一种氮化硅纤维增强透波陶瓷材料及其制备方法转让专利

申请号 : CN202211080150.9

文献号 : CN115448732B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 肖亮朱福林曾小锋许滔钱利洪

申请人 : 衡阳凯新特种材料科技有限公司

摘要 :

本发明提供了一种氮化硅纤维增强透波陶瓷材料及其制备方法,在包含氮化硅纤维的3D间隔织物上生长氮化硅晶须,得到氮化硅预制件;将氮化硅预制件在粒径为80‑200nm的硅溶胶中浸渍吸附,然后在惰性氛围下高温烧结,再热解除碳,得到具有通孔的陶瓷前驱体;最后采用原子层沉积法向通孔中填充氮化硅,得到氮化硅纤维增强透波陶瓷材料。本发明通过将间隔织物浸渍吸附包含氮化硅晶须的硅溶胶,使氮化硅晶须弥散分布于陶瓷基体中;通过提高硅溶胶的粒径,形成具有通孔的陶瓷前驱体,接着通过原子层沉积技术,使得通孔中嵌入部分氮化硅,从而显著提高陶瓷的致密多孔性和高温稳定性,得到综合性能优异的氮化硅纤维增强透波陶瓷材料。

权利要求 :

1.一种氮化硅纤维增强透波陶瓷材料的制备方法,其特征在于,包括以下步骤:S1.制备包含氮化硅纤维的3D间隔织物,得到氮化硅预制件;

S2.将所述氮化硅预制件在包含氮化硅晶须的硅溶胶中浸渍吸附,然后取出干燥,在惰性氛围下高温烧结,接着热解除碳,得到具有通孔的陶瓷前驱体;所述硅溶胶的粒径为80‑

200nm;其中,氮化硅晶须的直径为0.1~10μm,长度为0.1~100μm,长径比为8‑20:1;

S3.采用原子层沉积法,向所述陶瓷前驱体的通孔中填充氮化硅,得到氮化硅纤维增强透波陶瓷材料。

2.根据权利要求1所述的氮化硅纤维增强透波陶瓷材料的制备方法,其特征在于,在步骤S1中,所述3D间隔织物包括上下两层支撑层织物以及用于连接所述支撑层的间隔层,所2

述间隔层由间隔纱形成立体网络结构,且间隔纱的横向排列密度为50‑100根/cm ,所述间隔纱包括氮化硅纤维和石英纤维。

3.根据权利要求2所述的氮化硅纤维增强透波陶瓷材料的制备方法,其特征在于,每层所述支撑层织物的厚度为0.5‑2mm,所述间隔层的厚度为1‑10mm。

4.根据权利要求1所述的氮化硅纤维增强透波陶瓷材料的制备方法,其特征在于,在步骤S2中,所述氮化硅晶须为硅溶胶质量的10%‑20%。

5.根据权利要求1所述的氮化硅纤维增强透波陶瓷材料的制备方法,其特征在于,在步骤S2中,所述硅溶胶的粒径为100‑150nm。

6.根据权利要求1所述的氮化硅纤维增强透波陶瓷材料的制备方法,其特征在于,在步骤S2中,所述高温烧结的温度为800‑1300℃,时间为2‑8h。

7.根据权利要求1所述的氮化硅纤维增强透波陶瓷材料的制备方法,其特征在于,在步骤S2中,所述热解除碳在氧气下进行,温度为500‑700℃,时间为3‑12h。

8.根据权利要求5所述的氮化硅纤维增强透波陶瓷材料的制备方法,其特在于,所述硅溶胶还添加有粒径为100‑150nm的氮化硅纳米颗粒,所述氮化硅纳米颗粒为硅溶胶质量的

10%‑20%。

9.根据权利要求1所述的氮化硅纤维增强透波陶瓷材料的制备方法,其特征在于,在步骤S3中,所述原子层沉积法包括:以四碘化硅为硅源,氨气为氮源,氮气为载气,在200℃下,按15秒SiI4蒸气脉冲、15秒惰性N2净化、15秒NH3脉冲和15秒惰性N2净化,进行循环脉冲沉积,以在陶瓷前驱体的通孔中填充部分氮化硅,提高致密多孔性;所示氮化硅填充量占孔隙总体积的30%‑50%。

10.一种氮化硅纤维增强透波陶瓷材料,其特征在于,采用权利要求1‑9中任一项所述的制备方法制备得到。

说明书 :

一种氮化硅纤维增强透波陶瓷材料及其制备方法

技术领域

[0001] 本发明涉及透波材料技术领域,尤其涉及一种氮化硅纤维增强透波陶瓷材料及其制备方法。

背景技术

[0002] 随着高速飞行器的快速发展,天线罩或天线窗用高温透波材料面临严峻的考验,迫切要求其综合性能的不断提升,具体包括:长时间高温承载能力,优异的高温及室温介电
性能(介电常数ε<4,损耗角正切tanδ<0  .01),优异的抗热冲击性能,良好的耐烧蚀性能,较
低的热导率和热膨胀系数,以及良好的耐环境性能等。当前,纤维增强二氧化硅复合材料在
高温透波材料领域中得到了广泛的应用。氮化硅纤维(Si3N4f)是综合性能优异的透波增强
体,将其引入到陶瓷材料中可有效提高材料的力学性能。然而,对于透波材料,增强体的存
在会导致材料显微结构的非均质化,影响陶瓷材料的致密性和力学性能,进而限制了透波
陶瓷在严苛环境中的应用。
[0003] 专利CN112898038A公开了一种氮化硅基纤维独石陶瓷透波材料制备方法,该方法将Si3N4 f纤维浸渍烧结助剂后垂直排列,然后将丙烯酰胺、交联剂以及氮化硅粉体混合制
成凝胶,将浆料注入排列好的氮化硅纤维模具中,烧结、排胶,得到氮化硅基纤维独石陶瓷
透波材料。该材料由于氮化硅含量高,因此弯曲强度较高,但由于其孔隙结构均匀性和孔隙
率不高,导致介电常数偏高,因此透波性能提高有限。

发明内容

[0004] 为了克服上述现有技术的不足,本发明的目的在于提供一种氮化硅纤维增强透波陶瓷材料及其制备方法,该方法通过将间隔织物浸渍吸附包含氮化硅晶须的硅溶胶,使氮
化硅晶须弥散分布于陶瓷基体中;通过提高硅溶胶的粒径,形成具有通孔的陶瓷前驱体,接
着通过原子层沉积技术,使得氮化硅嵌入通孔中,与此同时,通过控制沉积量来控制填充
率,从而显著提高陶瓷的致密多孔性和高温稳定性,最终得到综合性能优异的氮化硅纤维
增强透波陶瓷材料。
[0005] 为实现上述发明目的,本发明提供了一种氮化硅纤维增强透波陶瓷材料的制备方法,包括以下步骤:
[0006] S1.制备包含氮化硅纤维的3D间隔织物,得到氮化硅预制件;
[0007] S2.将所述氮化硅预制件在包含氮化硅晶须的硅溶胶中浸渍吸附,然后取出干燥,在惰性氛围下高温烧结,接着热解除碳,得到具有通孔的陶瓷前驱体;所述硅溶胶的粒径为
80‑200nm;
[0008] S3.采用原子层沉积法,向所述陶瓷前驱体的通孔中填充氮化硅,得到氮化硅纤维增强透波陶瓷材料。
[0009] 进一步的,在步骤S1中,所述3D间隔织物包括上下两层支撑层织物以及用于连接所述支撑层的间隔层,所述间隔层由间隔纱形成立体网络结构,且间隔纱的横向排列密度
2
为50‑100根/cm,所述间隔纱包括氮化硅纤维和石英纤维。
[0010] 进一步的,每层所述支撑层织物的厚度为0.5‑2mm,所述间隔层的厚度为1‑10mm。
[0011] 进一步的,在步骤S2中,所述氮化硅晶须的直径为0.1~10μm,长度为0.1~100μm,所述氮化硅晶须为硅溶胶质量的10%‑20%。
[0012] 进一步的,在步骤S2中,所述硅溶胶的粒径为100‑150nm。
[0013] 进一步的,在步骤S2中,所述高温烧结的温度为800‑1300℃,时间为2‑8h。
[0014] 进一步的,在步骤S2中,所述热解除碳在氧气下进行,温度为500‑700℃,时间为3‑12h。
[0015] 进一步的,所述硅溶胶还添加有粒径为100‑150nm的氮化硅纳米颗粒,所述氮化硅纳米颗粒为硅溶胶质量的10%‑20%。
[0016] 进一步的,在步骤S3中,所述原子层沉积法包括:以四碘化硅为硅源,氨气为氮源,氮气为载气,在200℃下,按15秒SiI4蒸气脉冲、15秒惰性N2净化、15秒NH3脉冲和15秒惰性N2
净化,进行循环脉冲沉积,以在陶瓷前驱体的通孔中填充部分氮化硅,提高致密多孔性。氮
化硅填充量占孔隙总体积的30%‑50%
[0017] 一种氮化硅纤维增强透波陶瓷材料,采用所述的制备方法制备得到。
[0018] 与现有技术相比,本发明优点在于:
[0019] 本发明提供的氮化硅纤维增强透波陶瓷材料的制备方法,通过将间隔织物浸渍吸附包含氮化硅晶须的硅溶胶,使氮化硅晶须弥散分布于陶瓷基体中;通过提高硅溶胶的粒
径,形成具有通孔的陶瓷前驱体,接着通过原子层沉积技术,使得氮化硅嵌入通孔中,与此
同时,通过控制沉积量来控制填充率,从而显著提高陶瓷的致密多孔性和高温稳定性,最终
得到综合性能优异的氮化硅纤维增强透波陶瓷材料。

附图说明

[0020] 图1为实施例1和4及对比例1和2的弯曲强度及介电常数柱状图。
[0021] 图2为实施例1的不同频率电磁波的透波率及反射率曲线图。

具体实施方式

[0022] 为了使本发明的目的、技术方案和优点更加清楚,下面结合具体实施例对本发明进行详细描述。
[0023] 在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在具体实施例中仅仅示出了与本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不
大的其他细节。
[0024] 本发明提供的一种氮化硅纤维增强透波陶瓷材料的制备方法,包括以下步骤:
[0025] S1.制备包含氮化硅纤维的3D间隔织物,得到氮化硅预制件;所述3D间隔织物包括上下两层支撑层织物以及用于连接所述支撑层的间隔层,所述间隔层由间隔纱形成立体网
2
络结构,且间隔纱的横向排列密度为50‑100根/cm ,所述间隔纱包括氮化硅纤维和石英纤
维。采用3D间隔织物作为纤维预制件,能够同时保证增强体的孔隙率和支撑强度,而且中间
间隔层的韧性较优,能够适应特殊的应用场景。采用氮化硅纤维和石英纤维制备间隔层,能
够在降低制造成本的同时,保证陶瓷材料的透波性能。
[0026] 每层支撑层织物的厚度为0.5‑2mm,例如为0.5‑1mm或1‑2mm,间隔层的厚度为1‑10mm,例如为1‑2mm、2‑5mm或5‑8mm。根据实际需求控制纤维预制件的厚度。
[0027] S2.将氮化硅预制件在包含氮化硅晶须的硅溶胶中浸渍吸附,然后取出干燥,在惰性氛围下高温烧结,接着热解除碳,得到具有通孔的陶瓷前驱体;其中,氮化硅晶须为硅溶
胶质量的10%‑20%;氮化硅晶须的直径为0.1~10μm,长度为0.1~100μm,优选直径为0.1‑1μ
m,长度为5‑20μm,优选长径比为8‑20:1,一定长径比的氮化硅晶须一方面能够提高在间隔
织物中的生长稳定性,另一方面能够便于形成交错的网络结构,提高二氧化硅陶瓷的强度。
长径比过长,则会影响二氧化硅的均匀性,从而降低良品率。通过在硅溶胶中掺杂少量的氮
化硅晶须,一方面提高陶瓷强度,另一方面提高陶瓷前驱体的通孔程度,便于后续氮化硅的
气相嵌入,从而形成一种特殊的增强陶瓷体结构,显著提高陶瓷的高温透波性。
[0028] 硅溶胶的粒径为80‑200nm,优选为100‑180nm,更优选为120‑150nm。现有技术使用的二氧化硅溶胶粒径大多在50nm以下,本发明为了控制二氧化硅陶瓷的孔隙结构,选用较
大粒径的硅溶胶,便于形成具有通孔结构的陶瓷前驱体,为后续氮化硅的气相沉积填充提
供条件。如果粒径过小,则陶瓷前驱体中孔径较小,且多为闭孔结构,难以向其内部填充氮
化硅,影响了陶瓷的致密性和强度。而本发明通过气相脉冲沉积,能够以原子形式逐步将氮
化硅填充于纳米孔中,既能提高致密性,又能利用氮化硅本身优异的透波性和机械性能赋
予陶瓷材料优异的综合性能。特别地,本发明在硅溶胶中添加适量的粒径为100‑150nm的氮
化硅纳米颗粒,氮化硅纳米颗粒为硅溶胶质量的10%‑20%。通过氮化硅纳米颗粒,进一步对
陶瓷前驱体的孔隙结构进行调控,而且增加氮化硅的含量,透波性能更优。
[0029] 高温烧结的温度为800‑1300℃,时间为2‑8h。所述热解除碳在氧气下进行,温度为500‑700℃,时间为3‑12h。
[0030] S3.采用原子层沉积法,向所述陶瓷前驱体的通孔中填充氮化硅,得到氮化硅纤维增强透波陶瓷材料。原子层沉积法包括:以四碘化硅为硅源,氨气为氮源,氮气为载气,在
200℃下,按15秒SiI4蒸气脉冲、15秒惰性N2净化、15秒NH3脉冲和15秒惰性N2净化,进行循环
脉冲沉积,以在陶瓷前驱体的通孔中填充部分氮化硅,提高致密多孔性。通过控制脉冲沉积
时间,控制沉积填充量,进而在保证一定孔隙率的情况下,提高其强度。通过此种方法,能够
实现小孔径和较高孔隙率,从而不至于孔径过大,影响强度。氮化硅填充量占孔隙总体积的
30%‑50%。
[0031] 实施例1‑12
[0032] 一种氮化硅纤维增强透波陶瓷材料的制备方法,包括以下步骤:
[0033] S1.制备氮化硅纤维基3D间隔织物,得到氮化硅预制件;间隔纱的横向排列密度为2
60根/cm。
[0034] S2.将氮化硅预制件在包含氮化硅晶须的硅溶胶中浸渍吸附,然后取出干燥,在惰性氛围下高温烧结(高温烧结的温度为900℃,时间为2h),接着热解除碳(在氧气下进行,温
度为600℃,时间为6h),得到具有通孔的陶瓷前驱体;其中,硅溶胶的粒径、氮化硅晶须的直
径、长度、氮化硅晶须含量如表1所示。
[0035] S3.采用原子层沉积法,向陶瓷前驱体的通孔中填充氮化硅,得到氮化硅纤维增强透波陶瓷材料。原子层沉积法包括:以四碘化硅为硅源,氨气为氮源,氮气为载气,在200℃
下,按15秒SiI4蒸气脉冲、15秒惰性N2净化、15秒NH3脉冲和15秒惰性N2净化,进行循环脉冲
沉积,以在陶瓷前驱体的通孔中填充部分氮化硅,提高致密多孔性。氮化硅填充量占孔隙总
体积的百分数如表1所示。
[0036] 表1实施例1‑12的制备参数
[0037] 实施例 硅溶胶的粒径(nm) 氮化硅晶须直径(μm) 氮化硅晶须长度(μm) 氮化硅晶须质量分数(%) 氮化硅填充量(%)1 130 0.3 4 15 40%
2 80 0.3 4 15 30%
3 100 0.3 4 15 40%
4 180 0.3 4 15 40%
5 200 0.3 4 15 40%
6 130 0.3 2 15 40%
7 130 0.3 8 15 40%
8 130 0.3 4 10 40%
9 130 0.3 4 20 40%
10 130 0.3 4 0 40%
11 130 0.3 4 15 30%
12 130 0.3 4 15 50%
[0038] 实施例13
[0039] 一种氮化硅纤维增强透波陶瓷材料的制备方法,包括以下步骤:
[0040] S1.制备氮化硅纤维基3D间隔织物,得到氮化硅预制件;间隔纱的横向排列密度为2
60根/cm。
[0041] S2.将氮化硅预制件在包含氮化硅晶须和氮化硅纳米颗粒的硅溶胶中浸渍吸附,然后取出干燥,在惰性氛围下高温烧结(高温烧结的温度为900℃,时间为3h),接着热解除
碳(在氧气下进行,温度为600℃,时间为6h),得到具有通孔的陶瓷前驱体;其中,硅溶胶的
粒径为130nm,氮化硅晶须的直径为0.3μm,长度为4μm;氮化硅晶须为硅溶胶质量的15%。氮
化硅纳米颗粒的粒径为130nm,添加量为硅溶胶质量的12%。
[0042] S3.采用原子层沉积法,向陶瓷前驱体的通孔中填充氮化硅,得到氮化硅纤维增强透波陶瓷材料。原子层沉积法包括:以四碘化硅为硅源,氨气为氮源,氮气为载气,在200℃
下,按15秒SiI4蒸气脉冲、15秒惰性N2净化、15秒NH3脉冲和15秒惰性N2净化,进行循环脉冲
沉积,以在陶瓷前驱体的通孔中填充氮化硅,提高致密性。
[0043] 对比例1
[0044] 一种氮化硅纤维增强透波陶瓷材料的制备方法,包括以下步骤:
[0045] S1.制备氮化硅纤维基3D间隔织物,得到氮化硅预制件;间隔纱的横向排列密度为2
60根/cm。
[0046] S2.将氮化硅预制件在包含氮化硅晶须的硅溶胶中浸渍吸附,然后取出干燥,在惰性氛围下高温烧结(高温烧结的温度为900℃,时间为3h),接着热解除碳(在氧气下进行,温
度为600℃,时间为6h),得到具有通孔的陶瓷前驱体;其中,硅溶胶的粒径为130nm,氮化硅
晶须的直径为0.3μm,长度为4μm。
[0047] 对比例2
[0048] 一种氮化硅纤维增强透波陶瓷材料的制备方法,包括以下步骤:
[0049] S1.制备氮化硅纤维基3D间隔织物,得到氮化硅预制件;间隔纱的横向排列密度为2
60根/cm。
[0050] S2.将氮化硅预制件在包含氮化硅晶须硅溶胶中浸渍吸附,然后取出干燥,在惰性氛围下高温烧结(高温烧结的温度为900℃,时间为3h),接着热解除碳(在氧气下进行,温度
为600℃,时间为6h),得到具有通孔的陶瓷前驱体;其中,硅溶胶的粒径为30nm,氮化硅晶须
的直径为0.3μm,长度为4μm;氮化硅晶须为硅溶胶质量的15%。
[0051] 从图2可以看出,实施例1制备的氮化硅纤维增强透波陶瓷材料对电磁波的反射率基本均在20%以下,透波率均在80%以上,特别是对6‑18GHZ范围内的透波率高达95%,吸波率
基本在3%以下,可见透波性良好。
[0052] 表2实施例1‑13及对比例1‑2的性能测试结果
[0053] 3试样 孔隙率(%) 介电常数 密度(g/cm) 室温弯曲强度(MPa)
实施例1 28 3.1 1.80 192
实施例2 27 3.5 1.78 175
实施例3 30 2.9 1.75 184
实施例4 33 2.7 1.73 172
实施例5 36 2.6 1.70 162
实施例6 27 3.1 1.81 188
实施例7 31 2.8 1.75 175
实施例8 26 3.2 1.81 193
实施例9 30 2.9 1.76 187
实施例10 25 3.5 1.82 185
实施例11 32 2.8 1.75 175
实施例12 24 3.4 1.83 198
实施例13 29 3.0 1.81 194
对比例1 46 2.1 1.65 124
对比例2 34 2.8 1.73 157
[0054] 从表2可以看出,当硅溶胶粒径过小时,氮化硅填充量最多只能达到总孔隙体积的30%,这是因为硅溶胶粒径过小,导致二氧化硅陶瓷前驱体中闭孔含量增多,因此氮化硅难
以向内部渗透,因此主要填充在表面。如此导致陶瓷均匀性降低,虽然孔隙率与实施例1相
当,但其介电常数增大,弯曲强度降低。随着硅溶胶粒径的增大,孔隙率逐渐升高,介电常数
随之降低,但弯曲强度也有所降低。实施例3相比实施例2虽然孔隙率增大,但弯曲强度比实
施例2高,这是因为通孔分布均匀,使得氮化硅填充均匀,因此能够保证陶瓷强度。可见,本
发明通过控制二氧化硅陶瓷孔隙结构,并结合氮化硅填充,能够制得高致密多孔陶瓷,既能
保证低介电常数,又能提高强度。
[0055] 从实施例6‑7可以看出,氮化硅晶须的长径比过大时,孔隙率增大,介电常数和弯曲强度均降低,且实施例7相比实施例3孔隙率虽然相当,但弯曲强度降低更明显,这是因为
氮化硅晶须的长径比过大导致孔隙均匀性有所降低,进而影响材料整体性能。
[0056] 从实施例8‑10可以看出,不添加氮化硅晶须时,孔隙率降低,导致介电常数降低,而且弯曲强度也比实施例8和9的低,说明氮化硅晶须在提高孔隙率的情况下,还能起到增
强作用。
[0057] 从对比例1‑2可以看出,当未填充氮化硅时,孔隙率显著提高,介电常数减小,但弯曲强度显著降低。当选用粒径仅为30nm的硅溶胶时,孔隙率相比对比例1降低,侧面验证粒
径过小,不易形成通孔结构。与本发明实施例4相比,孔隙率相当,但由于实施例4是在填充
了氮化硅后的孔隙率,因此强度相比对比例2显著大。可见,本发明通过陶瓷孔隙结构的控
制,结合氮化硅气相填充,能够制得透波和强度均较优的陶瓷材料。
[0058] 以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改
或者等同替换,而不脱离本发明技术方案的精神和范围。