与锌元素的摩尔比为2%,十二烷基磺酸的浓度为0.015g/ml,正辛烷的浓度为0.015ml/ml。
[0035] 2)在配料中心,在2号配料池通过1号加水口,加入30升去离子水,在2号加料口投入1489.08克五水合硫代硫酸钠颗粒,不停的搅拌,使硫代硫酸钠溶解。在3号投料口加入750克十二烷基磺酸钠(DBS),在4号投料口加入750ml正辛烷,不断搅拌。在搅拌的过程中加入一定量的去离子水,在配料池中形成50升溶液,搅拌均匀,获得分散液B。分散液B中硫代硫酸钠的摩尔浓度为0.12M,十二烷基磺酸的浓度为0.015g/ml,正辛烷的浓度为0.015ml/ml。为了把锌离子完全沉淀下来,硫代硫酸钠的量存在一些过量。
[0036] 3)将1号和2号配料池中的分散液A和分散液B分别通过管道,引入到封闭的超声反应池混合形成100升混合液,先将混合液搅拌分散均匀。混合后溶液稀释了,硫化锌的浓度为0.05M和硫代硫酸钠的浓度为0.06M,十二烷基磺酸的浓度为仍然为0.015g/m,正辛烷的浓度仍为0.015ml/ml。然后再在反应池中进行超声处理,超声器超声总功率为2kw,超声时间30分钟,形成略带淡黄色的混合液C。
[0037] 4)将混合液C通过管道引入到蒸发池,混合液C在蒸发池中80℃,直至水分完全干,形成黄色固体D。在80℃下将水分蒸干。
[0038] 5)倾倒蒸发池,用机械铲子把固体D取出来,把固体放置在过滤池中,过滤器的滤布过滤精度为0.5微米厚度2mm。用去离子水反复清洗,然后过滤分离。
[0039] 6)在干燥机中,在80℃下,干燥ZnS:Tb纳米颗粒。
[0040] 实施例3
[0041] 1)在配料中心,在1号配料池通过1号加水口,加入30升去离子水,在2号加料口投入2875.82克ZnSO4·7H2O粉体,不停的搅拌,使七水硫酸锌溶解。在5号加料口投入130.51克六水硝酸铽,不断的搅拌,溶解。在3号投料口加入1000克十二烷基磺酸钠(DBS),在4号投料口加入1000ml正辛烷,不断搅拌。在搅拌的过程中加入一定量的去离子水,在配料池中形成50升溶液,搅拌均匀,获得分散液A。分散液A中ZnSO4的摩尔浓度为0.2M,Tb元素与锌元素的摩尔比为3%,十二烷基磺酸的浓度为0.02g/ml,正辛烷的浓度为0.02ml/ml。
[0042] 2)在配料中心,在2号配料池通过1号加水口,加入30升去离子水,在2号加料口投入2978.16克五水合硫代硫酸钠颗粒,不停的搅拌,使硫代硫酸钠溶解。在3号投料口加入1000克十二烷基磺酸钠(DBS),在4号投料口加入1000ml正辛烷,不断搅拌。在搅拌的过程中加入一定量的去离子水,在配料池中形成50升溶液,搅拌均匀,获得分散液B。分散液B中硫代硫酸钠的摩尔浓度为0.24M,十二烷基磺酸的浓度为0.02g/ml,正辛烷的浓度为0.02ml/ml。为了把锌离子完全沉淀下来,硫代硫酸钠的量存在一些过量。
[0043] 3)将1号和2号配料池中的分散液A和分散液B分别通过管道,引入到封闭的超声反应池混合形成100升混合液,先将混合液搅拌分散均匀。混合后溶液稀释了,硫化锌的浓度为0.1M和硫代硫酸钠的浓度为0.12M,十二烷基磺酸的浓度为仍然为0.02g/m,正辛烷的浓度仍为0.02ml/ml。然后再在反应池中进行超声处理,超声器超声总功率为2kw,超声时间30分钟,形成略带淡黄色的混合液C。
[0044] 4)将混合液C通过管道引入到蒸发池,混合液C在蒸发池中80℃,直至水分完全干,形成黄色固体D。在80℃下将水分蒸干。
[0045] 5)倾倒蒸发池,用机械铲子把固体D取出来,把固体放置在过滤池中,过滤器的滤布过滤精度为0.5微米厚度2mm。用去离子水反复清洗,然后过滤分离。
[0046] 6)在干燥机中,在80℃下,干燥ZnS:Tb纳米颗粒。
[0047] 对比例1
[0048] 对比例1中,选用硫脲作硫源,其余均同实施例3。
[0049] 对比例2
[0050] 对比例2中,选用DBS、正己烷作分散剂及萃取溶剂,其余均同实施例3。
[0051] 对比例3
[0052] 对比例3中,不采用超声混合,其余均同实施例3,硫代硫酸钠与锌离子发生络合反应,几乎不会形成ZnS的沉淀。
[0053] 光催化实验
[0054] 光催化性能测试参照光催化材料水溶液净化性能测试方法(GB/T 23762‑2020),具体过程为:首先配比浓度为15ppm的罗丹明B(RhB)溶液,取50mg的ZnS:Tb放入50ml的RhB溶液中(催化剂浓度仅约0.1%),暗处理匀速搅拌1小时,达到吸附平衡,然后将烧杯置于125W紫外灯下照射,60min后,直至RhB降解完全,将取出的样品离心,取上层清液,使用紫外‑分光光度计测量罗丹明B在吸收峰值(550nm)的吸光度,算出降解率。
[0055] 表1 ZnS:Tb的平均粒径与催化性能
[0056]
[0057] 根据上述测试结果对于本发明催化剂的性能,催化剂在低剂量使用的前提下,在较短的时间里,对较低浓度罗丹明B有着较好的催化降解率。一般,在较高剂量,较长时间中对高浓度罗丹明B的催化效果将更好。值得注意的是,本发明的催化剂,在较大掺杂浓度和较大粒径的催化剂反而有更好的催化效果,这不是比表面积带来的效果,应该来源于缺陷与杂质能级带来的贡献。这进一步说明,本发明的制备工艺,有利于在催化剂中引入大量的缺陷和杂质能级,促使催化剂的电荷分离。当缺陷能级上的电子,返回导带时,会与水中反应,产生·OH和·O2等自由基,促进罗丹明B的降解。
[0058] 上述表中的数据还表明:选用进行铽的掺杂时,选用硫代硫酸钠作为硫源,再配合DBS、正辛烷的助剂以及一定的反应条件,最终能获得催化性能较好的ZnS:Tb光降解催化材料。
[0059] 以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。