一种高熵陶瓷基梯度纳米复合刀具材料及其制备方法转让专利

申请号 : CN202211310101.X

文献号 : CN115521149B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 孙加林赵乐李晓

申请人 : 山东大学威海威硬工具股份有限公司

摘要 :

本发明属于陶瓷基复合材料技术领域,涉及一种高熵陶瓷基梯度纳米复合刀具材料及其制备方法。其制备方法为:按照5层对称梯度层结构的各层原料比例制备各层粉体,各层粉体采用分层铺压法装料,将5层梯度粉体压制成型,然后进行二步放电等离子烧结;表层中,高熵碳化物陶瓷96.4~98.7份,Al2O3 1~3份,石墨烯0.1~0.2份,碳纳米管0.2~0.4份;过渡层中,高熵碳化物陶瓷89~93份,Al2O3 3~5份,Co 3~5份,复式晶粒增长抑制剂0.8~1.2份;芯层中,高熵碳化物陶瓷89~93份,Co 6~10份,复式晶粒增长抑制剂0.8~1.2份;所述复式晶粒增长抑制剂为Cr3C2和VC。

权利要求 :

1.一种高熵陶瓷基梯度纳米复合刀具材料的制备方法,其特征是,按照5层对称梯度层结构的各层原料比例制备各层粉体,各层粉体采用分层铺压法装料,将5层梯度粉体压制成型,然后进行二步放电等离子烧结;

表层中,原料按质量份数计为,高熵碳化物陶瓷96.4~98.7份,Al2O3 1~3份,石墨烯0.1~

0.2份,碳纳米管0.2 0.4份;

~

过渡层中,原料按质量份数计为,高熵碳化物陶瓷89~93 份,Al2O3 3~5份,Co 3~5份,复式晶粒增长抑制剂0.8 1.2份;

~

芯层中,原料按质量份数计为,高熵碳化物陶瓷89 93 份,Co 6 10份,复式晶粒增长抑~ ~制剂0.8 1.2份;

~

所述复式晶粒增长抑制剂为Cr3C2和VC;

所述高熵碳化物陶瓷为(Hf0.2Zr0.2W0.2Ta0.2Ti0.2)C。

2.如权利要求1所述的高熵陶瓷基梯度纳米复合刀具材料的制备方法,其特征是,二步放电等离子烧结的过程为:真空度保持在10Pa以下,按100 200 ℃/min升温至1400 1650~ ~℃,保温1 5min,然后按100 200 ℃/min冷却至1300 1500℃,保温1 6h,然后随炉冷却;在~ ~ ~ ~升温过程中,室温至1150 1250℃期间,压力保持15 25 MPa,1150 1250℃至1400 1650℃~ ~ ~ ~时,压力保持40 50 MPa。

~

3.如权利要求1所述的高熵陶瓷基梯度纳米复合刀具材料的制备方法,其特征是,所述高熵碳化物陶瓷制备过程中,原料HfC、ZrC、WC、TaC、TiC的摩尔比为1:0.9 1.1:0.9 1.1:~ ~

0.9 1.1:0.9 1.1。

~ ~

4.如权利要求1所述的高熵陶瓷基梯度纳米复合刀具材料的制备方法,其特征是,所述高熵碳化物陶瓷的制备过程为:将五种碳化物的悬浮液在机械搅拌和超声分散的条件下进行混合获得高熵碳化物陶瓷悬浮液,然后进行球磨、干燥即得高熵碳化物陶瓷粉体。

5.如权利要求1所述的高熵陶瓷基梯度纳米复合刀具材料的制备方法,其特征是,高熵碳化物陶瓷粉体与各层掺杂相悬浮液混合,加热超声获得各层粉体悬浮液,球磨、干燥获得各层粉体。

6.如权利要求5所述的高熵陶瓷基梯度纳米复合刀具材料的制备方法,其特征是,掺杂相中,石墨烯与碳纳米管制备悬浮液的过程为:将石墨烯和/或碳纳米管与聚乙二醇和聚乙烯吡咯烷酮的混合物加入至无水乙醇中,加热超声。

7.如权利要求5所述的高熵陶瓷基梯度纳米复合刀具材料的制备方法,其特征是,掺杂相中,Al2O3、Co和复式晶粒增长抑制剂的制备悬浮液的过程为:将Al2O3、Co、Cr3C2、VC中的一种或几种与聚乙二醇加入至无水乙醇中,加热超声。

8.如权利要求1所述的高熵陶瓷基梯度纳米复合刀具材料的制备方法,其特征是,复式晶粒增长抑制剂中,Cr3C2和VC的质量比为1:1.4~1.6。

9.一种高熵陶瓷基梯度纳米复合刀具材料,其特征是,由权利要求1 8任一所述的制备~方法获得。

说明书 :

一种高熵陶瓷基梯度纳米复合刀具材料及其制备方法

技术领域

[0001] 本发明属于陶瓷基复合材料技术领域,涉及一种高熵陶瓷基梯度纳米复合刀具材料及其制备方法。

背景技术

[0002] 公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
[0003] 高熵碳化物陶瓷属于高熵陶瓷的一种,据发明人研究了解,高熵碳化物陶瓷的致密化与强韧化已成为制约高熵碳化物陶瓷材料发展的最主要原因。碳化物陶瓷熔点较高,在无粘结相存在的条件下,利用真空烧结、热压烧结等传统烧结方法很难获得致密的高熵陶瓷。强韧化方面则是高熵陶瓷研究的空白,对于传统陶瓷的强韧化方法是否适用于高熵陶瓷体系尚未可知,导致高熵陶瓷材料无法得到推广和使用。

发明内容

[0004] 为了解决现有技术的不足,本发明的目的是提供一种高熵陶瓷基梯度纳米复合刀具材料及其制备方法,本发明提供的刀具材料具有高致密、高强韧等优点,有利于进行工业化应用。
[0005] 为了实现上述目的,本发明的技术方案为:
[0006] 一方面,一种高熵陶瓷基梯度纳米复合刀具材料的制备方法,按照5层对称梯度层结构的各层原料比例制备各层粉体,各层粉体采用分层铺压法装料,将5层梯度粉体压制成型,然后进行二步放电等离子烧结;
[0007] 表层中,原料按质量份数计为,高熵碳化物陶瓷96.4~98.7份,Al2O3 1~3份,石墨烯0.1~0.2份,碳纳米管0.2~0.4份;
[0008] 过渡层中,原料按质量份数计为,高熵碳化物陶瓷89~93份,Al2O33~5份,Co3~5份,复式晶粒增长抑制剂0.8~1.2份;
[0009] 芯层中,原料按质量份数计为,高熵碳化物陶瓷89~93份,Co6~10份,复式晶粒增长抑制剂0.8~1.2份;
[0010] 所述复式晶粒增长抑制剂为Cr3C2和VC。
[0011] 本发明引入金属Co作为高熵碳化物陶瓷的金属粘结相,引入纳米Al2O3作为高熵碳化物陶瓷的陶瓷粘结相,引入VC及Cr3C2作为高熵碳化物陶瓷的复式晶粒增长抑制剂,引入石墨烯‑碳纳米管作为高熵碳化物陶瓷的强韧化相,将高熵陶瓷的微观无序与梯度结构的宏观有序相耦合,将石墨烯‑碳纳米管可控分布与高熵陶瓷梯度结构演变关联,通过二步放电等离子烧结,得到粘结相含量与梯度层厚度精准可控、性能配置最优的石墨烯‑碳纳米管/高熵陶瓷基梯度纳米复合刀具材料。
[0012] 另一方面,一种高熵陶瓷基梯度纳米复合刀具材料,由上述制备方法获得。
[0013] 本发明的有益效果为:
[0014] (1)本发明将高熵陶瓷的微观无序与梯度结构的宏观有序相耦合,结合组分强韧化与结构强韧化,可通过调控元素种类和梯度结构,实现基于性能驱动的陶瓷刀具材料设计。
[0015] (2)本发明引入金属Co作为高熵碳化物陶瓷的金属粘结相,引入纳米Al2O3作为高熵碳化物陶瓷的陶瓷粘结相,可实现高熵陶瓷的低温可控烧结。
[0016] (3)本发明采用二步放电等离子烧结,且引入复式晶粒增长抑制剂,可实现在抑制高熵陶瓷晶粒增长的情况下完成高致密化。
[0017] (4)本发明从生产技术上提供了一种可工业化生产高致密、高强韧高熵陶瓷刀具材料的技术。

具体实施方式

[0018] 应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
[0019] 需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
[0020] 鉴于目前高熵碳化物陶瓷存在致密化与强韧化较差的问题,本发明提出了一种高熵陶瓷基梯度纳米复合刀具材料及其制备方法。
[0021] 本发明的一种典型实施方式,提供了一种高熵陶瓷基梯度纳米复合刀具材料的制备方法,按照5层对称梯度层结构(即表层‑过渡层‑芯层‑过渡层‑表层)的各层原料比例制备各层粉体,各层粉体采用分层铺压法装料,将5层梯度粉体压制成型,然后进行二步放电等离子烧结;
[0022] 表层中,原料按质量份数计为,高熵碳化物陶瓷96.4~98.7份,Al2O3 1~3份,石墨烯0.1~0.2份,碳纳米管0.2~0.4份;
[0023] 过渡层中,原料按质量份数计为,高熵碳化物陶瓷89~93份,Al2O3 3~5份,Co 3~5份,复式晶粒增长抑制剂0.8~1.2份;
[0024] 芯层中,原料按质量份数计为,高熵碳化物陶瓷89~93份,Co 6~10份,复式晶粒增长抑制剂0.8~1.2份;
[0025] 所述复式晶粒增长抑制剂为Cr3C2和VC。
[0026] 在一些实施例中,二步放电等离子烧结的过程为:真空度保持在10Pa以下,按100~200℃/min升温至1400~1650℃,保温1~5min,然后按100~200℃/min冷却至1300~1500℃,保温1~6h,然后随炉冷却;在升温过程中,室温至1150~1250℃期间,压力保持15~25MPa,1150~1250℃至1400~1650℃时,压力保持40~50MPa。
[0027] 在一些实施例中,所述高熵碳化物陶瓷为(Hf0.2Zr0.2W0.2Ta0.2Ti0.2)C。该高熵碳化物陶瓷由HfC、ZrC、WC、TaC、TiC作为原料获得。
[0028] 较为具体地,HfC、ZrC、WC、TaC、TiC的摩尔比为1:0.9~1.1:0.9~1.1:0.9~1.1:0.9~1.1。
[0029] 较为具体地,制备过程为:将五种碳化物的悬浮液在机械搅拌和超声分散的条件下进行混合获得高熵碳化物陶瓷悬浮液,然后进行球磨、干燥即得高熵碳化物陶瓷粉体。五种碳化物的悬浮液中,分散溶剂均为无水乙醇,分散介质均为聚乙二醇。碳化物的悬浮液的制备过程为加热超声分散。获得高熵碳化物陶瓷悬浮液后,继续超声分散50~70min。加热超声的温度为95~105℃,例如95~100℃。
[0030] 在一些实施例中,高熵碳化物陶瓷粉体与各层掺杂相悬浮液混合,加热超声获得各层粉体悬浮液,球磨、干燥获得各层粉体。各层掺杂相是各层中除高熵碳化物陶瓷粉体外的其他添加材料,例如表层中Al2O3、石墨烯、碳纳米管为表层掺杂相,过渡层中Al2O3、Co和复式晶粒增长抑制剂为过渡层掺杂相,芯层中的Co和复式晶粒增长抑制剂为芯层掺杂相。
[0031] 较为具体地,掺杂相中,石墨烯与碳纳米管可以分别制成悬浮液,也可以共同制成悬浮液,其悬浮液的制备过程为:将石墨烯和/或碳纳米管与聚乙二醇和聚乙烯吡咯烷酮的混合物加入至无水乙醇中,加热超声。其中,聚乙二醇和聚乙烯吡咯烷酮的质量比优选为1:0.9~1.1。加热超声的温度为95~105℃,例如95~100℃。
[0032] 较为具体地,掺杂相中,Al2O3、Co和复式晶粒增长抑制剂的制成悬浮液的方法相同,其制备过程为:将Al2O3、Co、Cr3C2、VC中的一种或几种与聚乙二醇加入至无水乙醇中,加热超声。加热超声的温度为95~105℃,例如95~100℃。
[0033] 在一些实施例中,复式晶粒增长抑制剂中,Cr3C2和VC的质量比为1:1.4~1.6。
[0034] 本发明的另一种实施方式,提供了一种高熵陶瓷基梯度纳米复合刀具材料,由上述制备方法获得。
[0035] 为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
[0036] 实施例1
[0037] (1)以0.4μm HfC、ZrC、WC、TaC、TiC五种碳化物陶瓷粉末为原料,按照等摩尔比配料。采用无水乙醇为分散溶剂,聚乙二醇为分散介质,分别制备五种碳化物悬浮液,在100℃水浴加热超声分散1h。在机械搅拌及超声分散的情况下,将五种碳化物悬浮液混合得到高熵碳化物陶瓷悬浮液,继续超声分散1h。按一定的球料比加入磨球,球磨24h,然后在真空干燥箱中干燥,过筛即得分散良好的高熵碳化物陶瓷硬质相粉体((Hf0.2Zr0.2W0.2Ta0.2Ti0.2)C)。
[0038] (2)以步骤(1)高熵碳化物陶瓷、0.5μm钴(Co)、80nm氧化铝(Al2O3)、80nm碳化矾(VC)、100nm碳化铬(Cr2C3)、石墨烯及碳纳米管为原料,表层按96.7高熵碳化物陶瓷‑3Al2O3‑0.1石墨烯‑0.2碳纳米管质量配比,过渡层按89高熵碳化物陶瓷‑5Al2O3‑5Co‑
0.4Cr3C2‑0.6VC质量配比,芯层按89高熵陶瓷‑10Co‑0.4Cr3C2‑0.6VC质量配比。
[0039] (3)石墨烯‑碳纳米管分散采用无水乙醇为分散溶剂,加入相对石墨烯‑碳纳米管质量80%的复式分散剂(聚乙二醇:聚乙烯吡咯烷酮=1:1)配置成悬浮液,在100℃水浴加热超声分散60min;纳米Al2O3分散采用无水乙醇为分散溶剂,加入相对纳米Al2O3颗粒质量1.0%聚乙二醇配置成悬浮液超在100℃水浴加热超声分散20min;纳米VC、纳米Cr3C2及金属Co分散工艺与纳米Al2O3分散工艺相同。
[0040] (4)按照步骤(2)配比,将高熵碳化物陶瓷粉体与步骤(3)制得的掺杂相悬浮液混合,在100℃水浴加热超声分散30min得到各梯度层粉体悬浮液。按1;50球料比加入磨球,球磨20小时,然后在真空干燥箱中干燥,过筛即得分散良好的各梯度层粉体。
[0041] (5)采用二步放电等离子烧结工艺:真空度保持在10Pa以下,按150℃/min升温至1500℃,保温5min然后按150℃/min冷却至1350℃保温1h然后随炉冷却;在室温至1200℃期间,压力保持20MPa,1200~1500℃压力保持45MPa。
[0042] 以上至烧结程序运行结束,即可获得高致密(相对密度99.6%)、高强韧的高熵陶瓷基梯度纳米复合刀具材料,其力学性能为:抗弯强度702.9MPa,维氏硬度HV10 22.8GPa,断1/2
裂韧性10.2MPa·m 。
[0043] 实施例2
[0044] (1)以0.4μm HfC、ZrC、WC、TaC、TiC五种碳化物陶瓷粉末为原料,按照等摩尔比配料。采用无水乙醇为分散溶剂,聚乙二醇为分散介质,分别制备五种碳化物悬浮液,在100℃水浴加热超声分散1h。在机械搅拌及超声分散的情况下,将五种碳化物悬浮液混合得到高熵碳化物陶瓷悬浮液,继续超声分散1h。按一定的球料比加入磨球,球磨24h,然后在真空干燥箱中干燥,过筛即得分散良好的高熵碳化物陶瓷硬质相粉体((Hf0.2Zr0.2W0.2Ta0.2Ti0.2)C)。
[0045] (2)以步骤(1)高熵陶瓷、0.5μm钴(Co)、80nm氧化铝(Al2O3)、80nm碳化矾(VC)、100nm碳化铬(Cr2C3)、石墨烯及碳纳米管为原料,表层按97.7高熵碳化物陶瓷‑2Al2O3‑0.1石墨烯‑0.2碳纳米管质量配比,过渡层按91高熵碳化物陶瓷‑4Al2O3‑4Co‑0.4Cr3C2‑0.6VC质量配比,芯层按91高熵碳化物陶瓷‑8Co‑0.4Cr3C2‑0.6VC质量配比。
[0046] (3)石墨烯‑碳纳米管分散采用无水乙醇为分散溶剂,加入相对石墨烯‑碳纳米管质量80%的复式分散剂(聚乙二醇:聚乙烯吡咯烷酮=1:1)配置成悬浮液,在100℃水浴加热超声分散60min;纳米Al2O3分散采用无水乙醇为分散溶剂,加入相对纳米Al2O3颗粒质量1.0%聚乙二醇配置成悬浮液超在100℃水浴加热超声分散20min;纳米VC、纳米Cr3C2及金属Co分散工艺与纳米Al2O3分散工艺相同。
[0047] (4)按照步骤(2)配比,将高熵碳化物陶瓷粉体与步骤(3)制得的掺杂相悬浮液混合,在100℃水浴加热超声分散30min得到各梯度层粉体悬浮液。按1;30球料比加入磨球,球磨20小时,然后在真空干燥箱中干燥,过筛即得分散良好的各梯度层粉体。
[0048] 采用二步放电等离子烧结工艺:真空度保持在10Pa以下,按150℃/min升温至1550℃,保温5min然后按150℃/min冷却至1350℃保温1h然后随炉冷却;在室温至1200℃期间,压力保持20MPa,1200‑1550℃压力保持45MPa。
[0049] 以上至烧结程序运行结束,即可获得高致密(相对密度为99.7%)、高强韧的高熵陶瓷基梯度纳米复合刀具材料,其力学性能为:抗弯强度673.1MPa,维氏硬度HV10 23.1GPa,1/2
断裂韧性9.8MPa·m 。
[0050] 实施例3
[0051] (1)以0.5μm HfC、ZrC、WC、TaC、TiC五种碳化物陶瓷粉末为原料,按照等摩尔比配料。采用无水乙醇为分散溶剂,聚乙二醇为分散介质,分别制备五种碳化物悬浮液,在100℃水浴加热超声分散1h。在机械搅拌及超声分散的情况下,将五种碳化物悬浮液混合得到高熵碳化物陶瓷悬浮液,继续超声分散1h。按一定的球料比加入磨球,球磨24h,然后在真空干燥箱中干燥,过筛即得分散良好的高熵碳化物陶瓷硬质相粉体((Hf0.2Zr0.2W0.2Ta0.2Ti0.2)C)。
[0052] (2)以步骤(1)高熵碳化物陶瓷、0.5μm钴(Co)、80nm氧化铝(Al2O3)、80nm碳化矾(VC)、100nm碳化铬(Cr2C3)、石墨烯及碳纳米管为原料,表层按98.4高熵碳化物陶瓷‑1Al2O3‑0.2石墨烯‑0.4碳纳米管质量配比,过渡层按93高熵碳化物陶瓷‑3Al2O3‑3Co‑
0.4Cr3C2‑0.6VC质量配比,芯层按93高熵陶瓷‑6Co‑0.4Cr3C2‑0.6VC质量配比。
[0053] (3)石墨烯‑碳纳米管分散采用无水乙醇为分散溶剂,加入相对石墨烯‑碳纳米管质量80%的复式分散剂(聚乙二醇:聚乙烯吡咯烷酮=1:1)配置成悬浮液,在100℃水浴加热超声分散60min;纳米Al2O3分散采用无水乙醇为分散溶剂,加入相对纳米Al2O3颗粒质量1.0%聚乙二醇配置成悬浮液超在100℃水浴加热超声分散20min;纳米VC、纳米Cr3C2及金属Co分散工艺与纳米Al2O3分散工艺相同。
[0054] (4)按照步骤(2)配比,将高熵碳化物陶瓷粉体与步骤(3)制得的掺杂相悬浮液混合,在100℃水浴加热超声分散30min得到各梯度层粉体悬浮液。按1;30球料比加入磨球,球磨20小时,然后在真空干燥箱中干燥,过筛即得分散良好的各梯度层粉体。
[0055] (5)采用二步放电等离子烧结工艺:真空度保持在10Pa以下,按150℃/min升温至1600℃,保温5min然后按150℃/min冷却至1350℃保温1h然后随炉冷却;在室温至1200℃期间,压力保持20MPa,1200‑1600℃压力保持45MPa。
[0056] 以上至烧结程序运行结束,即可获得高致密(相对密度99.4%)、高强韧的高熵陶瓷基梯度纳米复合刀具材料,抗弯强度659.7MPa,维氏硬度HV10 23.2GPa,断裂韧性1/2
10.6MPa·m 。
[0057] 对比例
[0058] (1)以0.4μm HfC、ZrC、WC、TaC、TiC五种碳化物陶瓷粉末为原料,按照等摩尔比配料。采用无水乙醇为分散溶剂,聚乙二醇为分散介质,分别制备五种碳化物悬浮液,在100℃水浴加热超声分散1h。在机械搅拌及超声分散的情况下,将五种碳化物悬浮液混合得到高熵碳化物陶瓷悬浮液,继续超声分散1h。按一定的球料比加入磨球,球磨24h,然后在真空干燥箱中干燥,过筛即得分散良好的高熵碳化物陶瓷硬质相粉体((Hf0.2Zr0.2W0.2Ta0.2Ti0.2)C)。
[0059] (2)以步骤(1)高熵碳化物陶瓷、0.5μm钴(Co)、80nm氧化铝(Al2O3)、80nm碳化矾(VC)、100nm碳化铬(Cr2C3)、石墨烯及碳纳米管为原料,表层按96.7高熵碳化物陶瓷‑3Al2O3‑0.1石墨烯‑0.2碳纳米管质量配比,过渡层按89高熵碳化物陶瓷‑5Al2O3‑5Co‑
0.4Cr3C2‑0.6VC质量配比,芯层按89高熵陶瓷‑10Co‑0.4Cr3C2‑0.6VC质量配比。
[0060] (3)石墨烯‑碳纳米管分散采用无水乙醇为分散溶剂,加入相对石墨烯‑碳纳米管质量80%的复式分散剂(聚乙二醇:聚乙烯吡咯烷酮=1:1)配置成悬浮液,在100℃水浴加热超声分散60min;纳米Al2O3分散采用无水乙醇为分散溶剂,加入相对纳米Al2O3颗粒质量1.0%聚乙二醇配置成悬浮液超在100℃水浴加热超声分散20min;纳米VC、纳米Cr3C2及金属Co分散工艺与纳米Al2O3分散工艺相同。
[0061] (4)按照步骤(2)配比,将高熵碳化物陶瓷粉体与步骤(3)制得的掺杂相悬浮液混合,在100℃水浴加热超声分散30min得到各梯度层粉体悬浮液。按1;50球料比加入磨球,球磨20小时,然后在真空干燥箱中干燥,过筛即得分散良好的各梯度层粉体。
[0062] (5)采用二步放电等离子烧结工艺:真空度保持在10Pa以下,按150℃/min升温至1300℃保温1h然后随炉冷却;在室温至1200℃期间,压力保持20MPa,1200~1300℃压力保持45MPa。
[0063] 以上至烧结程序运行结束,所得材料基体未形成(Hf0.2Zr0.2W0.2Ta0.2Ti0.2)C单相高熵碳化物,而是以多种碳化物形式存在;材料致密度及硬度均较差:相对密度为79%,维氏硬度HV10 13.8GPa。
[0064] 以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。