一种层状结构纤维增强碳化硼复合材料的制备方法、应用转让专利

申请号 : CN202211457498.5

文献号 : CN115504800B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张玉娣何维刘金水

申请人 : 湖南大学

摘要 :

本发明公开一种层状结构纤维增强碳化硼复合材料的制备方法、应用,该方法包括以下步骤,(1)将短纤维和碳化硼陶瓷粉体制备成短纤维碳化硼陶瓷片;(2)将长纤维布和陶瓷粉体制备成长纤维碳化硼陶瓷片;(3)长、短纤维陶瓷片交替叠层,通过控制长、短纤维交替叠层数量来控制长、短纤维的量;(4)叠层后的材料浸渍树脂后热模压成型;(5)高温碳化+反应烧结后得到层状结构纤维增强碳化硼复合材料。该方法制备的复合材料具有高强度、高韧性、高硬度以及很好的抗冲击性能等,材料组分性能可调,且工艺简单,成本低,不需要复杂的高温高压设备,能够将该方法制备的复合材料用于防弹领域。

权利要求 :

1.一种层状结构纤维增强碳化硼复合材料的制备方法,其特征在于,包括以下步骤:S1:选取分散剂,利用所述分散剂分散短切纤维形成分散液A;采用所述分散剂分散含碳化硼陶瓷粉和石墨粉的混合粉体形成分散液B;将所述分散液A和分散液B混合,搅拌均匀后浇注到底面平整容器上震动铺展后干燥,获得短纤维碳化硼陶瓷片;所述短切纤维、碳化硼陶瓷粉、石墨粉以及分散剂的质量比为(0.5 2):(3 10):(0 1):100;

~ ~ ~

S2:称取石墨粉、碳化硼粉以及所述分散剂混合搅拌均匀得到泥浆;将所述泥浆涂刷或浸渍到长纤维布上,干燥,获得长纤维碳化硼陶瓷片;所述石墨粉、碳化硼粉以及分散剂的质量比为(1‑3):(10‑30):100;

S3:将所述短纤维碳化硼陶瓷片和长纤维碳化硼陶瓷片交替叠层;所述短纤维碳化硼陶瓷片和长纤维碳化硼陶瓷片层数比为0.2 5;

~

S4:对叠层后的陶瓷片组合体真空浸渍树脂溶液后模压,得到复合材料素坯;

S5:对所述复合材料素坯碳化后,进行液相硅渗透反应烧结,得到层状结构纤维增强碳化硼复合材料。

2.如权利要求1所述的制备方法,其特征在于,在步骤S1中,所述短切纤维为碳纤维、碳化硅纤维和氧化铝纤维中的一种;所述短切纤维长度为1 6mm。

~

3.如权利要求1所述的制备方法,其特征在于,在步骤S2中,所述长纤维布中纤维为碳纤维、碳化硅纤维和氧化铝纤维中的一种;所述长纤维布为平纹布、缎纹布和斜纹布的一种。

4.如权利要求1所述的制备方法,其特征在于,在步骤S1和S2中,所述分散剂为质量百分比0.5‑2%的聚丙烯酰胺或质量百分比0.5‑2%的羟甲基纤维素钠的水溶液。

5.如权利要求1所述的制备方法,其特征在于,在步骤S4中,所述树脂溶液为酚醛树脂溶液、环氧树脂溶液、聚碳硅烷溶液和硅基树脂溶液中的一种;所述树脂溶液中树脂的质量比为20‑50%。

6.如权利要求1所述的制备方法,其特征在于,在步骤S4中,所述模压温度100 200℃,~模压压力5 30MPa,保温保压时间0.5 2小时。

~ ~

7.如权利要求1所述的制备方法,其特征在于,在步骤S5中,所述碳化温度为800 1000~℃,保温0.5 1小时,液相硅渗透反应烧结的温度1450 1600℃,真空度1 100Pa,保温时间~ ~ ~

0.5 3小时。

~

8.一种层状结构纤维增强碳化硼复合材料的应用,其特征在于,将权利要求1 7任一项~所述制备方法制备得到的层状结构碳化硼复合材料应用于防弹领域。

说明书 :

一种层状结构纤维增强碳化硼复合材料的制备方法、应用

技术领域

[0001] 本发明涉及复合材料制备领域,尤其是一种层状结构纤维增强碳化硼复合材料的制备方法、应用。

背景技术

[0002] 碳化硼(B4C)是目前已知材料中硬度仅次于金刚石和立方氮化硼的超硬材料,硬2 3
度高达3000kg/mm ,密度仅为2.52g/cm 且模量较高,使其成为军事装甲和空间领域应用的主要材料。但单相B4C陶瓷断裂韧性低,抗外部冲击载荷性能较差,从而导致抗多发弹性能较差,限制了其防弹性能的发挥。纤维增强陶瓷基复合材料是提高陶瓷材料韧性的一种主要方法,现有碳化硼陶瓷增韧主要为短纤维增韧,且多采用球磨方式引入,短纤维在工艺过程中损伤严重,复合材料的韧性改善有限。因此制备出韧性高,抗多发打击性能优的碳化硼陶瓷材料具有很好的应用前景。

发明内容

[0003] 本发明提供一种层状结构纤维增强碳化硼复合材料的制备方法、应用,用于克服现有技术中碳化硼韧性低,抗多发打击性能差等缺陷。
[0004] 为实现上述目的,本发明提出一种层状结构纤维增强碳化硼复合材料的制备方法,包括以下步骤:
[0005] S1:选取分散剂,利用所述分散剂分散短切纤维形成分散液A;采用所述分散剂分散含碳化硼陶瓷粉和石墨粉的混合粉体形成分散液B;将所述分散液A和分散液B混合,搅拌均匀后浇注到底面平整容器上震动铺展后干燥,获得短纤维碳化硼陶瓷片;
[0006] S2:称取石墨粉、碳化硼粉以及所述分散剂混合搅拌均匀得到泥浆;将所述泥浆涂刷或浸渍到长纤维布上,干燥,获得长纤维碳化硼陶瓷片;
[0007] S3:将所述短纤维碳化硼陶瓷片和长纤维碳化硼陶瓷片交替叠层;所述短纤维碳化硼陶瓷片和长纤维碳化硼陶瓷片层数比为0.2 5;~
[0008] S4:对叠层后的陶瓷片组合体真空浸渍树脂溶液后模压,得到复合材料素坯;
[0009] S5:对所述复合材料素坯碳化后进行液相硅渗透反应烧结,得到层状结构纤维增强碳化硼复合材料。
[0010] 本发明的碳化硼复合材料为层状结构,包括若干层短纤维碳化硼陶瓷片和若干层长纤维碳化硼陶瓷片;所述短纤维碳化硼陶瓷片和长纤维碳化硼陶瓷片交替叠层;所述短纤维碳化硼陶瓷片和长纤维碳化硼陶瓷片层数比为0.2 5。~
[0011] 优选地,在步骤S1中,所述短切纤维为碳纤维、碳化硅纤维和氧化铝纤维中的一种;所述短切纤维长度为1 6mm。~
[0012] 优选地,在步骤S1中,所述短切纤维、碳化硼陶瓷粉、石墨粉以及分散剂的质量比为(0.5 2):(3 10):(0 1):100。分散剂高温碳化后形成的碳和添加的石墨粉均可以作为后~ ~ ~续烧结工艺的碳源,当分散剂在材料体系中含量较高,碳化后的碳能够满足反应烧结工艺所需的碳源时,则系统中不需要另外加入石墨粉;当分散剂在材料体系中含量较低,碳化后的碳不能够满足反应烧结工艺所需的碳源时,则需要像分散体系中另外加入石墨粉作为补充碳源补充。
[0013] 优选地,在步骤S2中,所述长纤维布中纤维为碳纤维、碳化硅纤维和氧化铝纤维中的一种;所述长纤维布为平纹布、缎纹布和斜纹布的一种。
[0014] 优选地,在步骤S2中,所述石墨粉、碳化硼粉以及分散剂的质量比为(1‑2):(10‑20):100。
[0015] 优选地,在步骤S1和S2中,所述分散剂为质量百分比0.5‑2%的聚丙烯酰胺或质量百分比0.5‑2%的羟甲基纤维素钠的水溶液。
[0016] 优选地,在步骤S4中,所述树脂溶液为酚醛树脂溶液、环氧树脂溶液、聚碳硅烷溶液和硅基树脂溶液中的一种;所述树脂溶液中树脂的质量比为20‑50%。
[0017] 优选地,在步骤S4中,所述模压温度100 200℃,模压压力5 30MPa,保温保压时间~ ~0.5 2小时。
~
[0018] 优选地,在步骤S5中,所述碳化温度为800‑1000℃,保温0.5‑1小时,液相硅渗透反应烧结的温度1450 1600℃,真空度1 100Pa,保温时间0.5 3小时。~ ~ ~
[0019] 为实现上述目的,本发明还提出一种层状结构纤维增强碳化硼复合材料的应用,将上述所述制备方法制备得到的碳化硼复合材料应用于防弹领域。
[0020] 与现有技术相比,本发明的有益效果有:
[0021] 纤维增强的B4C复合材料,与B4C单向陶瓷相比,具有高强度、高韧性、高硬度以及很好的抗冲击性能等,可提高防弹材料抗多发打击能力,可有效提高防弹板的防弹性能。本发明提供的层状结构纤维增强碳化硼复合材料的制备方法,通过控制长、短纤维交替叠层比(可以长、短纤维逐层交替层叠,也可以长纤维3层叠置一层短纤维等)以制备组成结构和性能可调的多层结构纤维增强碳化硼陶瓷基复合材料,使得制备的材料不仅有短纤维增强,同时还包含长纤维增强,该方法可以显著改善单独采用短纤维增强增韧效果差以及单独采用长纤维布材料容易分层的缺点。
[0022] 此外,现有技术中,长短纤维结合使用时,通常是将短纤维制备成的网胎和长纤维或纤维布交错叠层,针刺后形成纤维毡,成型后的纤维毡很难快速均匀引入陶瓷粉。本发明创造性的将短纤维和长纤维分别和陶瓷粉均匀混合后制成纤维增强陶瓷片材,叠层后模压获得复合材料,再通过高温反应烧结进一步致密化复合材料,本方法不仅可以在复合材料中快速低成本均匀的引入陶瓷相,而且制备的材料具有组成结构性能可调节可控制的优点。同时,本发明采用的制备方法工艺简单,周期短、成本低,不需要复杂的高温高压设备。
[0023] 因此,本发明制备的多层结构纤维增强增强碳化硼复合材料应用于防弹领域,与B4C单向陶瓷相比,具有高强度、高韧性、高硬度以及很好的抗冲击性能等。可提高防弹材料抗多发打击能力,可有效提高防弹板的防弹性能。

附图说明

[0024] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
[0025] 图1为实施例1制备的层状结构纤维增强碳化硼复合材料的示意图。
[0026] 附图说明:1:短纤维碳化硼陶瓷片;2:长纤维碳化硼陶瓷片。
[0027] 本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。

具体实施方式

[0028] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0029] 另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
[0030] 无特殊说明,所使用的药品/试剂均为市售。
[0031] 实施例1
[0032] 本实施例提供一种层状结构纤维增强碳化硼复合材料的制备方法,包括以下步骤:
[0033] 按质量比0.5:10:1:100取短切碳纤维、碳化硼粉体、石墨粉以及1%的聚丙烯酰胺水溶液。将1%的聚丙烯酰胺水溶液分成两份。利用1份1%的聚丙烯酰胺水溶液分散短切碳纤维形成分散液A;再采用另一份1%的聚丙烯酰胺水溶液分散分散含碳化硼陶瓷粉和石墨粉的混合粉体形成分散液B;将所述分散液A和分散液B混合,搅拌均匀,铺展到平底容器中,烘箱中120℃干燥8小时。
[0034] 将石墨粉、碳化硼粉以及1%的聚丙烯酰胺水溶液按质量比1:10:100混合搅拌均匀形成陶瓷浆料后,将碳纤维布逐层浸渍到陶瓷浆料中,取出,烘箱中120℃干燥8小时。
[0035] 将前两步制备获得的长短纤维陶瓷片交替叠层,将5片长纤维片和5片短纤维片,采用短/长/短/长……交替叠层,真空浸渍50%酚醛树脂溶液后,放到平板硫化机上模压,模压温度为120℃,压力5MPa,保压时间1小时,得到复合材料素坯。将复合材料素坯放到高温烧炉中碳化(碳化过程中采用模具提供一定压力防止碳化过程样品发生膨胀),碳化温度800℃,保温时间1小时。然后再放到真空炉中进行液相硅反应烧结,烧结温度1450℃,真空度30Pa,保温时间2小时,获得层状结构碳纤维增强碳化硼复合材料,如图1所示。
[0036] 实施例2
[0037] 本实施例提供一种层状结构碳化硅纤维增强碳化硼复合材料的制备方法,包括以下步骤:
[0038] 按质量比2:5:0.5:100取短切碳化硅纤维、碳化硼粉体、石墨粉以及0.5%羟甲基纤维素钠的水溶液。将0.5%羟甲基纤维素钠的水溶液分成两份。利用1份0.5%羟甲基纤维素钠的水溶液分散短切碳化硅纤维形成分散液A;再采用另一份0.5%羟甲基纤维素钠的水溶液分散分散含碳化硼陶瓷粉和石墨粉的混合粉体形成分散液B;将所述分散液A和分散液B混合,搅拌均匀,铺展到平底容器中,烘箱中150℃干燥10小时。
[0039] 将石墨粉、碳化硼粉以及0.5%羟甲基纤维素钠的水溶液按质量比2:20:100,混合搅拌均匀形成陶瓷浆料,将碳化硅纤维布逐层涂刷陶瓷浆料后,烘箱中150℃干燥10小时。
[0040] 将前两步制备获得的长短纤维陶瓷片交替叠层,将1片长纤维片和1片短纤维片,采用短/长/短/长……交替叠层,叠层后,真空浸渍20%聚碳硅烷溶液后,放到平板硫化机上模压,模压温度为180℃,压力10MPa,保压时间2小时,得到碳化硅纤维增强碳化硼复合材料素坯。
[0041] 将复合材料素坯放到高温烧炉中碳化(碳化过程中采用模具提供一定压力防止碳化过程样品发生膨胀),碳化温度1000℃,保温时间0.3小时。然后再放到真空炉中进行液相硅反应烧结,烧结温度1600℃,真空度100Pa,保温时间1小时,获得层状结构碳化硅纤维增强碳化硼复合材料。
[0042] 以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。